Please note, these are the actual video-recorded proceedings from the live CME event and may include the use of trade names and other raw, unedited content.

Incorporation of Androgen Receptor Antagonists into the Management of Non-Metastatic (M0) Prostate Cancer

Matthew R Smith, MD, PhD Professor of Medicine, Harvard Medical School Director, MGH Genitourinary Malignancies Program

Disclosures

Advisory Committee and Consulting Agreements: AbbVie Inc, Amgen Inc, Astellas Pharma Global Development Inc, Bayer HealthCare Pharmaceuticals, Clovis Oncology, Gilead Sciences Inc, Hexal AG, Hinova Pharmaceuticals Inc, Janssen Biotech Inc, Lilly, Novartis, Orion Corporation, Pfizer Inc

Contracted Research:

Amgen Inc, Bayer HealthCare Pharmaceuticals, Clovis Oncology, Janssen Biotech Inc, Lilly

For a patient with biochemical recurrence after local therapy for prostate cancer (M0 hormonesensitive disease with negative MRI and PSMA-PET results), is PSA doubling time the most important factor that you consider when making the decision whether to initiate androgen deprivation therapy (ADT)? If yes, what PSA doubling time would prompt you to initiate ADT?

	PSA doubling time (PSADT) most important	PSADT to initiate ADT	
EMMANUEL S ANTONARAKIS, MD	Yes, along with absolute PSA level	<3 mo for all patients, 3-6 mo for many but not all patients	
A OLIVER SARTOR, MD	No		
HOWARD I SCHER, MD	Yes	Would also consider pathologic findings at surgery, comorbidities, PSA levels	
MATTHEW R SMITH, MD, PHD	Yes	<6 months	
CORA N STERNBERG, MD	No		

For a patient who experiences PSA-only progression while receiving an LHRH agonist (M0 castrationresistant prostate cancer with negative MRI and PSMA-PET results), is PSA doubling time the most important factor that you consider when making the decision whether to initiate secondary hormone therapy? If yes, what PSA doubling time would prompt you to initiate secondary hormone therapy?

	PSA doubling time (PSADT) most important	PSADT to initiate secondary hormone treatment
EMMANUEL S ANTONARAKIS, MD	Yes, along with absolute PSA level	Only if <10 months and especially if <6 months
A OLIVER SARTOR, MD	No	
HOWARD I SCHER, MD	No	
MATTHEW R SMITH, MD, PHD	Yes	<10 months
CORA N STERNBERG, MD	Yes	<10 months

For a <u>60-year-old</u> patient who experiences PSA-only progression while receiving an LHRH agonist for whom you have decided to add secondary hormone therapy, which agent would you generally recommend?

Which agent would you generally recommend if the patient were <u>80 years old</u>?

	Age 60	Age 80	
EMMANUEL S ANTONARAKIS, MD	Apalutamide	Apalutamide	
A OLIVER SARTOR, MD	Apalutamide or enzalutamide	Unsure would offer any treatment	
HOWARD I SCHER, MD	Apalutamide or enzalutamide	Depends on prior treatment history	
MATTHEW R SMITH, MD, PHD	Apalutamide or enzalutamide	Apalutamide or enzalutamide	
CORA N STERNBERG, MD	Enzalutamide	Apalutamide or enzalutamide	

Do you employ intermittent rather than continuous ADT in any of your patients with prostate cancer?

EMMANUEL S ANTONARAKIS, MD	Yes (biochemical recurrence with rapid PSA doubling time)
A OLIVER SARTOR, MD	Yes (M0 disease)
HOWARD I SCHER, MD	Yes (no significant metastatic disease or high-grade rapid recurrence)
MATTHEW R SMITH, MD, PHD	Yes (PSA-only disease, small burden of nodal metastases)
CORA N STERNBERG, MD	Yes (PSA nadired to a very low number multiple times and patient at low risk)

Timeline of FDA Approvals in <u>Metastatic</u> Castration-Resistant Prostate Cancer (mCRPC)

Metastatic disease was defined by conventional imaging (e.g. bone scan, CT scans)

Context

- Men with nmCRPC are at significant risk for metastatic disease and prostate cancer-specific death¹
- Metastases are a major cause of morbidity and mortality^{2,3}
- Prevention of metastases represents an important unmet medical need

Smith MR, et al. *J Clin Oncol*. 2013;31:3800-3806
 Scher HI, et al. *PLoS One*. 2015;10;e0139440
 Gartrell BA, et al. *Nat Rev Clin Oncol*. 2014;11:335-345

