Novel and Emerging Therapeutic Strategies in the Management of Select B-Cell Lymphomas *An Interactive Grand Rounds Series*

John P Leonard, MD

Richard T Silver Distinguished Professor of Hematology and Medical Oncology Associate Dean for Clinical Research Executive Vice Chair, Joan and Sanford I Weill Department of Medicine Weill Cornell Medicine New York, New York

Disclosures

Consulting Agreements	ADC Therapeutics SA, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Celgene Corporation, Genentech, Gilead Sciences Inc, Karyopharm Therapeutics, Miltenyi Biotec, Roche Laboratories Inc, Sandoz Inc, a Novartis Division, Sutro Biopharma Inc
Contracted Research	Agios Pharmaceuticals Inc, Celgene Corporation
Data and Safety Monitoring Board/Committee	Bristol-Myers Squibb Company

Grand Rounds Program Steering Committee

Bruce D Cheson, MD Professor of Medicine Deputy Chief, Division of Hematology-Oncology Head of Hematology Georgetown University Hospital Lombardi Comprehensive Cancer Center Washington, DC

Christopher R Flowers, MD, MS Chair, Professor Department of Lymphoma/Myeloma The University of Texas MD Anderson Cancer Center Houston, Texas

Andrew M Evens, DO, MSc

Associate Director for Clinical Services Rutgers Cancer Institute of New Jersey Medical Director, Oncology Service Line RWJBarnabas Health Director, Lymphoma Program Division of Blood Disorders Professor of Medicine Rutgers Robert Wood Johnson Medical School New Brunswick, New Jersey

Ann S LaCasce, MD, MMSc

Program Director, Fellowship in Hematology/Oncology Associate Professor of Medicine Harvard Medical School Institute Physician Lymphoma Program Dana-Farber Cancer Institute Boston, Massachusetts

Grand Rounds Program Steering Committee

John P Leonard, MD Richard T Silver Distinguished Professor of Hematology and Medical Oncology Associate Dean for Clinical Research Executive Vice Chair, Joan and Sanford I Weill Department of Medicine Weill Cornell Medicine New York, New York

Andrew D Zelenetz, MD, PhD Medical Director Medical Informatics Department of Medicine Memorial Sloan Kettering Cancer Center New York, New York

Julie M Vose, MD, MBA Neumann M and Mildred E Harris Professor Chief, Division of Hematology/Oncology Nebraska Medical Center Omaha, Nebraska

Project Chair Neil Love, MD Research To Practice Miami, Florida

Which of the following best represents your clinical background?

- 1. Medical oncologist/hematologic oncologist
- 2. Radiation oncologist
- 3. Radiologist
- 4. Surgical oncologist or surgeon
- 5. Other MD
- 6. Nurse practitioner or physician assistant
- 7. Nurse
- 8. Researcher
- 9. Other healthcare professional

Medical oncologist/hematologic oncologist	0%	
Radiation oncologist	0%	
Radiologist	0%	
Surgical oncologist or surgeon	0%	
Other MD	0%	
- Nurse practitioner or physician assistant	0%	
Nurse	0%	
Researcher	0%	
Other healthcare professional	0%	Research To Practice®

Management of Select B-Cell Lymphomas

Module 1: Chronic Lymphocytic Leukemia (CLL)

- First-line ibrutinib-based regimens for younger (E1912) and older patients (A041202)
- Ibrutinib/obinutuzumab in treatment-naïve CLL (iLLUMINATE)
- CLL14 trial: Venetoclax/obinutuzumab in the first-line setting
- Venetoclax/rituximab for relapsed/refractory CLL (MURANO)
- Breakthrough therapy designation for acalabrutinib (ELEVATE-TN, ASCEND)

Module 2: Mantle Cell Lymphoma (MCL)

- BTK inhibitors (ibrutinib, acalabrutinib)
- Venetoclax

Module 3: CAR T-Cell Therapy

• JULIET (tisagenlecleucel), TRANSCEND NHL 001 (lisocabtagene maraleucel) and ZUMA-1 (axicabtagene ciloleucel) trials in DLBCL

Module 4: Advanced Hodgkin Lymphoma (HL)

- ECHELON-1 trial: Brentuximab vedotin/AVD vs ABVD as front-line therapy
- Checkpoint inhibitors in relapsed/refractory disease and trials in earlier settings

What is your usual preferred initial regimen for a <u>60-year-old</u> <u>patient</u> with CLL with <u>IGHV unmutated</u> and no del(17p) or TP53 mutation who requires treatment?

