Please note, these are the actual video-recorded proceedings from the live CME event and may include the use of trade names and other raw, unedited content.

Biologic Rationale for and Ongoing Evaluation of PARP Inhibitors in the Management of Metastatic Prostate Cancer

Emmanuel S Antonarakis, MD

Associate Professor Departments of Oncology and Urology Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center Baltimore, Maryland

Faculty Disclosures

Emmanuel S Antonarakis, MD, has disclosed that he has received consulting fees and funds for research from Janssen, J&J, AstraZeneca, Bayer, Astellas, Pfizer, Sanofi, Merck and Clovis; and royalties and intellectual property rights from Qiagen.

For which of your patients with metastatic prostate cancer do you generally perform BRCA germline testing?

For a patient with metastatic prostate cancer and a BRCA germline mutation who does not have a significant family history, how do you approach genetic counseling?

S	EMMANUEL S ANTONARAKIS, MD	I refer these patients to a genetic counselor
	A OLIVER SARTOR, MD	Patients are counseled by staff member but not a genetic counselor
G	HOWARD I SCHER, MD	I refer these patients to a genetic counselor
Q	MATTHEW R SMITH, MD, PHD	I refer these patients to a genetic counselor
R	CORA N STERNBERG, MD	I counsel these patients myself or refer them to a genetic counselor

Have you or would you prescribe a PARP inhibitor to a patient with metastatic prostate cancer and a....

	gBRCA mutation	Somatic BRCA mutation	ATM mutation
EMMANUEL S ANTONARAKIS, MD	l have	l have	I have, but will probably stop doing so moving forward
A OLIVER SARTOR, MD	l have	l have	I haven't and would not
HOWARD I SCHER, MD	I have	l have	I have
MATTHEW R SMITH, MD, PHD	l have	l have	I have
CORA N STERNBERG, MD	l have	I haven't but would for the right patient	I haven't but would for the right patient

Outline

- Frequency of DNA repair mutations in prostate cancer
- Indications for germline genetic testing
- 'Synthetic lethality' and biologic rationale for PARP inhibition
- Clinical data with Olaparib in mCRPC
- Clinical data with Rucaparib in mCRPC
- PARP inhibitor combinations (w/ hormonal agents, checkpoint inhibitors)
- Conclusions

Frequency of DNA repair mutations in prostate cancer

Single-stranded (ss) DNA Repair pathways

- Mismatch repair (MMR)
 - Base errors from DNA replication and recombination
 - MSH2, MSH6, MLH1, PMS2
- Nucleotide excision repair (NER)
 - DNA damage from UV light, polycyclic aromatic hydrocarbons
 - XPA-G, ERCC1-8, CSA/B, RPA, RAD23A/B
- Base excision repair (BER)
 - DNA damage from alkylation, oxidation/ROS, deamination
 - <u>PARP1/2/3</u>, POLβ, MUTYH, XRCC1, MBD4, NTHL1

Double-stranded (ds) DNA Repair pathways

- Homologous recombination (HR)
 - DNA damage from ionizing radiation or other dsDNA injury
 - FANC genes, <u>BRCA1/2</u>, ATM, PALB2, RAD50, RAD51, NBN, MRE11, BLM, ATR
- Non-homologous end joining (NHEJ)
 - DNA damage from ionizing radiation or other dsDNA injury
 - XRCC4/5/6, LIG4, DCLRE1C, PRKDC, NHEJ1, POLL/M
- Trans-lesion DNA synthesis (TLS)
 - Error-prone recovery mechanism when no DNA template
 - POLH, POLI, POLK, PCNA, REV1/3 (error-prone DNA polymerases)

DNA Repair Defects in Localized Prostate Ca

- DNA Sequencing analysis of localized prostate tumors (N = 477)
 - 200 whole-genome sequences, 277 whole-exome sequences
- 47/477 (9.9%) tumors had DNA repair mutations
 - FANCA (n = 9) 1.9%
 - *ATM* (n = 8) 1.7%
 - *RAD51* (n = 7) 1.5%
 - *CDK12* (n = 6) 1.3%
 - *BRCA2* (n = 5) 1.0%

DNA Repair Defects in *Metastatic* **CRPC**

32/150 (21.3%) mCRPC pts had bi-allelic DNA repair mutations

Robinson D, et al. Cell. 2015; 5: 1215-1228.

