CONSENSUS OR CONTROVERSY? Clinical Investigators Provide Perspectives on Targeted Treatment of Metastatic Non-Small Cell Lung Cancer

March 16, 2017 6:30 PM – 8:00 PM

Faculty

Ramaswamy Govindan, MD Joel W Neal, MD, PhD Gregory J Riely, MD, PhD

> **Moderator** Neil Love, MD

> > Research
> > To Practice®

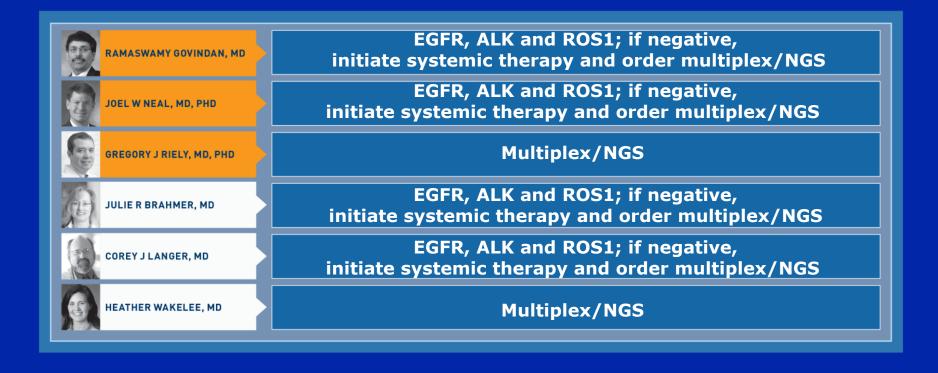
Disclosures for Dr Govindan

Advisory Committee	AbbVie Inc, Ariad Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Baxalta Inc, INC Research, Roche Laboratories Inc
Consulting Agreements	AbbVie Inc, Ariad Pharmaceuticals Inc, Astellas Pharma Global Development Inc, Baxalta Inc, Bristol-Myers Squibb Company, Genentech BioOncology, INC Research
Contracted Research and Speakers Bureau	AbbVie Inc, Ariad Pharmaceuticals Inc, Baxalta Inc, INC Research

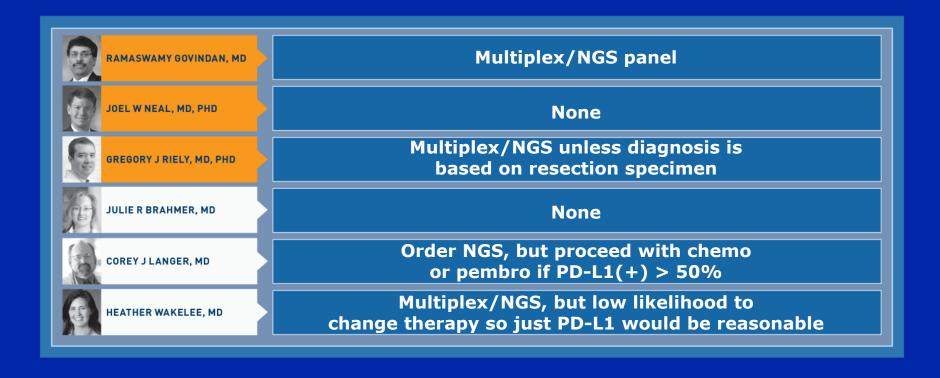
Disclosures for Dr Neal

Consulting Agreements	Ariad Pharmaceuticals Inc, ARMO BioSciences, Boehringer Ingelheim Pharmaceuticals Inc, CARET/Physicians Resource Management, Clovis Oncology, Nektar
Contracted Research	Ariad Pharmaceuticals Inc, ArQule Inc, Boehringer Ingelheim Pharmaceuticals Inc, Exelixis Inc, Genentech BioOncology, Merck, Nektar, Novartis Pharmaceuticals Corporation, Roche Laboratories Inc