- **1. FCR**
- 2. Bendamustine + rituximab
- 3. Rituximab +/- chlorambucil
- 4. Ibrutinib
- 5. Ibrutinib + rituximab
- 6. Ibrutinib + obinutuzumab
- 7. Obinutuzumab + chlorambucil
- 8. Venetoclax + obinutuzumab
- 9. Other

What is your usual preferred initial regimen for a <u>60-year-old patient</u> with CLL and no del(17p) or TP53 mutation who requires treatment?

	IGHV mutation	No IGHV mutation		
BRUCE D CHESON, MD	Venetoclax/obinutuzumab	Venetoclax/obinutuzumab		
ANDREW M EVENS, DO, MSC	FCR or Ibrutinib	Ibrutinib		
ANN S LACASCE, MD, MMSC	FCR	Ibrutinib		
JOHN P LEONARD, MD	Ibrutinib	Ibrutinib		
JULIE M VOSE, MD, MBA	FCR	Ibrutinib		

What is your usual preferred initial regimen for a <u>75-year-old patient</u> with CLL and no del(17p) or TP53 mutation who requires treatment?

	IGHV mutation	No IGHV mutation		
BRUCE D CHESON, MD	Venetoclax/obinutuzumab	Venetoclax/obinutuzumab		
ANDREW M EVENS, DO, MSC	Ibrutinib	Ibrutinib		
ANN S LACASCE, MD, MMSC	Venetoclax/obinutuzumab	Venetoclax/obinutuzumab		
JOHN P LEONARD, MD	Ibrutinib	Ibrutinib		
JULIE M VOSE, MD, MBA	Ibrutinib	Ibrutinib		

What is your usual preferred initial regimen for a <u>60-year-old</u> <u>patient</u> with del(17p) CLL who requires treatment?

Research

To Practice[®]

10

- **1. FCR**
- 2. Bendamustine + rituximab
- 3. Ibrutinib
- 4. Ibrutinib + obinutuzumab
- 5. Acalabrutinib
- 6. Acalabrutinib + obinutuzumab
- 7. Venetoclax
- 8. Venetoclax + obinutuzumab
- 9. Other

What is your usual preferred initial regimen for a <u>60-year-old</u> patient with del(17p) CLL who requires treatment?

What is your usual preferred initial regimen for a <u>60-year-old</u> <u>patient</u> with del(17p) CLL who requires treatment, has a history of atrial fibrillation and is receiving anticoagulation therapy?

- **1. FCR**
- 2. Bendamustine + rituximab
- 3. Ibrutinib
- 4. Ibrutinib + obinutuzumab
- 5. Acalabrutinib
- 6. Acalabrutinib + obinutuzumab
- 7. Venetoclax
- 8. Venetoclax + obinutuzumab
- 9. Other

What is your usual preferred initial regimen for a <u>60-year-old</u> <u>patient</u> with del(17p) CLL who requires treatment, has a history of atrial fibrillation and is receiving anticoagulation therapy?

Phase III ALLIANCE A041202 Study Design

Primary endpoint: PFS **Secondary endpoints:** OS, ORR, Impact of MRD on PFS and OS, Duration of response, Toxicity and Tolerability

Woyach JA et al. *N Engl J Med* 2018;379(26):2517-28. Woyach J et al. Alliance Fall Group Meeting, November 5, 2015.

ALLIANCE A041202: Efficacy with Ibrutinib Alone or in Combination with Rituximab Compared to Bendamustine/Rituximab (BR)

Woyach JA et al. N Engl J Med 2018;379(26):2517-28.

