

Established Management Paradigms for Advanced Triple-Negative Breast Cancer (TNBC); Actionable and Other Potentially Relevant Biomarkers to Inform Decision-Making

Erika Hamilton, MD Director, Breast and Gynecologic Research Program Sarah Cannon Research Institute Nashville, Tennessee

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Black Diamond Therapeutics Inc, Boehringer Ingelheim Pharmaceuticals Inc, Daiichi Sankyo Inc, Genentech, Lilly, Mersana Therapeutics, Novartis, Pfizer Inc, Puma Biotechnology Inc, Roche Laboratories Inc, Silverback Therapeutics
Contracted Research	AbbVie Inc, Acerta Pharma — A member of the AstraZeneca Group, Aravive Inc, ArQule Inc, Arvinas, AstraZeneca Pharmaceuticals LP, BerGenBio ASA, Black Diamond Therapeutics Inc, Boehringer Ingelheim Pharmaceuticals Inc, Clovis Oncology, Curis Inc, CytomX Therapeutics, Daiichi Sankyo Inc, Deciphera Pharmaceuticals, eFFECTOR Therapeutics Inc, Eisai Inc, EMD Serono Inc, Fochon Pharmaceuticals Ltd, Fosun Orinove PharmaTech Inc, FUJIFILM Pharmaceuticals USA Inc, Genentech, H3 Biomedicine, Harpoon Therapeutics, Hutchison MediPharma, Immunomedics Inc, InventisBio, Leap Therapeutics Inc, Lilly, Lycera, MacroGenics Inc, Marker Therapeutics Inc, Medivation Inc, a Pfizer Company, Mersana Therapeutics, Merus BV, Molecular Templates, Novartis, NuCana, OncoMed Pharmaceuticals Inc, Pfizer Inc, Radius Health Inc, Regeneron Pharmaceuticals Inc, Rgenix, Roche Laboratories Inc, Seattle Genetics, Sermonix Pharmaceuticals, Silverback Therapeutics, Stemcentrx, Sutro Biopharma, Syndax Pharmaceuticals Inc, Syros Pharmaceuticals Inc, Taiho Oncology Inc, Takeda Oncology, Tesaro, A GSK Company, Torque Therapeutics, Unum Therapeutics, Verastem Inc, Zenith Epigenetics Ltd, Zymeworks

40-year-old woman initially treated in 2016 with FEC-docetaxel and radiation therapy for T1N1 TNBC presents with newly diagnosed recurrent disease with low volume lung and sternal metastases. ECOG = 0

40-year-old woman initially treated in 2016 with FEC-docetaxel and radiation therapy for T1N1 TNBC presents with newly diagnosed recurrent disease with low volume lung and sternal metastases. ECOG = 0

- Genomic testing reveals a germline BRCA mutation
- PD-L1 positive by SP142 assay

40-year-old woman initially treated in 2016 with FEC-docetaxel and radiation therapy for T1N1 TNBC presents with newly diagnosed recurrent disease with low volume lung and sternal metastases. ECOG = 0

- Genomic testing reveals a germline BRCA mutation
- PD-L1 positive by SP142 assay

She is started on nab-paclitaxel/atezolizumab. At the first restaging CT after 2 cycles, there is new small volume (15-20 mm) lymphadenopathy seen in her mediastinum. She is clinically well.

40-year-old woman initially treated in 2016 with FEC-docetaxel and radiation therapy for T1N1 TNBC presents with newly diagnosed recurrent disease with low volume lung and sternal metastases. ECOG = 0

- Genomic testing reveals a germline BRCA mutation
- PD-L1 positive by SP142 assay

She is started on nab-paclitaxel/atezolizumab. At the first restaging CT after 2 cycles, there is new small volume (15-20 mm) lymphadenopathy seen in her mediastinum. She is clinically well.

She continues on treatment for 18 months, when her sternal metastases become symptomatic. Rest of lung disease remains in near CR.

Case Presentation: Dr Robson

42-year-old with cT2N1 TNBC, s/p neoadjuvant ddAC-T with ypT2N1 disease. Receives adjuvant capecitabine, XRT. Presents with bony metastasis, primary PD-L1+ (2% IC by SP142). Receives nab-paclitaxel and atezolizumab. SD on first restaging and POD on second restaging (16 weeks).

- What is your preferred next line of therapy?
- Do you continue atezolizumab after progression?

ATEZOLIZUMAB + NAB-PACLITAXEL: SOC FOR PD-L1+ 1ST LINE mTNBC

IMpassion130: Interim Overall Survival Analysis

ITT Population

PD-L1 IC+[§] Subgroup

- The survival benefit was driven by PD-L1 IC+ patients only
- Atezolizumab + *nab*-paclitaxel received accelerated approval by FDA for PD-L1+ 1st line mTNBC in March 2019

Schmid P et al NEJM 2018

Different PD-L1 assays were analyzed in a post-hoc analysis of IMpassion130

Research Institute

PD-L1+ Prevalence

Analytical Concordance

Rugo H et al ESMO 2019

IMpasssion130: CLINICAL OUTCOMES BY PD-L1 TEST TYPE

Analysis conducted in 614 patients (biomarker evaluable population)

Clinical benefit in 22C3+ and SP263+ subgroups driven by the SP142+ subgroup

Rugo H et al ESMO 2019

KEYNOTE 522: NEOADJUVANT CHEMO + PEMBROLIZUMAB IN TNBC

Schmid P et al ESMO 2019

KEYNOTE 522: NEOADJUVANT CHEMO + PEMBROLIZUMAB IN TNBC

- Addition of pembrolizumab to neoadjuvant chemo led to statistically significant improvement in pCR of 13.6%
- Benefit with pembrolizumab was independent of PD-L1 status