Disclosures for Dr Riely

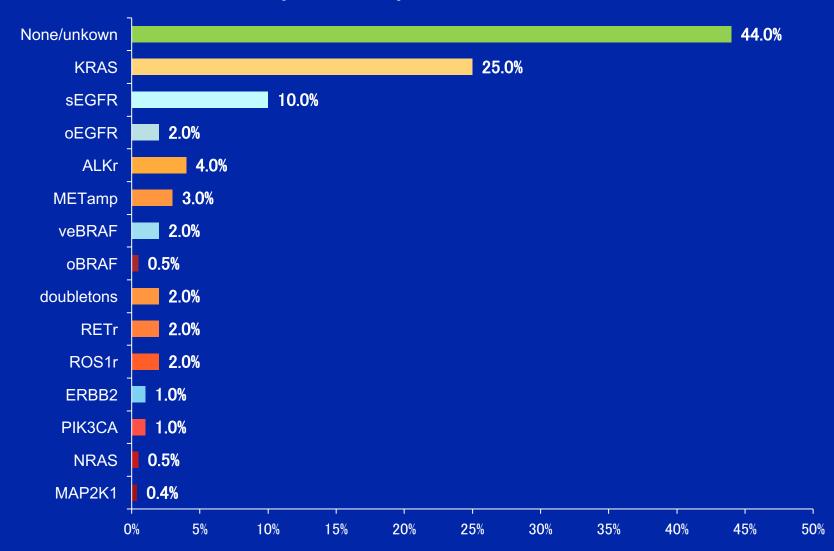

Consulting Agreement	Genentech BioOncology
Contracted Research	Ariad Pharmaceuticals Inc, Astellas Pharma Global Development Inc, Novartis Pharmaceuticals Corporation, Pfizer Inc

Disclosures for Moderator Neil Love, MD


Dr Love is president and CEO of Research To Practice, which receives funds in the form of educational grants to develop CME activities from the following commercial interests: AbbVie Inc, Acerta Pharma, Agendia Inc, Amgen Inc, Ariad Pharmaceuticals Inc., Array BioPharma Inc., Astellas Pharma Global Development Inc, AstraZeneca Pharmaceuticals LP, Baxalta Inc, Bayer HealthCare Pharmaceuticals, Biodesix Inc, bioTheranostics Inc, Boehringer Ingelheim Pharmaceuticals Inc, Boston Biomedical Pharma Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, CTI BioPharma Corp, Daiichi Sankyo Inc, Dendreon Pharmaceuticals Inc, Eisai Inc, Exelixis Inc, Foundation Medicine, Genentech BioOncology, Genomic Health Inc, Gilead Sciences Inc, Halozyme Inc, ImmunoGen Inc, Incyte Corporation, Infinity Pharmaceuticals Inc, Janssen Biotech Inc, Jazz Pharmaceuticals Inc, Lexicon Pharmaceuticals Inc, Lilly, Medivation Inc, a Pfizer Company, Merck, Merrimack Pharmaceuticals Inc, Myriad Genetic Laboratories Inc, NanoString Technologies, Natera Inc, Novartis Pharmaceuticals Corporation, Novocure, Onyx Pharmaceuticals, an Amgen subsidiary, Pharmacyclics LLC, an AbbVie Company, Prometheus Laboratories Inc, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seattle Genetics, Sigma-Tau Pharmaceuticals Inc, Sirtex Medical Ltd, Spectrum Pharmaceuticals Inc, Taiho Oncology Inc, Takeda Oncology, Tesaro Inc, Teva Oncology, Tokai Pharmaceuticals Inc and VisionGate Inc.

Module 1: Optimal Testing Algorithms; Treatment of Patients with EGFR Tumor Mutations

What type of mutation testing, if any, should be ordered for a patient who is a current smoker presenting with metastatic adenocarcinoma?


What type of mutation testing, if any, should be ordered for a patient who is a current smoker presenting with metastatic squamous cell carcinoma?

A plasma mutational assay ordered for a patient with newly diagnosed metastatic NSCLC demonstrates an EGFR exon 19 deletion. Is that result adequate to initiate treatment with an EGFR tyrosine kinase inhibitor (TKI)? Is a plasma mutational assay demonstrating no actionable mutation adequate to initiate treatment with chemotherapy?

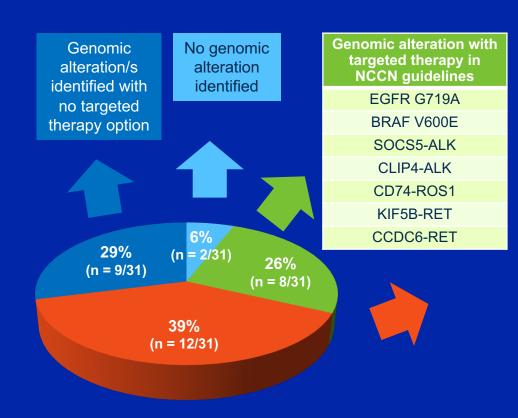
	INITIATE EGFR TKI? INITIATE CHEMOTHERAPY?	
RAMASWAMY GOVINDAN, MD	Yes	No, I would send tissue for an assay
JOEL W NEAL, MD, PHD	Yes	No, I would send tissue for an assay
GREGORY J RIELY, MD, PHD	Yes	No, I would send tissue for an assay
JULIE R BRAHMER, MD	Yes	No, I would send tissue for an assay
COREY J LANGER, MD	Yes	No, I would send tissue for an assay
HEATHER WAKELEE, MD	Yes	No, I would send tissue for an assay