Germline Mutations in Advanced Prostate Cancer

11.8% (82/692) of men with metastatic

prostate cancer inherited a germline DNA

Pathogenic Germline Mutations

repair mutation vs 4.6% in localized PCa RAD51C, 1% **MSH6**, 1% -**MRE11A**, 1% **MSH2**, 1% **BRIP1**, 1% GEN1, 2% -FAM175A, 1% CHEK2 BRCA2 PMS2, 2% -NBN, 2% n = 10 (1.9%)n = 37 (5.3%)ATR, 2% RAD51D. 4%-0 PALB2, 4%-BRCA2, 300 100 200 500 1500 2000 2500 400 543 1000 3000 3418 BRCA1. 44% 7% BRCA1 ATM CHEK2. n = 11 (1.6%)n = 6 (0.9%)12% ATM, 0-0-13% 1500 1000 1663 500 1000 2000 2500 8Ò0 1200 3056

Pritchard CC, et al. N Engl J Med. 2016;375:443-453.

Germline DNA-Repair Defects and Intraductal Ca

Distribution of Germline Mutations

- Germline mutations in 14% (21/150) of men with recurrent/ advanced prostate cancer
- Men with intraductal histology more likely to have germline mutations

Incidence of Germline Mutations

Intraductal Histology	No Intraductal Histology	P Value*
40% (10/25)	9% (11/125)	<i>P</i> = .003

*Fisher's test

Isaacsson Velho P, et al. The Prostate. 2018; 78: 401-407.

DNA Repair Defects and Prostatic Ductal Cancer

- Overall, 49% had DNA repair gene mutations:
 - MMR mutations 14%
 - <u>HRD mutations</u> 31%

18% BRCA2 No alteration ATM 10% Amplification CHEK2 6% FANCA Deletion MRE11A 2% DDR Fusion PALB2 2% Mutation Truncating mutation MSH2 10% Mutation MMR MSH6 2% Non-frameshift mutation MLH1 2% Non-synonymous mutation other ERCC2 2% Germline alterations: BRAF 6% ★ Pathogenic germline MAPK KRAS 6% Pathway Pathogenic germline, MAP2K1 4% × hypomorphic allele PIK3CA Germline VUS strongly suggested PI3K PTEN 16% to alter splicing Pathway PIK3R1 8% Pathogenic germline, AKT1 carrier only of a recessive allele APC 24% WNT Pathway CTNNB1 8% FOXA1 33% TP53 18% SPOP 12% Other **ETS Fusion** 8%

Schweizer MT, et al. ASCO 2018; abstract 5030.

Indications for germline genetic testing

Germline testing: 2019 NCCN Prostate vs. NCCN High-Risk Breast/Ovarian

Prostate Cancer Risk Group	NCCN 1.2019 Prostate ("Consider germline testing")	NCCN 2.2019 High-Risk Breast/Ovarian (BRCA1/2 Testing Criteria)
Gleason score 7, any age	 If brother or father with PCa ≤60 <u>OR</u> If ≥1 relative with breast, ovarian, pancreas Ca <u>OR</u> If ≥1 relative with CRC, endometrial, gastric, ovarian, pancreas, small bowel, urothelial, kidney, bile duct 	 Ashkenazi Jewish ancestry If ≥1 close blood relative with ovarian or breast Ca ≤50 <u>OR</u> If 2 relatives with breast, pancreas, prostate Ca (Gleason ≥7 or metastatic)
Gleason score ≥8, any age	Consider germline testing for all men	 Ashkenazi Jewish ancestry If ≥1 close blood relative with ovarian or breast Ca ≤50 <u>OR</u> If 2 relatives with breast, pancreas, prostate Ca (Gleason ≥7 or metastatic)
Metastatic (radiographic)	Consider germline testing for all men	Germline testing for all men
Any age, and: ・ ≥T3a <i>OR</i> ・ PSA>20 at diagnosis	Consider germline testing for all men	No recommendations
Any man with prostate Ca (any grade/stage, PSA level)	 If brother or father with PCa ≤ 60 <u>OR</u> If ≥1 relative with breast, ovarian, pancreas Ca <u>OR</u> If ≥1 relative with CRC, endometrial, gastric, ovarian, pancreas, small bowel, urothelial, kidney, bile duct 	No recommendations