HIGHER IMMUNOGENICITY IN PRIMARY TUMORS COMPARED TO METASTATIC

Tumor/immune co-evolution leads to an increasing immunoediting and immune subversion

Immune escape

Potential Biomarkers of Immune Response
PD-L1 IC or TC
CD8+ T cells
Stromal TILs
Stromal Granzyme B expression
Interferon-related gene expression
MHC-1 and antigen expression machinery
Cytokines
MDSCs
Tumor mutational burden
Immune gene signatures
Microsatellite instability
Gut microbiome

Bianchini G et al 2017; Szekely B et al 2018 Tarantino P & Curigliano G 2019

THE MSI TESTING STORY

- 2. Bonneville R et al 2017
- 3. Dudley JC et al 2016

gBRCA ALTERATIONS AND IMPACT ON BREAST CANCER

Prevalence of BRCA mutations

BRCA1 1 in 300 BRCA2 1 in 800

Certain ethnic groups have higher prevalence:

Ashkenazi Jews

1 in 40

20 years after the 1st breast cancer diagnosis

40% Women with *BRCA1* mutation that will have contralateral BC

26%

Women with *BRCA2* mutation that will have contralateral BC

OTHER GENES ASSOCIATED WITH HIGHER RISK OF BREAST CANCER

Table 1. Estimated cancer risks and guidelines for breast cancer-associated genes on multigene germline panels

Gene	Breast cancer relative risk	Other cancer risks and syndromes	Clinical practice guidelines	References
ATM	Two to three-fold (c.7271T>G missense mutation with estimated 60% risk of breast cancer by age 80)	Ataxia telangiectasia syndrome in homozygotes; colon, pancreas, prostate (possibly family history dependent)	National Comprehensive Cancer Network (NCCN): Screening with breast MRI; consider RRM based on family history	[13, 35, 37]
BRCA1	10-fold	Ovarian	American Cancer Society (ACS) and NCCN: Screening with breast MRI, recommend RRBSO, discuss RRM	[8, 13, 18, 35, 38]
BRCA2	10-fold	Ovarian, pancreatic, prostate, melanoma	NCCN: Screening breast MRI, recommend RRBSO, discuss RRM	[8, 13, 18, 35, 38]
CDH1	Fivefold (particular association with lobular breast carcinoma)	Gastric	NCCN: Screening breast MRI; consider RRM based on family history	[13, 35, 39–41]
CHEK2	Two to threefold (threefold risk with truncating mutation 1100delC)	Possible link with colorectal, thyroid, lung (possibly family history dependent)	NCCN: Screening breast MRI, Patient with first-degree relative with colorectal cancer, consider colonoscopy every 5 years at 40, or 10 years prior to age of cancer diagnosis. Patient with no first-degree relative with colorectal cancer, consider colonoscopy every 5 years beginning at age 40	[13, 35, 42, 43]
NBN	Two to threefold	Nijmegen breakage syndrome in homozygotes; possibly ovarian	Consider screening breast MRI	[35, 44, 45]
NF1	Two to threefold	Central nervous system, peripheral nerve sheath	Consider screening breast MRI	[35, 46]
PALB2	Three to fivefold	Pancreas; possibly ovarian	NCCN: Screening breast MRI, discuss RRM	[13, 35, 47]
PTEN	At least fivefold	Thyroid, endometrial	NCCN: Screening breast MRI, discuss RRM	[13, 35, 48, 49]
STK11	At least fivefold	Pancreas, colon, ovarian sex cord-stromal	NCCN: Screening breast MRI	[13, 35, 50]
TP53	At least 10-fold	Multiple sites including adrenocortical, brain, leukemia, sarcoma	NCCN: Screening breast MRI, discuss RRM; whole-body MRI, colonoscopy, complete blood count. and other tests	[13, 35, 51]

ESTIMATED CANCER RISK FOR ASSOCIATED GENES

RRBSO bilateral risk-reducing salpingo-oophorectomy, RRM risk-reducing mastectomy

Afghahi A & AW Kurian, Curr. Treat. Options in Oncol. 2017

Genetic testing for BRCA mutations was contingent on meeting one of a complicated set of criteria:

- Individuals with family history of known deleterious BRCA 1/2 mutation
- Personal history of:
- diagnosed with breast cancer at < 50 years
- or TNBC < 60 years
- any ovarian cancer
- Strong family history via genetic pedigree
- Ashkenazi Jewish ancestry

However, this changed in 2018 after new clinical trial data

Olaparib and Talazoparib received FDA approval for the treatment of gBRCA mutant HER2- MBC in January and October 2018 respectively

Robson M et al NEJM 2017 Litton J et al NEJM 2018

Individual from a family with a known *BRCA1/2* pathogenic/likely pathogenic variant, including such variants found on research testing

Personal history of breast cancer + one or more of the following:

• Diagnosed ≤ 45y

- Diagnosed 46-50y with:
- •An additional breast cancer primary at any age
- •≥1 close blood relative with breast cancer at any age
- •≥1 close blood relative with high-grade (Gleason score ≥7) prostate cancer
- •An unknown or limited family history
- Diagnosed ≤ 60y with:
- •Triple-negative breast cancer
- Diagnosed at any age with:
- ●≥1 close blood relative with:
- Breast cancer diagnosed ≤50y; or
- •Ovarian carcinoma; or
- Male breast cancer; or
- Metastatic prostate cancer; or
- Pancreatic cancer
- •≥2 additional diagnoses of breast cancer at any age in patient and/or in close blood relatives
- Ashkenazi Jewish ancestry

Personal history of ovarian carcinoma

Personal history of male breast cancer

GENETIC TESTING FOR BRCA AND OTHER GENES ASSOCIATED WITH HEREDITARY BREAST CANCER