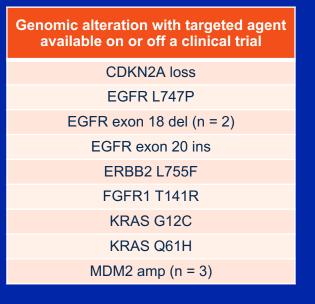
Frequency of Oncogenic Drivers in Lung Adenocarcinoma (n = 875)

s = sensitizing; r = rearrangement; o = other; veBRAF = BRAF V600E Aisner DL et al. *Proc ASCO* 2016; Abstract 11510.

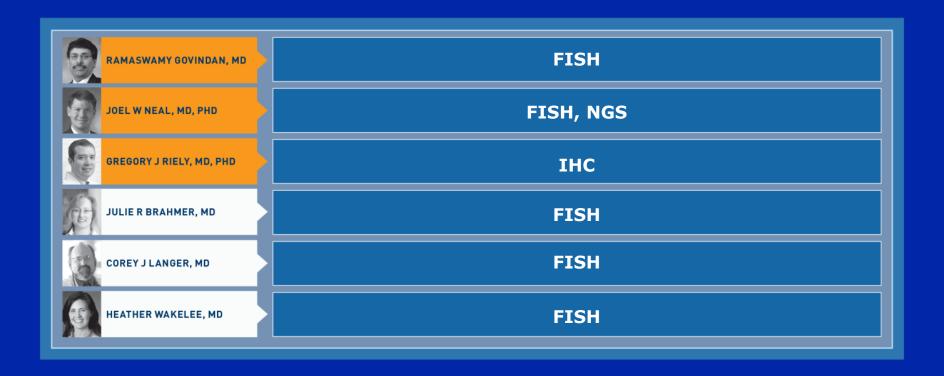
Frequency of Mutations in LCMC I Compared to LCMC II

Gene	LCMC I	LCMC II	<i>p</i> -value
EGFR	23%	16%	0.001
ALK	9%	4%	<0.001
KRAS	25%	27%	0.434
ERBB2	3%	2%	0.653
BRAF V600E	2%	3%	0.074


Smoking status	LCMC I	LCMC II	<i>p</i> -value
Current	7%	12%	
Former	59%	62%	<0.001
Never	34%	25%	


Florida Cancer Specialists Case Survey: Patients with Metastatic Nonsquamous Lung Cancer (N = 91)

	Mutated (n = 43)	Wild type* (n = 54)
Current heavy smoker	1 (2%)	18 (33%)
Current light smoker	2 (5%)	0 (0%)
Former heavy smoker	14 (33%)	26 (54%)
Former light smoker	9 (21%)	7 (13%)
Never smoker	17 (39%)	3 (6%)

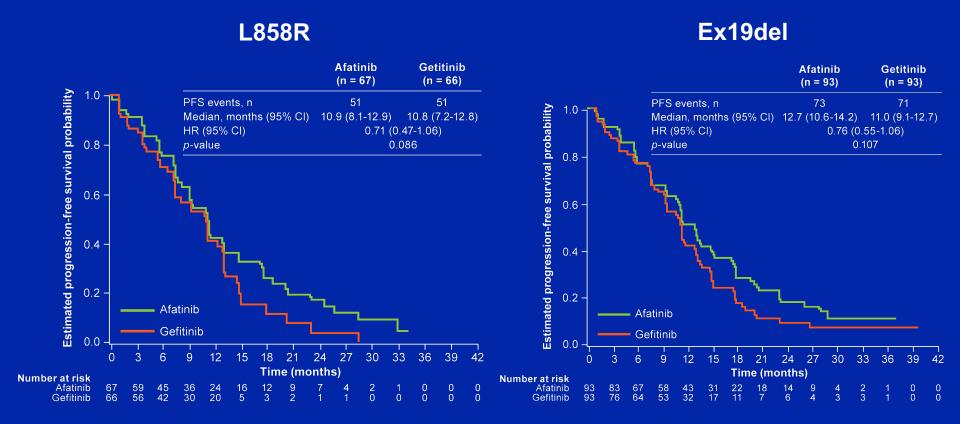

^{*}WT – 12 of 54 patients (22%) with wild-type (WT) tumors had multiplex testing

Next-Generation Sequencing (NGS) to Identify Actionable Genomic Alterations in "Pan-Negative" Lung Adenocarcinomas from Patients with No Smoking or a Light Smoking History

What type of assay is generally used to test ALK status in patients in your practice?

