Genetic and Genomic Assessment in Women with Ovarian Cancer

MASSACHUSETTS GENERAL HOSPITAL

CANCER CENTER

Richard T Penson MD MRCP Associate Professor Harvard Medical School Medical Gynecologic Oncologist Massachusetts General Hospital IRB Chair Dana Farber / Harvard Cancer Center

Potential Conflicts of Interest

...*capped at a level befitting an academic role Lo B.* Serving Two Masters 2010;362:669-671

2004-	Genentech, Inc.	Research DSMC Chair SABs
2006-9	CuraGen Corp.	Research Funding
2007-10	PDL BioPharma, Inc.	Research Funding
2007-	ImClone Systems, Inc.	Research Funding
2008-13	Abbott Laboratories	Scientific Advisory Boards (SABs)
2008-	Endocyte, Inc.	Research Scientific Advisory Boards
2009-	AstraZeneca	Research SABs Educational materials
2010-	Vascular Biogenics, Ltd	Research Funding SABs
2010-	Eisai Inc.	Research Funding
2010-	Amgen Inc.	Research Funding SABs
2010-11	Lifecore Biomedical	Scientific Advisory Boards
2011	Biomarin Pharma Inc.	Scientific Advisory Boards
2011-	Clovis Oncology	Scientific Advisory Boards
2013-	AbbVie	Scientific Advisory Boards DSMC
2016-	Schulman IRB	Consultant

Genetic / Genomic Ix: 1. Indications 2. g/s*BRCA* and Beyond 3. Available Platforms 4. BRCA-like signatures

Risk Factors?

- Increased risk nulliparity, early menarche, late menopause, ovulatory stimulation, history of breast cancer, genetics, Caucasian
- Decreased risk ≥ 5 years oral contraception, tubal ligation, non-caucasian
- Best unifying theory is that sporadic ovarian cancer is due to 'incessant' ovulation
- Less than 10% is inherited

Inherited Predisposition

- BRCA1 17q 185delAG, 5382insC (FA) OVCA 16-54%
- BRCA2 13q 6174delT (Rad51) OVCA 10-23%
 - General pop. 0.1-2% King Science 2003;302:643
 - Ashkenazi 2.5-10-26-41%
- RRSO 95% reduction in the risk of OVCA
- Lynch II MSH2 MLH1 Rebbeck NEJM 2002;346:1616
- 1000 pt study Bowtell Nat Rev Cancer 2010;10:803 Alsop JCO 2012;30:2654

BRCA Mutation Increases Breast and Ovarian Cancer Risks

Genetic Analysis

Grade	Definition	Suggestions for Practice
A	The USPSTF recommends the service. There is high certainty that the net benefit is substantial.	Offer or provide this service.
B	The USPSTF recommends the service. There is high certainty that the net benefit is moderate or there is moderate certainty that the net benefit is moderate to substantial.	Offer or provide this service.
С	The USPSTF recommends selectively offering or providing this service to individual patients based on professional judgment and patient preferences. There is at least moderate certainty that the net benefit is small.	Offer or provide this service for selected patients depending on individual circumstances.
D	The USPSTF recommends against the service. There is moderate or high certainty that the service has no net benefit or that the harms outweigh the benefits.	Discourage the use of this service.
Statement	The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of the service. Evidence is lacking, of poor quality, or conflicting, and the balance of benefits and harms cannot be determined.	Read the clinical considerations section of USPSTF Recommendation Statement. If the service is offered, patients should understand the uncertainty about the balance of benefits and harms.

