Please note, these are the actual video-recorded proceedings from the live CME event and may include the use of trade names and other raw, unedited content.

Novel Strategies Under Investigation for the Treatment of MM

Noopur Raje, MD

Director, Center for Multiple Myeloma

MGH Cancer Center

Professor of Medicine

Harvard Medical School

Disclosures

Consulting Agreements

Amgen Inc, Bristol-Myers Squibb Company, Celgene Corporation, Janssen Biotech Inc, Merck, Takeda Oncology Questions regarding novel investigational strategies for the treatment of MM

Dr Johl

Dr Kumar

Dr Bessnow

Overview

- Biologic rationale for targeting B-cell maturation antigen (BCMA) in MM
- Similarities and differences between various BCMA-targeted chimeric antigen receptor (CAR) T-cell therapy platforms under investigation
- Early efficacy and safety results with BCMA-targeted CAR T-cell therapy in MM
- Ongoing investigation of venetoclax and potential clinical role, particularly in patients with t(11;14)
- Other promising agents and strategies under investigation

BCMA: A promising target in MM

B-cell maturation antigen (BCMA)

- A member of the TNF receptor superfamily
- Expression is largely restricted to plasma cells and mature B cells
- Not detectable in any other normal tissues
- Expressed nearly universally on multiple myeloma cells
- Anti-MM efficacy validated in initial studies

Multiple myeloma cells expressing BCMA

(brown color = BCMA protein)

BCMA Directed Strategies

BCMA Antibodies

BCMA Bispecific monoclonal antibodies

BCMA CAR-T cells

What are chimeric antigen receptors (CAR) and CAR-T cells?

CAR = transmembrane receptor that contains:

- 1. Extracellular domain: Antibody domain (scFv) against a tumor antigen
- 2. Transmembrane domain
- 3. Intracellular domain:

First generation CARs: CD3ζ (T-cell coreceptor necessary for T-cell activation)

Second generation CARs: CD3ζ + either CD28 or 4-1BB (costimulatory domain)

Third generation CARs to come: CD3ζ + two costimulatory domains (CD28, 4-1BB, OX40, ICOS, CD27)

CAR-T cells = T cells transfected with DNA encoding a CAR, so the CAR is expressed on the T-cell surface

Manufacturing of CAR-T cells

Summary of ongoing BCMA CAR-T trials for MM

Name	Anti-BCMA CAR	Bb2121	LCAR-B38M	CART-BCMA
Binder/co- stimulatory signal	Murine/CD3ζ, CD28	Murine/CD3ζ, 4- 1BB	Murine/CD3ζ, 4- 1BB	Fully human/CD3ζ, 4-1BB
Transfection	γ-retroviral	Lentiviral	Lentiviral	Lentiviral
BCMA expression required?	Yes	Yes	Yes	No

CRB-401 PHASE 1 STUDY DESIGN

Manufacturing success rate of 100%

ADVERSE EVENTS OF SPECIAL INTEREST

CAR T Treatment-Emergent Adverse Events All Infused Patients (N=43)						
TEAE, n (%)	Overall	Grade ≥3				
Cytokine release syndrome ^a	27 (63)	2 (5)				
Neurotoxicity ^b	14 (33)	1 (2)				
Neutropenia	35 (81)	34 (79)				
Thrombocytopenia	26 (61)	22 (51)				
Anemia	24 (56)	19 (44)				
Infection ^c						
Overall	26 (61)	9 (21)				
First Month	10 (23)	2 (5)				

- No grade 4 CRS events
- No fatal CRS or neurotoxicity events

- 31/40 (78%) recovered ANC to ≥1000/µL by Day 32
- 22/40 (55%) recovered PLT to ≥50,000/µL by Day 32

Data cutoff: March 29, 2018. NE, not estimable. a CRS uniformly graded per Lee DW, et al. *Blood*. 2014;124(2):188-195. b Events occurring in first 28 d and including dizziness, bradyphrenia, somnolence, confusional state, nystagmus, insomnia, memory impairment, depressed level of consciousness, neurotoxicity, lethargy, tremor and hallucination. cIncludes the SOC Infections and Infestations. Events observed in >10% include upper respiratory tract infection and pneumonia. dIncludes patients treated with active doses (150–800 × 106 CAR+ T cells; N=40). Median and 95% CI from Kaplan-Meier estimate. eTime from first bb2121 infusion to the first grade ≤2 event after day 32.

TUMOR RESPONSE: DOSE-RELATED; INDEPENDENT OF TUMOR BCMA EXPRESSION

Data cutoff: March 29, 2018. CR, complete response; mDOR, median duration of response; ORR, objective response rate; PD, progressive disease; PR, partial response; sCR, stringent CR; VGPR, very good partial response. ^aPatients with ≥2 months of response data or PD/death within <2 months. ORR is defined as attaining sCR, CR, VGPR, or PR, including confirmed and unconfirmed responses. Low BCMA is <50% bone marrow plasma cells expression of BCMA; high BCMA is defined as ≥50%.

CYTOKINE RELEASE SYNDROME: MOSTLY LOW GRADE AND MANAGEABLE

Cytokine Release Syndrome Parameters					
Parameter	Dosed Patients (N=43)				
Patients with a CRS event, n (%)	27 (63)				
Maximum CRS grade ^a None 1 2 3 4	16 (37) 16 (37) 9 (21) 2 (5) 0				
Median (min, max) time to onset, d	2 (1, 25)				
Median (min, max) duration, d	6 (1, 32)				
Tocilizumab use, n (%)	9 (21)				
Corticosteroid use, n (%)	4 (9)				

PROGRESSION-FREE SURVIVAL

- mPFS of 11.8 months at active doses (≥150 × 10⁶ CAR+ T cells) in 18 subjects in dose escalation phase
- mPFS of 17.7 months in 16 responding subjects who are MRD-negative

Data cutoff: March 29, 2018. Median and 95% CI from Kaplan-Meier estimate. NE, not estimable. aPFS in dose escalation cohort.