In general, what would be your likely initial treatment recommendation for a younger patient with metastatic adenocarcinoma of the lung, a PD-L1 tumor proportion score (TPS) of 10% and an EGFR...

	EXON 19 DELETION MUTATION	EXON 21 L858R MUTATION
RAMASWAMY GOVINDAN, MD	Erlotinib	Erlotinib
JOEL W NEAL, MD, PHD	Erlotinib	Erlotinib
GREGORY J RIELY, MD, PHD	Erlotinib	Erlotinib
JULIE R BRAHMER, MD	Afatinib	Erlotinib
COREY J LANGER, MD	Afatinib	Erlotinib
HEATHER WAKELEE, MD	Erlotinib	Erlotinib


In general, what would be your likely initial treatment recommendation for a younger patient with metastatic adenocarcinoma of the lung with an EGFR exon 19 deletion mutation and a TPS of 60%?

Meta-Analysis of PFS Benefit Observed with EGFR TKIs: Exon 19 Deletion and Exon 21 L858R Substitution

Trial	HR	95% CI	HR	95% CI
	Exon 19 deletions		Exon 21 L8	58R substitution
ENSURE	0.20	0.12 to 0.33	0.54	0.32 to 0.91
EURTAC	0.27	0.17 to 0.43	0.53	0.29 to 0.97
LUX-Lung 3	0.28	0.18 to 0.44	0.73	0.46 to 1.16
LUX-Lung 6	0.20	0.13 to 0.32	0.32	0.19 to 0.54
NEJ002	0.24	0.15 to 0.38	0.33	0.20 to 0.54
OPTIMAL	0.13	0.07 to 0.24	0.26	0.14 to 0.48
WJTOG 3405	0.42	0.26 to 0.66	0.69	0.44 to 1.07
All	0.24	0.20 to 0.29	0.48	0.39 to 0.58

LUX-Lung 7: PFS with Afatinib and Gefitinib by EGFR Mutation

Final analysis for overall survival (the study's **co-primary endpoint**) showed <u>no statistically significant difference</u> in OS between afatinib (27.9 mos) and gefitinib (24.5 mos) [HR 0.86, p = 0.258], including in ex19del subgroup

Park K et al. *Lancet Oncol* 2016;17(5):577-89.

For a patient with EGFR-mutant NSCLC who initially responds to an EGFR TKI and is now experiencing disease progression, how do you approach the issue of T790M mutation testing? Have you or would you use a urine mutation assay to evaluate for a T790M mutation?

	SERUM AND/OR TISSUE	URINE
RAMASWAMY GOVINDAN, MD	Plasma first; if negative, tissue	I haven't but would for the right patient
JOEL W NEAL, MD, PHD	Plasma first; if negative, tissue	I have
GREGORY J RIELY, MD, PHD	Plasma first; if negative, tissue	I haven't but it is reasonable
JULIE R BRAHMER, MD	Plasma and tissue concurrently	I haven't but would for the right patient
COREY J LANGER, MD	Plasma and tissue concurrently	I have
HEATHER WAKELEE, MD	Plasma first; if negative, tissue	I have

Association between Plasma Genotyping and Outcomes with Osimertinib

Sensitivity of plasma genotyping for detection of EGFR mutations:

- T790M: 70%

Exon 19 del: 82%

– Exon 21 L858R: 86%

 Plasma positive for T790M in 31% of cases negative for T790M in tumor

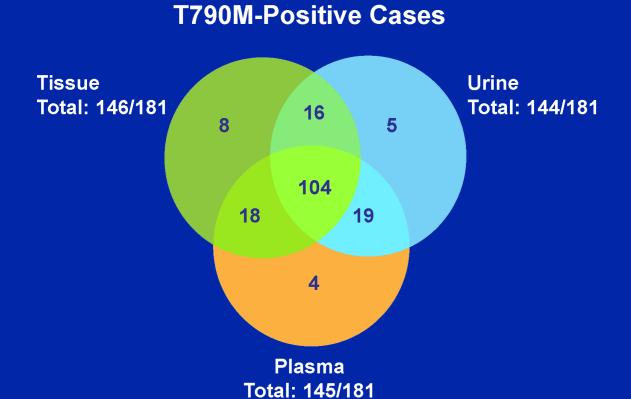
Outcome	Tumor T790M+	Tumor T790M-	Plasma T790M+	Plasma T790M-
ORR (n = 173, 58, 164, 102)	62%	26%	63%	46%
Median PFS (n = 179, 58, 169, 104)	9.7 mo	3.4 mo	9.7 mo	8.2 mo

