Assessment, Incidence and Clinical Significance of FLT3 Mutations in AML

Richard Stone, MD

Chief of Staff

Dana-Farber Cancer Institute

Director Translational Research, Leukemia Division, Medical Oncology

Professor of Medicine

Harvard Medical School

Boston, MA

Disclosures - Richard M. Stone, MD

Consulting relationships past three years:

 AbbVie*; Actinium; Agios*; Amgen; argenx (DSMB); Arog*; Astellas; AstraZeneca; BioLineRx; Celgene (includes DSMB and steering committee); FUJIFILM; Janssen; Juno; MacroGenics; Novartis*; Ono; Orsenix; Pfizer; Roche; Stemline; Sumitomo; Takeda (DSMB), Trovagen

* denotes support to my institution for clinical trials on which I was local PI

Securities, employment, promotional activities, intellectual property, gifts, grants

None

A 32-year-old man is diagnosed with AML after evaluation at an urgent care for respiratory symptoms and petechiae. WBC is 55K with circulating blasts. Bone marrow demonstrates 80% CD33+ blasts with NPM1 and FLT3-ITD mutation. Does the FLT3-ITD allelic ratio affect your treatment decisions?

Yes, the allelic ratio affects my decision to transplant

A 32-year-old man is diagnosed with AML after evaluation at an urgent care for respiratory symptoms and petechiae. WBC is 55K with circulating blasts. Bone marrow demonstrates 80% CD33+ blasts with NPM1 and FLT3-ITD mutation with an allelic ratio of 0.2. What treatment would you recommend?

A 76-year-old otherwise healthy woman presents with mildly symptomatic AML with normal karyotype, WBC = 20K with 50% blasts, HCT = 28 and PLT = 42. A FLT3-ITD mutation is detected by PCR with an <u>allelic burden of 0.07</u>. What initial therapy would you recommend?

A 76-year-old otherwise healthy woman presents with mildly symptomatic AML with normal karyotype, WBC = 20K with 50% blasts, HCT = 28 and PLT = 42. A FLT3-TKD mutation is detected by next-generation sequencing (VAF 15%). What initial therapy would you recommend?

In your patients with AML with a FLT3-ITD mutation who proceed to transplant, do you generally administer maintenance therapy with a FLT3 inhibitor?

A 62-year-old otherwise healthy man with AML with a FLT3 mutation receives 7 + 3 induction and midostaurin, attains remission and receives consolidation with 3 cycles of modified high-dose cytarabine and midostaurin. Four months after completion of therapy, he experiences disease progression. What would you recommend?

A 66-year-old otherwise healthy man with AML with a FLT3 mutation receives 7 + 3 induction and midostaurin, attains remission and receives consolidation with 3 cycles of modified high-dose cytarabine and midostaurin. Four months after completion of therapy, he experiences disease progression and a FLT3-ITD mutation (allelic burden of 0.4) is found. What would you recommend?

A 56-year-old patient with AML who received 7 + 3 induction is found to have both a FLT3-ITD mutation and an IDH1 mutation at the time of relapse after a 9-month remission. What would you recommend?

45 YO MAN WITH LEUKOCYTOSIS

PRESENTING WITH FATIGUE AND GUM BLEEDING

WBC=35,500/ul, Hgb=9 mg/dl; PLT=23K/ul

PEX: Negative, except petechiae on ankles

MARROW EXAM

60% blasts, cytochemistry and immunophenotype c/w myelomonoblasts

Normal Karyotype

PCR; FLT3 ITD, 0.4 allelic ratio

NGS: DNMT3A (45% VAF), NPMI (42% VAF)

TREATMENT

Daunorubicin 60 mg/m2 d 1-3, cytarabine 200 mg/m2/d day 1-7 IVIC, midostaurin 50 mg bid day 8-21

RESULT

Achieved remission, underwent sib match allogeneic SCT, received sorafenib after GVHD ppx meds stopped.

62 YO MAN WITH LEUKOCYTOSIS

PRESENTING WITH LETHARGY AND FATIGUE

WBC=12,500/ul, Hgb=9 mg/dl; PLT=23K/ul

PEX: Negative, except petechiae on ankles

HISTORY

Rec'd alloSCT 1.5 y ago for high risk MDS (EZH2, TET2 mutant, trisomy 8, 15% blasts; blast reduction achieved with 4 azacitidine cycles pre-transplant) off all GVHD ppx meds

MARROW EXAM

30% blasts, cytochemistry and immunophenotype c/w myeloblasts

Trisomy 8

PCR; FLT3 ITD, 0.4 allelic ratio

NGS: EZH2 (45% VAF), TET2 (42% VAF)

TREATMENT

Gilteritinib 120 mg orally daily

RESULT

Achieved remission, discussion underway re second transplant v DLI.