PSA and PSADT Are Associated with Shorter Time to Metastases

Smith MR, et al. *J Clin Oncol* 2005; 23: 2918-2925

Next-Generation Androgen Receptor Inhibitors

Enzalutamide

Apalutamide

Darolutamide

- Apalutamide and enzalutamide have similar structures
- Darolutamide is structurally distinct from apalutamide and enzalutamide, characterized by low blood—brain barrier penetration^{1,2,} and may have improved tolerability
- Zurth C et al. J Clin Oncol 2018; Abstract 345
 Zurth C et al. Genitourinary Cancers Symposium 2019; Abstract 156

FDA Approval of Apalutamide and Enzalutamide

First approved drugs for nmCRPC

 First approvals based on metastasis-free survival (MFS)

www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm596796.htm (accessed 4/02/2018)

SPARTAN Study Design

Smith MR, et al. *N Eng J Med* 2018; 378:1408-18.

PROSPER Study Design

Hussain M et al. 2018 Genitourinary Cancers Symposium; Abstract 3. Hussain M et al. N Engl J Med 2018;378(26):2465-74.

Metastasis-Free Survival (MFS)

SPARTAN¹

PROSPER²

- 72% reduction of distant progression or death
- Median MFS: APA 40.5 months vs PBO 16.2
- 24-month increase in MFS
- Smith MR, et al. N Engl J Med 2018.
 Hussain M, et al. N Engl J Med 2018

- 71% reduction of distant progression or death
- Median MFS: ENZA 36.6 months vs PBO 14.7
- 22-month increase in MFS

SPARTAN: Prespecified Secondary and Exploratory Endpoints

End Point	Apalutamide (N = 806)	Placebo (N=401)	Hazard Ratio (95% CI)	P Value
Secondary end points (mo) †				
Median time to metastasis	40.5	16.6	0.27 (0.22–0.34)	<0.001
Median progression-free survival	40.5	14.7	0.29 (0.24–0.36)	<0.001
★ Median time to symptomatic progression	NR	NR	0.45 (0.32–0.63)	<0.001
★ Median overall survival	NR	39.0	0.70 (0.47–1.04)	0.07
\star Median time to the initiation of cytotoxic chemotherapy	NR	NR	0.44 (0.29–0.66)	
Exploratory end points				
Median second-progression-free survival (mo)	NR	39.0	0.49 (0.36–0.66)	
Median time to PSA progression (mo)	NR	3.7	0.06 (0.05-0.08)	
Patients with a PSA response (%)	89.7	2.2	40 (21–77) <u>†</u>	
Patient-reported outcomes§				
Change in total FACT-P score from baseline to 29 months \P	-0.99 ± 0.98	-3.29±1.97	_	
Change in total EQ VAS score from baseline to 29 months	1.44±0.87	0.26±1.75	_	

Smith MR, et al. *N Eng J Med* 2018; 378:1408-18

 \bigstar 'late' clinical events that follow metastases

PROSPER: Prespecified Secondary Endpoints

End Point	Enzalutamide Group (N=933)	Placebo Group (N=468)	Hazard Ratio (95% CI)	P Value
Secondary end points				
PSA progression				
Median time to progression — mo	37.2	3.9	0.07 (0.05–0.08)	< 0.001
Patients with progression — no. (%)	208 (22)	324 (69)		
Use of subsequent antineoplastic therapy				
Median time to first use — mo	39.6	17.7	0.21 (0.17–0.26)	<0.001
Patients with use — no. (%)	142 (15)	226 (48)	—	
Overall survival				
Median survival — mo	NR	NR	0.80 (0.58–1.09)	0.15
Patients who died — no. (%)	103 (11)	62 (13)	_	
Confirmed PSA response ≥50% — no. (%)	712 (76)	11 (2)	s <u></u> 0	1 <u>0</u> 10
FACT-P score degradation:				
Median time to score degradation — mo	11.1	11.1	0.92 (0.79–1.08)	
Patients with score degradation — no. (%)	506 (54)	239 (51)	_	

Hussain M et al. *N Engl J Med* 2018;378(26):2465-74.