Plasma and Urine Detection Is Sensitive and Complements Tissue T790M Testing

• Tissue as reference, plasma sensitivity = 80.9% (313/387)

Plasma vs tissue						
Tissue						
Т7	90 M	Positive Negative Inadequate			Total	
Plasma	Positive	313	23	38	374	
(BEAMing)	Negative	74	17	17	108	
Total 387 40 55 482				482		

• Tissue as reference, urine sensitivity = 81.1% (142/175)


Urine vs tissue					
		Tissue			
Т790М		Positive	Negative	Inadequate	Total
Urine	Positive	142	11	16	169
	Negative	31	5	6	42
	Inadequate	2	0	0	2
Total		175	16	22	213

In T790M-positive patients, response was similar whether status was identified by plasma, tissue or urine.

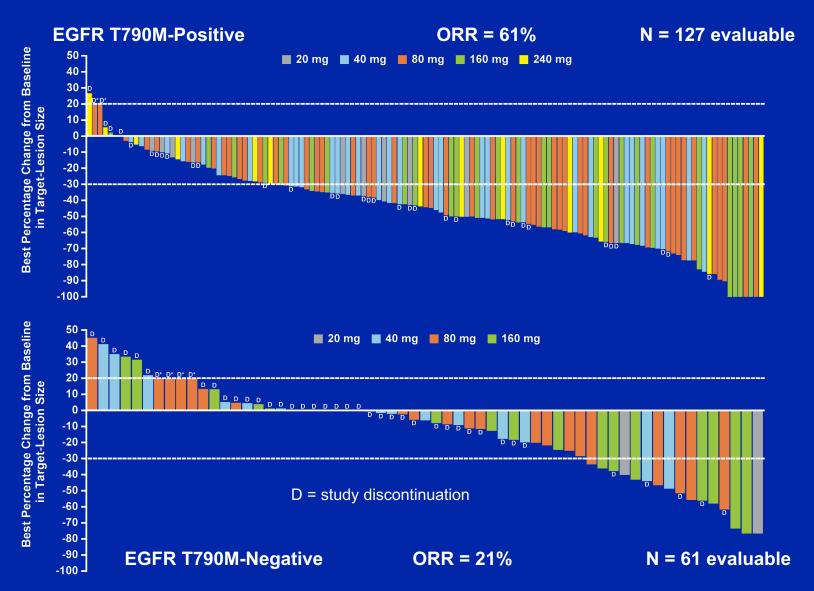
Wakelee HA et al. *Proc ASCO* 2016; Abstract 9001.

Plasma, Tissue and Urine Identify Unique and Overlapping Subsets of T790M-Positive Patients

181 samples with matched pretreatment T790M results in plasma, tissue and urine

• 57% were positive by all 3 sample types

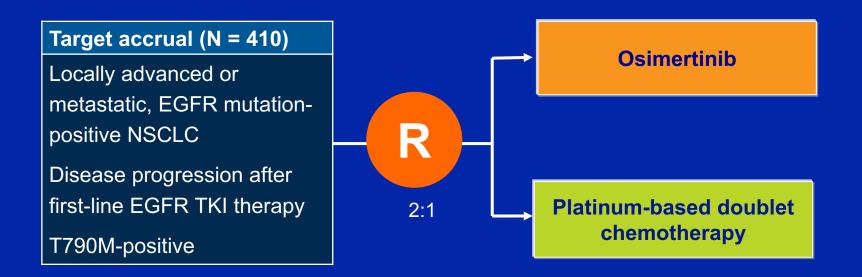
In general, what would be your most likely systemic therapy recommendation for a patient with EGFR mutation-positive nonsquamous NSCLC who responded to erlotinib, is now experiencing disease progression and has a biopsy-proven T790M mutation and a PD-L1 TPS of 60%?