Overview

- Genomic Abnormalities in AML
- Prognostic Relevance of FLT3 mutations
- Midostaurin for upfront use
- Use of Gilteritinib in relapsed disease
- QuANTUM-R study, lack of FDA approval for quizartinib
- Ongoing Clinical Trials in mutant FLT3 AML

FLT3 Mutations in AML

Structure of *FLT3* and AML Mutations^[a,b]

- ~25% of patients with AML^[c,d]
- High incidence in AML with:[c]
 - NPM1 mutations (40%)^[e]
 - t(15;17)(q21;q21)/PML-RARA (40%-45%)
 - t(6;9)(p23;q34)/DEK-NUP214 (75%)^[f]
- Associated with inferior prognosis:
 - Allelic ratio (mut/wt)^[d]
 - ITD insertion site^[g]

a. Nakao M, et al. *Leukemia*. 1996;10:1911-1918; b. Breitenbuecher F, et al. *Blood*. 2009;113:4074-4077; c. Thiede C, et al. *Blood*. 2002;99:4326-4335; d. Gale RE, et al. *Blood*. 2008;111:2776-2784; e. Boddu P, et al. *Blood Adv*. 2017;1:1546-1550; f. Slovak ML, et al. *Leukemia*. 2006;20:1295-1297; g. Whitman SP, et al. *Cancer Res*. 2001;61:7233-7239.

FLT3 ITD and relapse

Effects of Allelic Ratio on Outcomes

	Quartile 1 (0.01-0.20)	Quartile 2 (0.20-0.53)	Quartile 3 (0.53-0.80)	Quartile 4 (0.80-10.19)	P Value
CR, %	81.5	79.8	69.1	57.5	.003
Median OS, years	2.19	2.15	1.2	0.9	.0006
Median EFS, years	0.75	0.81	0.49	0.25	.001
Prognosis (CR, OS, EFS)			Worseni	ng Prognosis	

 Higher allelic ratio is associated with poorer outcome than lower allelic ratio

Schlenk RF, Kayser S, et al. *Blood*. 2014;124(23):3441-3449.

Tyrosine Kinase Inhibitors Selectivity and Potency

Quizartinib and Gilteritinib: Second-Generation FLT3 Inhibitors

Quizartinib 60 mg

Cortes JE, et al. *J Clin Oncol*. 2013;31(29):3681-3687. Reprinted with permission. © 2013 American Society of Clinical Oncology. All rights reserved.

- Quizartinib is more potent in vivo than any other FLT3 inhibitor to date
- FLT3-TKD mutations are an established mechanism of resistance in quizartinib-treated patients
- Possible QT prolongation at higher doses
- Gilteritinib 'hits' both ITD and TKD subtypes
- Well tolerated
- Within 10-fold that of FLT3 were closely related RTKs, eg, KIT

CALGB10603 (RATIFY): Prospective Phase 3, Double-Blinded, Randomized Study of Induction and Consolidation +/- Midostaurin in Newly Diagnosed Patients < Age 60 With *FLT3*-Mutated AML

Induction	Daunorubicin	60 mg/m ² IVP days 1-3		
(Second cycle given based on day 21 marrow)	Cytarabine	200 mg/m²/day on days 1-7 via IVCI		
	Midostaurin or placebo	50 mg orally twice daily on days 8-21		
Consolidation (up to 4 cycles)	Cytarabine	3 gm/m 2 over 3 hours every 12 hours on days 1, 3, 5		
	Midostaurin or placebo	50 mg orally twice daily on days 8-21		
Maintenance	Midostaurin or placebo	50 mg orally twice daily days 1-28 x 12 cycles		

Stone RM, et al. *N Engl J Med*. 2017;377:454-464.

CALGB 10603 (RATIFY): Overall Survival (Primary Endpoint)

22% Reduced Risk of Death in Midostaurin Arm

Subgroup analysis demonstrates the benefit of midostaurin is maintained in *FLT3* mutation subtypes (TKD mutation; ITD mutations with a high [> 0.7] or low ratio [0.05-0.7] of mutant to wild-type alleles)

CALGB 10603 (RATIFY): OS After Allogeneic HSCT in CR1

Phase 3 ADMIRAL Trial: Gilteritinib in R/R *FLT3*-Mutated AML

Secondary endpoints: EFS, remission, LFS, duration of remission, transplantation rate, fatigue,

ClinicalTrials.gov. NCT02421939.

transfusions

ADMIRAL: Antileukemic Responses (Intention-to-Treat Population)

Variable	Gilteritinib (N = 247)	Salvage Chemotherapy (N = 124)	Hazard Ratio or Risk Difference (95% CI)†
Median overall survival (95% CI) — mo	9.3 (7.7–10.7)	5.6 (4.7–7.3)	0.64 (0.49-0.83)
Median event-free survival (95% CI) — mo	2.8 (1.4–3.7)	0.7 (0.2-NE)	0.79 (0.58-1.09)
Response — no. (%)			
Complete remission	52 (21.1)	13 (10.5)	10.6 (2.8–18.4)
Complete remission or complete remission with partial hematologic recovery	84 (34.0)	19 (15.3)	18.6 (9.8–27.4)
Complete remission with partial hematologic recovery	32 (13.0)	6 (4.8)	ND
Complete remission with incomplete hematologic recovery	63 (25.5)	14 (11.3)	ND
Complete remission with incomplete platelet recovery	19 (7.7)	0	ND
Partial remission	33 (13.4)	5 (4.0)	ND
No response	66 (26.7)	43 (34.7)	ND
Composite complete remission‡	134 (54.3)	27 (21.8)	32.5 (22.3–42.6)
Overall response	167 (67.6)	32 (25.8)	
Median duration of remission (95% CI) — mo§	11.0 (4.6-NE)	NE (NE-NE)	NE
Time to composite complete remission — mo	2.3±1.9	1.3±0.5	NA
Median leukemia-free survival (95% CI) — mo	4.4 (3.6–5.2)	6.7 (2.1–8.5)	NE

Perl A et al. NEJM 2019;381:1728-40.