Germline Testing: Merged Referral Criteria

- Metastatic prostate cancer (both NCCN guidelines agree on this)
- Men with high-risk or locally-advanced disease
- For very-low to unfavorable-intermediate risk disease:
 - Brother, father, or multiple male relatives diagnosed with prostate cancer <60 yrs
 - FH suggestive of HBOC: >1 relative with breast, ovarian, or pancreatic cancers
 - FH suggestive of Lynch Syndrome: >1 relative with colorectal, endometrial, ovarian, gastric, small bowel, UTUC, bile duct cancers
- If Gleason \geq 7:
 - − FH: \geq 1 close blood relative with ovarian, pancreatic, met PCa, breast Ca <50
 - FH: \geq 2 close blood relatives with breast or prostate Ca (any grade) at any age
 - Ashkenazi Jewish ancestry
- BRCA1/2 mutations detected on somatic tumor profiling

'Synthetic lethality' and biologic rationale for PARP inhibition

'Synthetic Lethality' Hypothesis

Farmer H, et al. Nature. 2005;434:917-921. Bryant et al. Nature. 2005;434:913-917.

PARP Biology

PARPs play key roles in the repair of <u>ssDNA</u> breaks via <u>BER</u> pathway:

- Binds directly to sites of DNA damage
- Once activated, uses NAD as a substrate to add large, branched chains of poly(ADP-ribose) polymers (*i.e.* PARylation) to itself and interacting partners
- Recruits other DNA repair enzymes to site of damage

PARPi Leads to Increase in dsDNA Breaks

- Inhibition of PARP:
 - Prevents recruitment of DNA repair enzymes to ssDNA breaks
 - Leads to failure of ssDNA repair and accumulation of ssDNA breaks
 - Replication fork is arrested at damage, producing dsDNA breaks

Clinical data with Olaparib in mCRPC

28 January 2016 – Olaparib granted Breakthrough Therapy designation by the FDA for treatment of *BRCA1/2-* or *ATM-*mutated metastatic CRPC

PARPi in germline BRCA1/2 mutation carriers

- Phase I study of olaparib in patients (N=60) with solid tumors, including prostate cancer
 - 22 BRCA1/2 mutation carriers
 - 3 prostate cancer pts,
 1 with mCRPC and
 BRCA2 mutation

Fong PC, et al. N Engl J Med. 2009; 361: 123-134.

TOPARP-A: Unselected phase 2 trial in mCRPC

- 16 of 49 pts responded to olaparib
 - 14 of 16 (88%)
 biomarker positive pts
 - 2 of 33 (6%)
 biomarker negative pts

Mateo J, et al. N Engl J Med. 2015; 373: 1697-1708.

TOPARP-A: Survival with Olaparib by HR Deficiency

Radiologic PFS

Overall Survival

Mateo J, et al. N Engl J Med. 2015; 373: 1697-1708.

<u>PROfound</u>: Olaparib vs Enza or Abi in mCRPC with Somatic HRD Mutations

Open-label, randomized, phase 3 study with rPFS primary endpoint

<u>Cohort A</u>: *BRCA1, BRCA2, or ATM* <u>Cohort B</u>: One of 12 other HRD mutations

Primary endpoint: rPFS (Cohort A)

 Secondary endpoints: ORR (Cohort A), rPFS (Cohorts A & B), time to pain progression (Cohort A), OS (Cohort A)

Olaparib Sensitivity and *BRCA1/2* **vs.** *ATM*

Best PSA Response

Radiologic PFS

Handy Marshall C, et al. ASCO GU Symposium 2019; abstract 154.