What is your usual treatment approach for a patient with EGFR mutation-positive lung adenocarcinoma and a PD-L1 TPS of 60% whose disease progresses 9 months after starting erlotinib for whom a biopsy is T790M-negative?

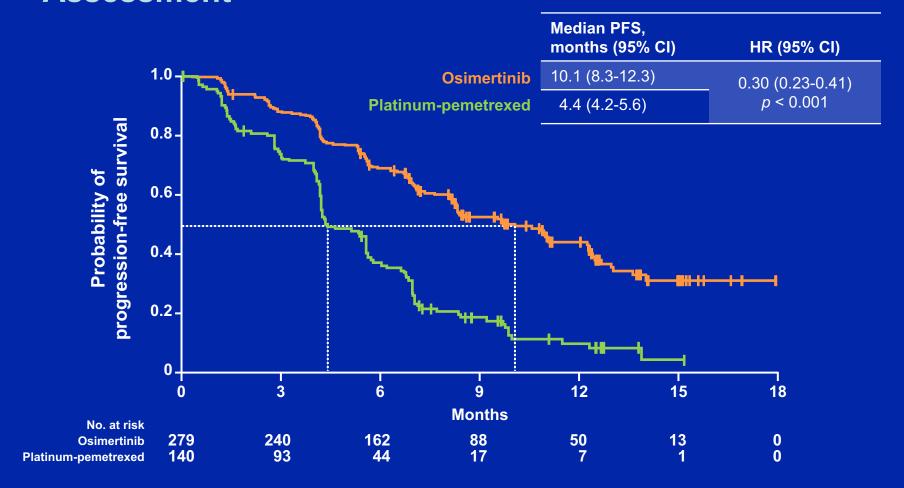
Carbo = carboplatin; pem = pemetrexed; bev = bevacizumab

Change in Tumor Size with Osimertinib in EGFR TKI-Resistant T790M Mutation-Positive and -Negative NSCLC



Jänne PA et al. N Engl J Med 2015;372(18):1689-99.

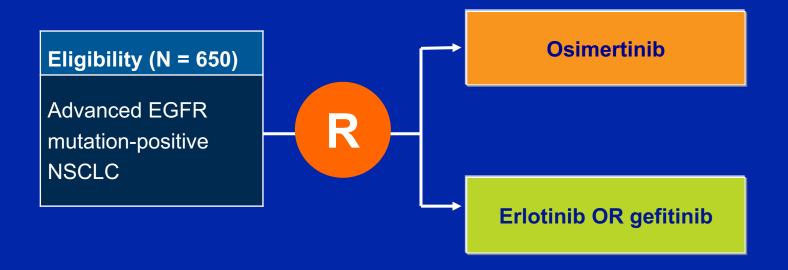
Select Adverse Events with Osimertinib


	Osimertinib (N = 253)	
	Any grade	Grade 3-5
Diarrhea	47%	2%
Nausea	22%	<0.5%
Rash	40%	1%
Pruritus	19%	0%
Decreased appetite	21%	1%
Constipation	16%	0%
Hyperglycemia	6 (2.	4%)
QT interval prolongation	11 (4	.3%)
Pneumonitis-like event	6 (2	4%)

AURA3: A Phase III Study of Osimertinib versus Platinum-Based Doublet Chemotherapy for Locally Advanced or Metastatic NSCLC

<u>Primary Endpoint</u>: Progression-free survival by investigator assessment <u>Key Secondary Endpoints</u>: Objective response rate, overall survival and safety

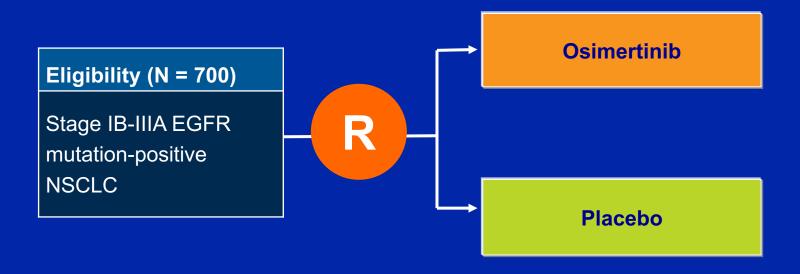
AURA3 Primary Endpoint: PFS by Investigator Assessment


 Analysis of PFS by blinded independent central review was consistent with the investigator-based analysis: HR 0.28 (95% CI 0.20-0.38), p < 0.001; median PFS 11.0 vs 4.2 months.