ALLIANCE A041202: Grade 3-5 Adverse Events of Special Interest

	Bendamustine + rituximab	Ibrutinib	Ibrutinib + rituximab	
Adverse event	(N = 176)	(N = 180)	(N = 181)	<i>p</i> -value
Hematologic – Any grade 3-4	61%	41%	39%	<0.001
Anemia	12%	12%	6%	0.09
Decreased neutrophil count	40%	15%	21%	<0.001
Decreased platelet count	15%	7%	5%	0.008
Non-hematologic – Any grade 3-5	63%	74%	74%	0.04
Bleeding	0	2%	3%	0.46
Infections	15%	20%	21%	0.62
Febrile neutropenia	7%	2%	1%	<0.001
Atrial fibrillation	3%	9%	6%	0.05
Hypertension	15%	29%	34%	<0.001

Research To Practice®

Woyach JA et al. *N Engl J Med* 2018;379(26):2517-28.

Phase III ECOG-ACRIN E1912 Study Design

Primary endpoint: PFS **Secondary endpoints:** OS, ORR, Toxicity and Tolerability

ECOG-ACRIN E1912 Physician Fact Sheet, version 01/15/16; Clinicaltrials.gov (NCT02048813); Shanafelt TD et al. *Proc ASH* 2018; Abstract LBA-4.

ECOG-ACRIN E1912: Up-Front Ibrutinib and Rituximab (IR) Compared to FCR in Younger Patients with CLL

- IR was also superior to FCR for patients without IGHV mutations (HR = 0.262; p < 0.0001) but not for those with IGHV mutations (HR = 0.435; p = 0.07).
- FCR was more frequently associated with Grade 3/4 neutropenia (FCR: 44% vs IR: 23%; p < 0.0001) and infectious complications (FCR: 17.7% vs IR: 7.1%; p < 0.0001).

Research To Practice®

Shanafelt TD et al. Proc ASH 2018; Abstract LBA-4.

ECOG-E1912: Progression-Free Survival

Research To Practice®

Shanafelt TD et al. Proc ASH 2018; Abstract LBA-4.

Phase III iLLUMINATE Study Design

Stratification

- ECOG PS (0-1 vs 2)
- Del(17p)/del(11q) (+/+ vs +/- vs -/+ vs -/-)

Primary endpoint: PFS by IRC in ITT

Secondary endpoints: PFS in high-risk patients (positive for del(17p) or *TP53* mutation, del(11q), or unmutated *IGHV*), MRD, ORR, OS, IRRs, safety

Research To Practice®

Moreno C et al. Lancet Oncol 2019;20(1):43-56.

iLLUMINATE: A Phase III Trial of Ibrutinib and Obinutuzumab as First-Line Therapy for CLL

Most common Grade 3/4 AEs

- Neutropenia
- Thrombocytopenia

Serious AEs

- Ibrutinib/obinutuzumab: 58%
- Chlorambucil/obinutuzumab: 35%

Research To Practice®

Moreno C et al. Lancet Oncol 2019;20(1):43-56.

For a patient with newly diagnosed CLL that you decide to treat with up-front venetoclax/obinutuzumab how long do you generally continue treatment?

Do you conduct MRD assessment at the end of treatment, and if so, how do you approach if MRD is present?

	How long continue treatment?	MRD assessment?		
BRUCE D CHESON, MD	1 year	Yes, follow patient		
ANDREW M EVENS, DO, MSC	1 year	Νο		
ANN S LACASCE, MD, MMSC	1 year	Yes, discuss continuing venetoclax		
JOHN P LEONARD, MD	1 year	Νο		
JULIE M VOSE, MD, MBA	1 year	No		

FDA Approves Venetoclax for First-Line CLL or SLL Press Release – May 15, 2019

"On May 15, 2019, the Food and Drug Administration approved venetoclax for adult patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL).