Adverse Events

	SPARTAN ¹		PROSPER ²	
	APA (n = 803)	PBO (n = 398)	ENZA (n = 933)	PBO (n = 468)
Safety	AE reporting every 4 weeks		AE reporting every 4 months	
AEs, %				
Any grade	97%	93%	87%	77%
Grade ≥ 3	45%	34%	31%	23%
Serious AEs	25%	23%	24%	18%
AEs leading to discontinuation	11%	7%	9%	6%
AEs leading to death	1.2% (n = 10)	0.3% (n = 1)	3.4% (n = 32)	0.6% (n = 3)
Major CV event	1*	1*	5	3
Seizures	0.24% (n = 2)	0	0.32 % (n = 3)	0

Smith MR, et al. N Engl J Med 2018.
 Hussain M, et al. N Engl J Med 2018

Compared to placebo, apalutamide and enzalutamide were associated with higher rates of fatigue, falls, fractures, and seizures

ARAMIS Trial Design

Primary endpoint (significance level 0.05)

- Metastasis-free survival
 - Defined as distant metastases or death from any cause
 - Radiological assessment at 16-week intervals
 - Any patients with baseline metastases identified by independent central efficacy review were included as a baseline event

Secondary endpoints (hierarchical testing; interim α =0.0005)

- Overall survival
- Time to pain progression
- Time to first symptomatic skeletal event
- Time to first cytotoxic chemotherapy
- Safety

ADT, androgen deprivation therapy; MFS, metastasis-free survival; nmCRPC, non-metastatic castration-resistant prostate cancer; OS, overall survival; PSADT, prostate-specific antigen doubling time.

PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19

Slides are property of the author. Permission required for reuse.

Metastasis-free Survival

59% risk reduction of distant metastases or death

Median follow-up time at primary analysis was 17.9 months

Cl, confidence interval; HR, hazard ratio.

PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19

Slides are property of the author. Permission required for reuse.

ARAMIS: Incidence of TEAEs

Adverse Event,	Darolutamic	de (N = 954)	Placebo (N = 554)
n (%)	Any Grade	Grade 3-4	Any Grade	Grade 3-4
Any	794 (83.2)	236 (24.7)	426 (76.9)	108 (19.5)
Serious	237 (24.8)	151 (15.8)	111 (20)	70 (12.6)
Discontinuation	85 (8.9)	32 (3.3)	48 (8.7)	24 (4.3)
Adverse events that o	occurred in ≥5% of pat	ients in either group		
Fatigue	115 (12.1)	4 (0.4)	48 (8.7)	5 (0.9)
Back pain	84 (8.8)	4 (0.4)	50 (9.0)	1 (0.2)
Arthralgia	77 (8.1)	3 (0.3)	51 (9.2)	2 (0.4)
Diarrhea	66 (6.9)	0 (0)	31 (5.6)	1 (0.2)
Constipation	60 (6.3)	0 (0)	34 (6.1)	0 (0)
Pain in extremity	55 (5.8)	0 (0)	18 (3.2)	1 (0.2)
Anemia	53 (5.6)	8 (0.8)	25 (4.5)	2 (0.4)
Hot flush	50 (5.2)	0 (0)	23 (4.2)	0 (0)
Nausea	48 (5.0)	2 (0.2)	32 (5.8)	0 (0)
Urinary tract infection	47 (4.9)	6 (0.6)	28 (5.1)	3 (0.5)
Urinary retention	33 (3.5)	15 (1.6)	36 (6.5)	11 (2.0)

TEAE, treatment-emergent adverse event.

PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19

Slides are property of the author. Permission required for reuse.

ARAMIS: TEAEs of interest

Adverse Event, all grades,		
n (%)	Darolutamide (N = 954)	Placebo (N = 554)
Fatigue/asthenic conditions	151 (15.8)	63 (11.4)
Dizziness (including vertigo)	43 (4.5)	22 (4.0)
Cognitive disorder	4 (0.4)	1 (0.2)
Memory impairment	5 (0.5)	7 (1.3)
Seizure (any event)	2 (0.2)	1 (0.2)
Bone fracture	40 (4.2)	20 (3.6)
Falls (including accident)	40 (4.2)	26 (4.7)
Hypertension	63 (6.6)	29 (5.2)
Coronary artery disorders	31 (3.2)	14 (2.5)
Heart failure	18 (1.9)	5 (0.9)
Rash	28 (2.9)	5 (0.9)
Weight decreased (any event)	34 (3.6)	12 (2.2)
Hypothyroidism	2 (0.2)	1 (0.2)

TEAE, treatment-emergent adverse event.

PRESENTED AT: 2019 Genitourinary Cancers Symposium | #GU19

Slides are property of the author. Permission required for reuse.

Conclusions

- SPARTAN and PROSPER provide strong support for FDA approval of apalutamide and enzalutamide for nmCRPC
- Improvements in MFS were large and consistent across subgroups
- In SPARTAN, clinical benefit supported by improvements in key secondary endpoints, including 'late' clinical events that followed detection of metastases
- Apalutamide and enzalutamide are associated with increased incidence of fatigue, falls, fractures, and seizures
- Darolutamide improves MFS and is not associated with greater risk for falls, fractures, or seizures