Clinical data with Rucaparib in mCRPC

<u>2 October 2018</u> – Rucaparib granted Breakthrough Therapy designation by the FDA for treatment of *BRCA1/2*-mutated mCRPC with at least one prior AR-directed therapy and taxane-based chemotherapy

Properties of different PARP inhibitors

Table 1 Properties of PARP inhibitors

	Properties of	PARP inhibitors			
	Olaparib	Veliparib	Talazoparib	Niraparib	Rucaparib
MW	434.5	244.3	380.8	320.4	323.4
PARP1 IC ₅₀	5 nM ^b	1.2 nM ^a	0.56 nM ^a	3.8 nM ^b	0.65 nM ^a
PARP2 IC ₅₀	1nM ^b	0.41 nM ^a	0.15 nM ^a	2.1 nM ^b	0.08 nM ^a
Trapping ^b	++	+	++++	+++	++

Carney B, et al. Nat Commun. 2018; 9: 176.

Rucaparib (TRITON2 and TRITON3)

HRR-deficiency is defined by a deleterious alteration in *BRCA1*, *BRCA2*, *ATM*, or 12 other HRR genes (*BARD1*, *BRIP1*, *CDK12*, *CHEK2*, *FANCA*, *NBN*, *PALB2*, *RAD51*, *RAD51B*, *RAD51C*, *RAD51D*, *RAD54L*)

Chowdhury S, et al. ESMO 2018; abstract 795PD.

Rucaparib: TRITON2 Interim Results

Table 2. Confirmed Invest	tigator-Asses	ssed ORR ii	n Evaluable	Patients
		By HRR gene w	vith alteration	
Characteristic	<i>BRCA1/2</i> (n=25)	<i>АТМ</i> (n=5)	<i>CDK12</i> (n=8)	Other (n=8)
ORR, n (%) [95% CI] ^a	11 (44.0%) [24.4–65.1]	0 [0.0–52.2]	0 [0.0–36.9]	2 (25.0%) [3.2–65.1]
Complete response, n (%)	0	0	0	0
Partial response, n (%)	11 (44.0%)	0	0	2 (25.0%) ^b

Abida W, et al. ESMO 2018; abstract 793PD.

Rucaparib: TRITON2 Interim Results

Abida W, et al. ESMO 2018; abstract 793PD.

Rucaparib (TRITON2 and TRITON3)

	Frequenc	y in tissue
Alteration	TRITON2 (n=487)	TRITON3 (n=385)
BRCA1 alteration	1.8%	1.3%
BRCA2 alteration	8.6%	5.5%
ATM alteration	6.6%	5.7%
CDK12 alteration	6.8%	5.4%
TP53 alteration	38.4%	37.1%

Chowdhury S, et al. ESMO 2018; abstract 795PD.

PARP inhibitor combinations: (w/ hormonal agents, checkpoint inhibitors)

Olaparib plus Abi in Unselected mCRPC

Clarke N, et al. Lancet Oncol. 2018; 19: 975-986.

Olaparib plus Durvalumab (anti-PDL1) in mCRPC

Fig. 1 PSA Response. **a** Waterfall plot demonstrating maximum decline in PSA for each patient. Bar colors represent radiographic response by RECIST criteria: green, partial response; blue, stable disease; red, progressive disease; gray, not assessable (bone-only disease). **b** Spider plot of PSA responses over time

Conclusions

- DNA repair mutations are common in PCa, esp. in mCRPC
- Germline genetic testing is indicated for many PCa patients
- There may be enrichment for HRD mutations in high-grade PCa and in certain histological subtypes
- Not all DNA repair mutations are created equal: BRCA1/2 mutations (but not ATM or CDK12) may sensitize to PARPi
- Olaparib and Rucaparib may be the first PARPi to receive FDA approval, and combination studies are now underway
- The role of germline vs. somatic, and mono- vs. bi-allelic mutations, remains unclear