Approval was based on CLL14 (NCT02242942), a randomized (1:1), multicenter, open label, actively controlled trial of venetoclax in combination with obinutuzumab (VEN+G) versus obinutuzumab in combination with chlorambucil (GClb) in 432 patients with previously untreated CLL with coexisting medical conditions."

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-venetoclax-cll-and-sll

CLL14 Phase III Study Schema

Primary endpoint: Progression-free survival

- Treatment duration in both groups: 12 cycles, 28 days each
- No crossover was allowed
- Daily oral venetoclax regimen
 - Initiated on day 22 of cycle 1, starting with a 5-week dose ramp-up (1 week each of 20, 50, 100, and 200 mg, then 400 mg daily for 1 week)
 - Thereafter continuing at 400 mg daily until completion of cycle 12

www.clinicaltrials.gov. Accessed October 2019 (NCT02242942). Fischer K et al. *N Engl J Med* 2019;380(23):2225-36.

CLL14: Investigator-Assessed Progression-Free Survival

Fischer K et al. N Engl J Med 2019;380(23):2225-36.

CLL14: Investigator-Assessed Progression-Free Survival by Prognostic Subgroups

			Cl ot	hlorambucil- pinutuzumab	c	Venetoclax- binutuzumab			
Category	Subgroup	Total n	n	PFS rate month 24 (%)	n	PFS rate month 24 (%)	Hazard ratio	Venetoclax- obinutuzumab better	Chlorambucil- obinutuzumab better
All		432	216	64.1	216	88.1	0.34	-	
Cytogenetic subgroups as per hierarchy	del(17p)	31	14	23.1	17	64.7	0.33		
	del(11q)	74	38	41.3	36	91.2	0.11		
	Trisomy 12	76	40	55.6	36	100.0	NE		
	No abnormalities	92	42	82.1	50	87.2	0.93		
	del(13q)	120	59	78.3	61	88.1	0.45		
TP53 deletion and/or mutation	Present	46	22	32.7	24	73.9	0.31		
	Not present	287	139	65.0	148	92.1	0.23		
IGHV mutation status	Unmutated	244	123	51.0	121	89.4	0.22		
	Mutated	159	83	85.6	76	90.3	0.64	0.1 1	.0 10.0

Research To Practice®

Fischer K et al. *N Engl J Med* 2019;380(23):2225-36.

CLL14: Minimal Residual Disease 3 Months After Treatment

	MRD-negativ	ve patients	MRD re	esponders		
Minimal residual disease 3 months after treatment	Veneto-obin (N = 216)	Chloram-obin (N = 216)	Veneto-obin (N = 216)	Chloram-obin (N = 216)		
MRD in bone marrow	56.9%	17.1%	33.8%	10.6%		
Odds ratio, <i>p</i> -value	OR: 6.4 <i>, p</i> ·	< 0.0001	OR: 4.3,	OR: 4.3, <i>p</i> < 0.0001		
MRD in peripheral blood	75.7%	35.2%	42.1%	14.4%		
Odds ratio, <i>p</i> -value	OR: 5.7 <i>, p</i> ·	< 0.0001	OR: 4.3,	<i>p</i> < 0.0001		

Research To Practice®

Fischer K et al. *N Engl J Med* 2019;380(23):2225-36.

Reimbursement and regulatory issues aside, which secondline therapy would you recommend for a <u>60-year-old patient</u> with CLL with an <u>IGHV mutation</u> but no del(17p) or TP53 mutation who <u>responded to FCR</u> and then experienced disease progression 3 years later?

Research

To Practice[®]

10

- 1. Bendamustine + rituximab
- 2. Ibrutinib
- 3. Acalabrutinib
- 4. Acalabrutinib + obinutuzumab
- 5. Venetoclax
- 6. Venetoclax + rituximab
- 7. Idelalisib +/- rituximab
- 8. Obinutuzumab
- 9. Other

Reimbursement and regulatory issues aside, which secondline therapy would you recommend for a <u>60-year-old patient</u> with CLL with an <u>IGHV mutation</u> but no del(17p) or TP53 mutation who <u>responded to FCR</u> and then experienced disease progression 3 years later?