Mok TS et al. *N Engl J Med* 2017;376(7):629-40.

Osimertinib as First-Line Treatment for EGFR Mutation-Positive NSCLC

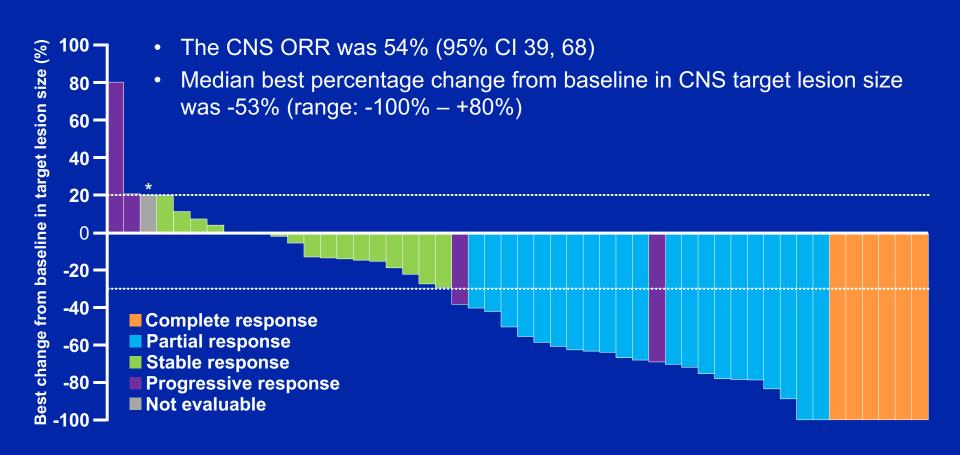
Outcome	Osimertinib 80 mg (n = 30)	Osimertinib 160 mg (n = 30)	All patients (n = 60)
Objective response rate	67%	87%	77%
Median PFS	Not reached	19.3 mo	19.3 mo


FLAURA: A Phase III Study of Osimertinib versus a Standard-of-Care EGFR TKI as First-Line Treatment for EGFR Mutation-Positive Locally Advanced or Metastatic NSCLC

Primary Endpoint: Progression-free survival

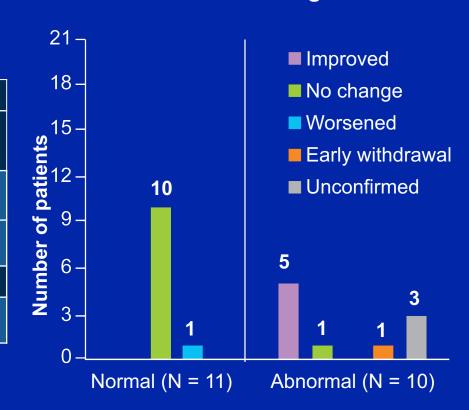
Key Secondary Endpoints: Overall response rate, overall survival and quality of life

ADAURA: A Phase III Study of Osimertinib versus Placebo for EGFR Mutation-Positive Stage IB-IIIA NSCLC After Complete Tumor Resection with or without Adjuvant Chemotherapy

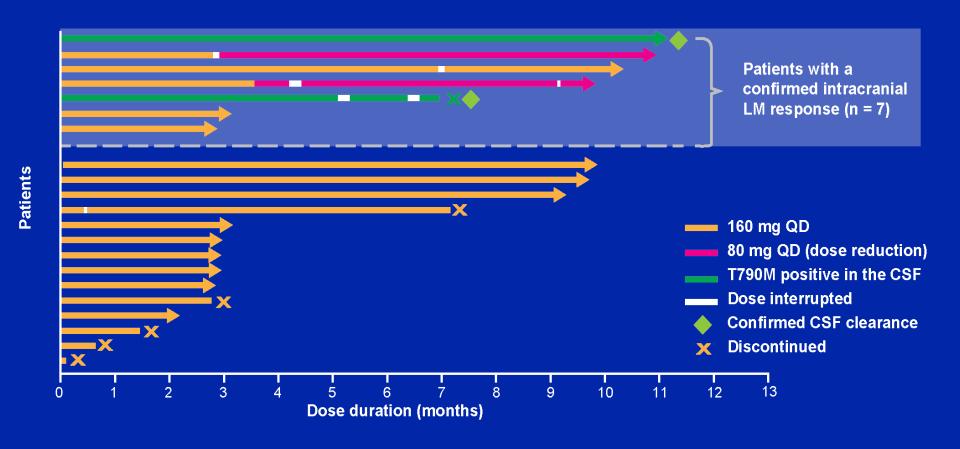

Primary Endpoint: Disease-free survival

Key Secondary Endpoints: Overall survival and quality of life

Cost and reimbursement issues aside, for a patient with untreated <u>EGFR-mutant</u>, widely metastatic nonsquamous cancer with multiple bilateral asymptomatic brain metastases that would require whole brain radiation therapy, do you generally start with a TKI and hold radiation therapy?