NCCN Guidelines

National Comprehensive NCCN Guidelines Version 2.2017 NCCN Guidelines Index NCCN Cancer Table of Contents **Breast and/or Ovarian Cancer Genetic Assessment** Discussion Network[®] CRITERIA FOR FURTHER GENETIC RISK EVALUATION^a An individual with an ovarian^e cancer An individual with no personal history of cancer An individual with a breast cancer diagnosis meeting any of the but with A close relative with any of the following: d,f following: A known mutation in a cancer susceptibility gene within the ◊ A known mutation in a cancer susceptibility family gene within the family Early-age-onset breast cancer^b ◊ ≥2 breast cancer primaries in a single Triple negative (ER-, PR-, HER2-) breast cancer diagnosed ≤60 y individual Two breast cancer primaries^C in a single individual ◊ ≥2 individuals with breast cancer primaries Breast cancer at any age, and Consider $\diamond \ge 1$ close blood relative^d with breast cancer ≤ 50 y, or $\diamond \ge 1$ close blood relative^d with invasive ovarian^e on the same side of family with at least one See referral to diagnosed ≤50 y Assessment ◊ Ovarian^e cancer cancer genetics cancer at any age, or (BR/OV-2) $\diamond \geq 2$ close blood relatives^d with breast cancer and/or pancreatic professional ◊ Male breast cancer cancer at any age, or First- or second-degree relative with breast ◊ Pancreatic cancer at any age, or cancer ≤45 y ♦ From a population at increased risk[†] Family history of three or more of the Male breast cancer following (especially if early onset^b and can An individual of Ashkenazi Jewish descent with breast, ovarian, or include multiple primary cancers in same pancreatic cancer at any age individual): breast, pancreatic cancer, prostate An individual with a personal and/or family history of three or cancer (Gleason score ≥7), melanoma, more of the following (especially if early onset^b and can include sarcoma, adrenocortical carcinoma, brain multiple primary cancers in same individual): breast, pancreatic tumors, leukemia, diffuse gastric cancer¹, cancer, prostate cancer (Gleason score ≥7), melanoma, sarcoma, colon cancer, endometrial cancer, thyroid adrenocortical carcinoma, brain tumors, leukemia, diffuse gastric cancer, kidney cancer, dermatologic cancerⁱ, colon cancer, endometrial cancer, thyroid cancer, kidney manifestations^{g,h} and/or macrocephaly, cancer, dermatologic manifestations^{g,h} and/or macrocephaly, hamartomatous polyps of GI tracth hamartomatous polyps of gastrointestinal (GI) tracth ^aThe criteria for further risk evaluation and genetic testing are not identical. For the purposes of these guidelines, invasive and ductal carcinoma in situ breast cancers should be included. The maternal and ^fFor populations at increased risk due to founder mutations, requirements for paternal sides of the family should be considered independently for familial patterns of cancer. inclusion may be modified. ^bClinically use age ≤50 y because studies define early onset as either ≤40 or ≤50 y. ⁹For dermatologic manifestations, see COWD-1. °Two breast cancer primaries includes bilateral (contralateral) disease or two or more clearly separate ^hFor hamartomatous colon polyps in conjunction with breast cancer and ipsilateral primary tumors either diagnosed synchronously or asynchronously. hyperpigmented macules of the lips and oral mucosa, STK11 testing should dClose blood relatives include first-, second-, and third-degree relatives. (See BR/OV-B) be considered. See NCCN Guidelines for Genetic/Familial High-Risk eIncludes fallopian tube and primary peritoneal cancers. BRCA-related ovarian cancers are associated Assessment: Colorectal-Peutz-Jeghers syndrome. Melanoma has been with epithelial, non-mucinous histology. Lynch syndrome can be associated with both non-mucinous and reported in some BRCA-related families. mucinous epithelial tumors. Be attentive for clinical evidence of Lynch syndrome (See NCCN Guidelines For lobular breast cancer with a family history of diffuse gastric cancer, CDH1 for Genetic/Familial High-Risk Assessment: Colorectal). Specific types of non-epithelial ovarian cancers gene testing should be considered. and tumors can also be associated with other rare syndromes. Examples include an association between ^jFor further details regarding the nuances of genetic counseling and testing, sex-cord tumors with annular tubules and Peutz-Jeghers syndrome or Sertoli-Leydig tumors and DICER1see BR/OV-A.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

related disorders.

Who Should We Test?