Reimbursement and regulatory issues aside, which secondline systemic therapy would you recommend for a <u>75-year-old patient</u> with CLL with an IGHV mutation but no del(17p) or TP53 mutation who <u>responded to ibrutinib</u> and then experienced disease progression 3 years later?

- 1. Bendamustine + rituximab
- **2.** FCR
- 3. Venetoclax
- 4. Venetoclax + rituximab
- 5. Venetoclax + obinutuzumab
- 6. Idelalisib
- 7. Acalabrutinib
- 8. Acalabrutinib + obinutuzumab
- 9. Other

Reimbursement and regulatory issues aside, which secondline systemic therapy would you recommend for a <u>75-year-old patient</u> with CLL with an IGHV mutation but no del(17p) or TP53 mutation who <u>responded to ibrutinib</u> and then experienced disease progression 3 years later?

MURANO: Survival Analyses of Venetoclax/ Rituximab in R/R CLL (36-month median follow-up)

	VenR (n = 194)	BR (n = 195)	Hazard ratio	<i>p</i> -value
3-yrs PFS	71.4%	15.2%	0.16	<0.001
3-yrs OS	87.9%	79.5%	0.50	0.0093

Research To Practice®

Kater AP et al. J Clin Oncol 2019;37(4):269-77.

MURANO: Peripheral Blood MRD Status for Venetoclax + Rituximab (VenR) Compared to BR at Various Timepoints

Research To Practice®

Kater AP et al. J Clin Oncol 2019;37(4):269-77.

Acalabrutinib Granted US Breakthrough Therapy Designation for Chronic Lymphocytic Leukemia Press Release – August 14, 2019

"The US FDA has granted Breakthrough Therapy Designation (BTD) for acalabrutinib as a monotherapy treatment for adult patients with CLL, one of the most common types of leukaemia in adults.

The FDA granted the BTD based on positive results from the interim analyses of the ELEVATE-TN and ASCEND Phase III clinical trials. Together the trials showed that acalabrutinib alone or in combination significantly increased the time patients lived without disease progression or death, with safety and tolerability that was consistent with its established profile."

https://www.astrazeneca.com/media-centre/press-releases/2019/calquence-granted-us-breakthrough-therapy-designation-for-chronic-lymphocytic-leukaemia-14082019.html

ASCEND Phase III Trial Schema

Primary endpoint: Progression-free survival by IRC

Ghia P et al. *Proc EHA* 2019;Abstract LBA 2606. www.clinicaltrials.gov. Accessed October 2019.

ASCEND: Progression-Free Survival (IRC)

Research To Practice®

Ghia P et al. Proc EHA 2019; Abstract LBA 2606.

ELEVATE-TN CLL: Phase III Trial Schema

Primary endpoint: Progression-free survival

www.clinicaltrials.gov. (NCT02475681) Accessed October 2019.

Phase II Study of Ibrutinib and Venetoclax for Untreated, High-Risk and Older Patients with CLL

Jain N et al. N Engl J Med 2019;380(22):2095-103.

Selected Ongoing Phase III Studies of First-Line Therapy in CLL

Study	Target N	Randomization	Primary endpoint(s)
FLAIR (ISRCTN01844152)	754	 Ibrutinib Ibrutinib + rituximab Ibrutinib + venetoclax FCR 	PFS
GLOW/CLL3011 (NCT03462719)	211	Ibrutinib + venetoclaxChlorambucil + obinutuzumab	PFS
GAIA/CLL13 (NCT02950051)	920	 Standard chemo (FCR/BR) Venetoclax + rituximab Venetoclax + obinutuzumab Ibrutinib + venetoclax + obinutuzumab 	PFS MRD negativity rate

Clinicaltrials.gov, Accessed October 2019 www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/a-trial-ibrutinibrituximab-chronic-lymphocytic-leukaemia-flair#undefined

Management of Select B-Cell Lymphomas

Module 1: Chronic Lymphocytic Leukemia (CLL)