Summary of ongoing BCMA CAR-T Trials for MM

Name	Anti-BCMA CAR	Bb2121	LCAR-B38M	CART-BCMA
Binder/co-stimulatory signal	Murine/CD3ζ, CD28	Murine/CD3ζ, 4-1BB	Murine/CD3ζ, 4-1BB	Fully human/CD3ζ, 4-1BB
Transfection	γ-retroviral	Lentiviral	Lentiviral	Lentiviral
BCMA expression required?	Yes	Yes	Yes	No
Median prior lines of tx	7, 11	7	3	9
Efficacy	1 sCR (relapsed), 1 VGPR, 2 PR, 8 SD Responses in highest cell dose; 9/11 in top dose	10 CRs, 6 VGPR, 1 PRs (4 eventual PD), n=18 at >5 e7 : 94% RR 9 MRD neg	33 CR or VGPR, n=35, 1 relapse; 5 MRD neg > 1 yr	6/9, 2/5, 5/6 responses in 3 cohorts
Safety	Toxicity substantial (Gr3-4CRS) but reversible esp in highest doses (9 e6/kg); protocol modified to pts with lower tumor burden	CRS in 71%; transient Gr3 10%; 5 deaths (cardio-pulm arrest, unrelated, 1 MDS, 3 PD at lowest dose) Early report of 1 Gr 4 neurotoxicity	Transient CRS 29/35, no neurotox	CRS in 17/21 pts (6 with Gr2), with neurotox in 3 pts 1 death – candidemia/PD

Challenges in CAR-T therapy for MM

- CRS (hopefully not as much of an issue as with ALL)
- Persistence
 - Lymphodepletion
 - Cytokine-based T-reg elimination
 - Virus-specific T cells as primary CAR-T population
- Optimizing co-stimulatory signaling
 - 41BB>CD28
- Nature of MM is waxing and waning, should the cells be that way as well?
 - "ON-switch" CARs
 - Targeting multiple antigens
 - T cells redirected for universal cytokine-mediated killing (TRUCKs)

But where are we really going...?

- Timing of CAR-T
- Disease burden
- Position relative to autologous transplant
- Cost
- Time and financial cost of proving superiority
 - Clinical trial design
 - MRD as endpoint

Venetoclax Background

- BCL-2 and MCL-1 promote multiple myeloma (MM) cell survival
- Venetoclax is a selective, orally available small molecule BCL-2 inhibitor,¹ and bortezomib can indirectly inhibit MCL-1
- Venetoclax enhanced bortezomib activity in vitro and in vivo²

BCL-2 overexpression allows cancer cells to evade apoptosis by sequestering pro-apoptotic proteins.¹⁻³

Venetoclax binds selectively to BCL-2, freeing pro-apoptotic proteins that initiate programmed cell death (apoptosis).⁴⁻⁶

- 1. Roberts AW et al. NEJM 2015
- 2. Punnoose E et al. Mol Cancer Ther 2016

Leverson JD, et al. Sci Transl Med 2015; 7:279ra40.
 Czabotar, et al. Nature Reviews 2014;15:49-63.
 Plati J, Bucur O, Khosravi-Far R. Integr Biol (Camb) 2011;3:279-296.
 Certo M, et al. Cancer Cell. 2006;9(5):351-65.
 Souers AJ, et al. Nat Med. 2013;19(2):202-8.
 Del Gaizo Moore V et al. J Clin Invest. 2007;117(1):112-21.

Venetoclax in Myeloma

Α

Time to progression **Duration of response** 100 -t(11;14) -t(11;14) Non-t(11;14) Non-t(11;14) Percentage not progressed 75 25 8 10 12 14 16 18 20 22 24 8 10 12 14 16 18 20 22 24 Months since first dose Months since first dose 12 12 11 11 8 3 2 1 1 1 1 No. at risk 30 20 19 17 13 7 2 1 1 1 1 1 36 13 8 3 3 2 Group Median TTP (95% CI) Median DOR (95% CI) 6.6 (3.9, 10.2) 9.7(6.3, -)t(11;14) Non-t(11;14) NE 1.9 (1.2, 2.3)

BCL2:BCL2L1

expression

t(11;14) (n = 24)

Non-t (11;14) (n = 20)

No tumor lysis syndrome AEs mild to moderate GI toxicities Grade 3-4 hematologic toxicities AEs did not lead to study drug discontinuation

Enhancing activity of venetoclax

- Dexamethasone upregulates expression of proapoptotic activator protein BIM and shifts its binding to BCL2.
- Dexamethasone increases sensitivity to venetoclax.

Venetoclax + BzB in Myeloma

- Reponses seen regardless of t(11;14) status
- t(11;14), ORR 78%
- Non-t(11;14), ORR 65%
- Mild gastrointestinal toxicities were the most common AEs reported (5% grade 3-4 nausea, 6% grade 3-4 diarrhea), and cytopenias were the most common grade 3/4 AEs; these were manageable and did not lead to study discontinuation
- Recommended phase II dose, 800 mg

Phase I trial of venetoclax, carfilzomib, and dexamethasone

Study continues with 42 patients

Expansion cohort: carfilzomib 70 mg/m² weekly with venetoclax 800 mg daily

Other targets of interest

- MCL inhibitors
- Selinexor
- CELMoDs
- Mutation specific targeted agents: BRAF/MEK

Acknowledgements

Our Patients

nraje@mgh.harvard.edu