CNS Response to Osimertinib in Patients with T790M-Positive Advanced NSCLC: Pooled Data from Two Phase II Trials

BLOOM: Activity of Osimertinib Across Leptomeningeal Assessments

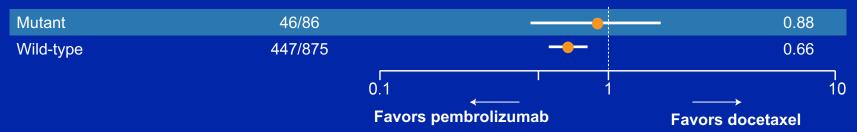

Best MRI	N = 21		
intracranial response, n (%)	Confirmed	Unconfirmed	
Responding	7 (33)	1 (5)	
Stable disease	9 (43)	2 (10)	
Early withdrawal	2 (10)		

Best confirmed neurological status

Neurological status at baseline

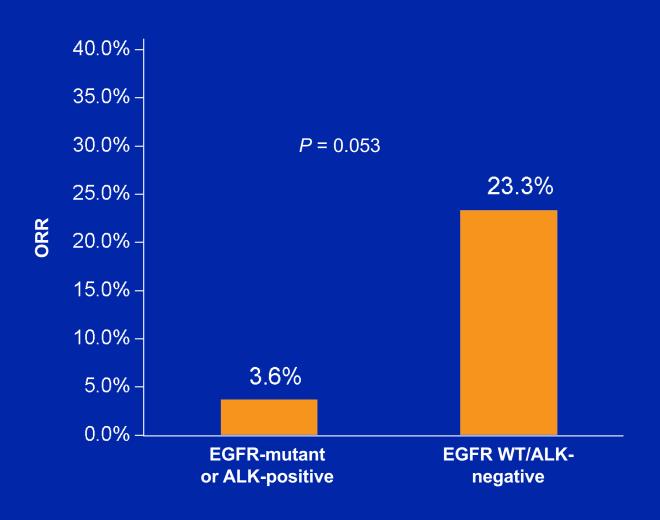
BLOOM: Time on Treatment with Osimertinib for Patients with Leptomeningeal Carcinomatosis

In general, when do you believe checkpoint inhibitors should be introduced into the treatment of patients with EGFR-mutant NSCLC and a TPS of <50%? Have you observed any meaningful clinical responses to anti-PD-1/PD-L1 antibodies in a patient with an EGFR or other tumor driver mutation?


	CHECKPOINT INHIBITORS FOR EGFR+, TPS <50%	MEANINGFUL CLINICAL RESPONSES?
RAMASWAMY GOVINDAN, MD	After appropriate targeted treatment and 2 lines of chemotherapy	No
JOEL W NEAL, MD, PHD	After appropriate targeted treatment and 1 line of chemotherapy	No
GREGORY J RIELY, MD, PHD	After EGFR TKIs and platinum doublet with bevacizumab	Yes
JULIE R BRAHMER, MD	After appropriate targeted treatment and 1 line of chemotherapy	Yes
COREY J LANGER, MD	After appropriate targeted treatment and 1 line of chemotherapy	No
HEATHER WAKELEE, MD	After appropriate targeted treatment and 1 line of chemotherapy	Yes

Association between Overall Survival and EGFR Mutation Status in Response to PD-1 Pathway Blockade

CheckMate 057¹: Nivolumab vs docetaxel


Subgroup	No. of patients	Unstratified hazard ratio
EGFR mutation status		
Positive	82	1.18
Not detected	340	 0.66
Not reported	160	0.74
		0.05 0.50 4.00 0.00 4.00
		0.25 0.50 1.00 2.00 4.00
		Nivolumab better Docetaxel better

KEYNOTE-010²: Pembrolizumab vs docetaxel

¹Borghaei H et al. *N Engl J Med* 2015;373(17):1627-39; ² Herbst RS et al. *Lancet* 2016; 387(10027):1540-50.

Association between Response Rates to PD-1 Pathway Blockade and EGFR and ALK Status in NSCLC