- Ibrutinib/obinutuzumab in treatment-naïve CLL (iLLUMINATE)
- First-line ibrutinib-based regimens for younger (E1912) and older patients (A041202)
- CLL14 trial: Venetoclax/obinutuzumab in the first-line setting
- Venetoclax/rituximab for relapsed/refractory CLL (MURANO)
- Breakthrough therapy designation for acalabrutinib (ELEVATE-TN, ASCEND)

Module 2: Mantle Cell Lymphoma (MCL)

- BTK inhibitors (ibrutinib, acalabrutinib)
- Venetoclax

Module 3: CAR T-Cell Therapy

• JULIET (tisagenlecleucel), TRANSCEND NHL 001 (lisocabtagene maraleucel) and ZUMA-1 (axicabtagene ciloleucel) trials in DLBCL

Module 4: Advanced Hodgkin Lymphoma (HL)

- ECHELON-1 trial: Brentuximab vedotin/AVD vs ABVD as front-line therapy
- Checkpoint inhibitors in relapsed/refractory disease and trials in earlier settings

What would you generally recommend for a 65-year-old patient with mantle cell lymphoma (MCL) who is initially treated with BR followed by 2 years of maintenance rituximab and experiences disease relapse 3 years later?

Research

To Practice[®]

10

- 1. Ibrutinib
- 2. Acalabrutinib
- 3. Lenalidomide
- 4. Lenalidomide + rituximab
- 5. Bortezomib
- 6. Bortezomib + rituximab
- 7. Venetoclax
- 8. Venetoclax + rituximab
- 9. Other

What would you generally recommend for a 65-year-old patient with MCL who is initially treated with BR followed by 2 years of maintenance rituximab and experiences disease relapse 3 years later? What if the same patient has a history of atrial fibrillation and is receiving anticoagulation therapy?

	2nd-line therapy	2nd-line therapy; atrial fibrillation and anticoagulation therapy
BRUCE D CHESON, MD	Acalabrutinib	Acalabrutinib
ANDREW M EVENS, DO, MSC	Ibrutinib	Acalabrutinib
ANN S LACASCE, MD, MMSC	Acalabrutinib	Acalabrutinib
JOHN P LEONARD, MD	Ibrutinib	Lenalidomide/rituximab
JULIE M VOSE, MD, MBA	Acalabrutinib	Acalabrutinib

Pooled Analysis of Ibrutinib in R/R MCL: Extended 3.5-Year Follow-Up

(Phase II PCYC-1104 and SPARK and Phase III RAY Studies)

		Prior Lines of Therapy	
Endpoint	Overall (N = 370)	1 (n = 99)	2 (n = 271)
Median PFS	12.5 mo	25.4 mo	10.3 mo
Median PFS by best response CR (n = 100) PR (n = 158)	Not reached 12.8 mo	57.5 mo 24.2 mo	Not reached 10.6 mo
Median OS	26.7 mo	Not reached	22.5 mo
Median OS by best response CR (n = 100) PR (n = 158)	Not reached 25.4 mo	Not reached 36.0 mo	Not reached 22.7 mo
ORR / CR	70% / 27%	78% / 37%	67% / 23%
Rule S et al Hemato	2019 [Epub abead of	orint]	Research To Pract

Rule S et al. Hematol 2019; [Epub ahead of print].

ACE-LY-004 Phase II Trial of Acalabrutinib in Relapsed/Refractory MCL: Response and Long-Term Follow-Up Results

Research

¹ Wang M et al. Lancet 2018;391(10121):659-67; ² Wang M et al. Proc ASH 2018;Abstract 2876. To Practice®

FDA Grants Priority Review of Zanubrutinib NDA for Relapsed/Refractory MCL Press Release – August 21, 2019

"The US Food and Drug Administration (FDA) has accepted the company's New Drug Application (NDA) for zanubrutinib for the treatment of patients with mantle cell lymphoma (MCL) who have received at least one prior therapy. The FDA granted Priority Review for the NDA and has set a Prescription Drug User Fee Act (PDUFA) target action date of February 27, 2020. This follows the FDA's Breakthrough Therapy designation for zanubrutinib in this setting earlier this year.