ADMIRAL: Overall Survival (Intention-to-Treat Population)

Perl A et al. NEJM 2019;381:1728-40.

Gilteritinib approved in R/R AML

ADMIRAL: Subgroup Analysis of Overall Survival

ADMIRAL: Select Adverse Events

	Gilteritinib (N = 246)			Salvage Chemotherapy (N = 109)		
	Any Grade	Grade ≥3	Serious AE	Any Grade	Grade ≥3	Serious AE
Febrile neutropenia	47%	46%	31%	37%	37%	8%
Anemia	47%	41%	3%	35%	30%	0
Thrombocytopenia	26%	23%	2%	17%	17%	1%

Drug-related AEs leading to discontinuation of gilteritinib

• Elevated aspartate aminotransferase level: 4 pts (1.6%)

Elevated alanine aminotransferase level: 3 pts (1.2%)

• Pneumonia: 3 pts (1.2%)

QuANTUM-R Study Design

Primary endpoint: OS (ITT population)

Secondary endpoint: event-free survival (ITT population)

Select exploratory endpoints: CRc rate, duration of CRc, and transplant rate

*20 mg × 15 days \rightarrow 30 mg if concomitantly taking CYP3A4 inhibitors.

Cortes J, et al. EHA 2018. Abstract LB2600; Cortes JE, et al. *Blood.* 2018;132:563.

QuANTUM-R: Best Response

Development	Quizartinib	Salvage Chemotherapy	
Parameter	n = 245	n = 122	
Best response, %			
CRc*	48	27	
CR	4	1	
CRp	4	0	
CRi	40	26	
PR	21	3	
ORR (CRc + PR)	69	30	
No response	25	37	
Nonevaluable	5	33	
Median time to first CRc, weeks (range)	4.9 (3.7-19.7)	4.0 (2.0, 14.9)	
Median duration of CRc, weeks (95% CI)	12.1 (10.4, 27.1)	5.0 (3.3, 12.6)	

^{*}Nominal P =.0001 for between-group comparison of CRc. Cortes JE, et al. *Blood.* 2018;132:563.

QuANTUM-R Primary Endpoint Overall Survival: ITT Population

Cortes J, et al. EHA 2018. Abstract LB2600; Cortes JE, et al. *Blood.* 2018;132:563.

QuANTUM-First: Quizartinib in Induction, Consolidation, and as Maintenance in *FLT3*-ITD+ AML

Primary endpoint: EFS

Secondary endpoints: OS, CR, CRc (CR + CRi per latest IWG definitions)

ARO-021: Phase 3 Comparison of Crenolanib With Midostaurin in Combination With Chemotherapy

Primary endpoint: EFS

Secondary endpoints: OS, RFS, composite CR rate, DOR

Also:

- Quantum-F trial: chemo + quizartinib vs chemo alone (completed or nearly so)
- Chemo + midostaurin vs chemo + gilteritinib

Randomized, Phase 3 Trial of Gilteritinib as Maintenance After Allogeneic HCT in Patients With *FLT3*-ITD AML

Primary endpoint:RFS

Secondary endpoints: Safety, tolerability, OS, NRM, EFS at 12 and 24 months, cumulative incidence of aGVHD at 6 and 12 months, cumulative incidence of cGVHD at 24 months; cumulative incidence of detection of *FLT3/ITD* MRD at 24 months

ClinicalTrials.gov. NCT02997202.

Ongoing Clinical Trials of FLT3 Inhibitors in Combination With Venetoclax

- A Phase Ib/II Study of Venetoclax in Combination With Quizartinib in FLT3-Mutated Acute Myelogenous Leukemia (AML) (NCT03735875)
- A Multicenter, Open-Label Phase 1b Study to Assess Safety and Efficacy of Venetoclax in Combination With Gilteritinib in Subjects With Relapsed/Refractory AML (NCT03625505)

FLT3 Inhibitors: Conclusions

We have come a long way, but more mountains to climb In 2019: FLT3 inhibitors include midostaurin, gilteritinib, sorafenib

Lots of work to do

- ?Best FLT3i w chemo upfront (midostaurin now)
- ?Role in post-transplant 'prophylactic setting'
 - (positive sorafenib trial, ongoing gilteritinib trial)
- ?Single or combo in chemo unfit or relapse
 - (single agent gilteritinib now or aza/sorafenib)