Everyone

Genetic / Genomic Ix: 1. Indications 2. g/sBRCA and Beyond 3. Available Platforms 4. BRCA-like signatures

Pennington & Swisher Gynecol Oncol 2012;124(2):347

Up to 50% of HGOC patients may be tBRCA^{mut} or tBRCA-like per TCGA

ECCO

Adapted from Swisher et al, ECCO 2015

Genetic / Genomic Ix: 1. Indications 2. g/sBRCA and Beyond 3. Available Platforms 4. BRCA-like signatures

Jolie Revelation

Mother and Daughter

- Marcheline Bertrand
- Died 2007
- Ovarian Cancer
- Aged 56
- Actress
- ... Mother

BRCA Patent Issues

Supreme Court

June 13, 2013 *Molecular Pathology v. Myriad Genetics, Inc.* Unanimous decision Invalidated Myriad's claims

Discovery & Prior Art CAN patent: methods

Panel Testing

Gene	Cancers	Syndrome Name
APC	Colorectal, adenomatous polyps	Familial adenomatous polyposis (FAP)
ATM	Breast, pancreas	
BARD1	Breast	
BMPR1A and SMAD4	Colorectal	Juvenile polypsis syndrome (JPS)
BRCA1 and BRCA2	Breast, ovarian, prostate	Hereditary breast and ovarian cancer (HBOC)
BRIP1	Breast	
CDH1	Lobular breast, diffuse stomach, colorectal	Hereditary diffuse gastric cancer (HDGC)
CDK4	Melanoma	
CDKN2A	Melanoma, pancreas	
CHEK2	Breast, colorectal	
MLH1, MSH2, MSH6, PMS2 and EPCAM	Colorectal, endometrial (uterine), ovarian, stomach	Lynch syndrome/HNPCC
MRE11A	Breast	
MUTYH (MYH)	Colorectal	MYH-associated polyposis (MAP) syndrome
NBN	Breast	
NF1	Breast	Neurofibromatosis type 1
PALB2	Breast, pancreas	
PTEN	Breast, thyroid, uterine	Cowden syndrome/PTEN hamartoma syndrome
RAD50	Breast	
RAD51C	Breast, ovary	
RAD51D	Breast, ovary	
STK11	Breast, colorectal, stomach	Peutz-Jeghers syndrome
TP53	Breast, sarcoma, adrenocortical, brain	Li-Fraumeni syndrome

Genetic / Genomic Ix: 1. Indications 2. g/sBRCA and Beyond 3. Available Platforms 4. BRCA-like signatures

TGCA Serous

Nature 2011;474(7353):609

LexA represses expression of a number of genes by binding to their promoters. When DNA damage occurs, RecA-single-strand DNA complexes form and act as a coprotease for the self-cleavage activity of LexA. As a result, several DNA damage– inducible (din) genes are expressed, including DNA polymerases. >40 genes are induced in the SOS response that promote repair of DNA damage and survival.

Jasin M. N Engl J Med 2015;373:1492-1495

2015 Lasker Winners Elledge and Witkin

Seminal discoveries in DNA Damage Response

NARY LASKED

JND4710

AND

THAAAAA

Contributions of BRCA1 and BRCA2 Mutations (Genetic, Somatic, and Epigenetic) to Serous Ovarian Cancer

Konstantinopoulos Cancer Disc 2015;5:1137 Staples and Goodman - PARP Inhibitors in Ovarian Cancer In: "Ovarian Cancer - A Clinical and Translational Update" www.intechopen.com/download/pdf/42671

Disruptions in Homologous Recombination and DNA Repair

- BRCA1 mutated 9%
- BRCA2 mutated 8%
- EMSY amplified/mutated 8%
- BRCA1 Hypermethylated 12%
- PTEN loss or mutation 7%
- DNA damage sensors/FANC 7%
- RAD51C hypermethylated 3%

Total - 51%

Genetic / Genomic Ix: 1. Test every pt with OVCA 2. BRCA g, s, and Beyond 3. Panel or Tissue Testing 4. BRCAness Predictive

GENERAL HOSPITAL

CANCER CENTER