The NDA data package includes data from the global Phase 1/2 trial (NCT02343120) in patients with B-cell lymphomas and an aggregate of 123 patients in the multicenter Phase 2 trial of zanubrutinib in patients with relapsed or refractory (R/R) MCL in China (NCT03206970), as well as safety data on 641 patients from five clinical trials, and non-clinical data."

https://www.globenewswire.com/news-release/2019/08/21/1905119/0/en/BeiGene-Announces-U-S-FDA-Acceptance-and-Grant-of-Priority-Review-for-its-New-Drug-Applicationof-Zanubrutinib-in-Patients-with-Relapsed-Refractory-Mantle-Cell-Lymphoma.html

Efficacy of Zanubrutinib in MCL

Study	Evaluable patients	ORR / CR	Median DoR	Median PFS
Ph 1/2 (NCT02343120)	N = 48 R/R = 37 TN = 11	87%/31% 87%/30% 88%/38%	16.2 mo (all) 14.7 mo 14.7 mo	15.4 mo
Ph 2 (NCT03206970)	N = 86 R/R	85%/77%	14.0 mo	16.7 mo

Song Y et al. *Proc ICML* 2019;Abstract 015. Tam CS et al. *Proc ICML* 2019;Abstract 191.

Based on available data and regulatory and reimbursement issues aside, would you attempt to access venetoclax for select patients with relapsed/refractory MCL?

Venetoclax Monotherapy in BTK Inhibitor-Resistant MCL: Results Summary

Clinical endpoint	Venetoclax (N = 20)	
Overall response rate (ORR)	60%	
Complete response rate	20%	
ORR (prior response to BTKi)	72.7%	
ORR (primary resistance to BTKi)	44.4%	
Median PFS	2.6 mo	
Median OS	4.3 mo	

No cases of clinical TLS were observed

Research To Practice®

Eyre T et al. Proc EHA 2018; Abstract S855.

AIM: Phase II Trial of Ibrutinib/Venetoclax in R/R MCL (median 2 prior therapies)

Primary endpoint	Without PET (n = 24)	With PET (n = 24)			
CR at 16 weeks	10 (42%)	15 (62%)			
Best response					
CR	16 (67%)	17 (71%)			
Best response, total population, according to MRD response					
MRD negative	16 (67%)	9 (38%)			
MRD not negative	8 (33%)	15 (62%)			

Research To Practice®

Tam CS et al. N Engl J Med 2018;378(13):1211-23.

Proposed Stepwise Ramp-up Dosing of Venetoclax to Mitigate Risk of Tumor Lysis Syndrome (TLS)

- To minimize TLS risk, the venetoclax starting dose is 20 mg once daily for 7 days followed by a gradual stepwise weekly ramp-up to reach a dose of 400 mg daily by 5 weeks.
- For patients with MCL who receive venetoclax monotherapy, 1 additional ramp-up to 800 mg by 6 weeks is suggested, given the possibility of deeper responses observed at this dose compared to lower doses in the Phase I study.

Research To Practice®

Davids MS et al. J Clin Oncol 2018;36(35):3525-7.

Management of Select B-Cell Lymphomas

Module 1: Chronic Lymphocytic Leukemia (CLL)

- First-line ibrutinib-based regimens for younger (E1912) and older patients (A041202)
- Ibrutinib/obinutuzumab in treatment-naïve CLL (iLLUMINATE)
- CLL14 trial: Venetoclax/obinutuzumab in the first-line setting
- Venetoclax/rituximab for relapsed/refractory CLL (MURANO)
- Breakthrough therapy designation for acalabrutinib (ELEVATE-TN, ASCEND)

Module 2: Mantle Cell Lymphoma (MCL)

- BTK inhibitors (ibrutinib, acalabrutinib)
- Venetoclax

Module 3: CAR T-Cell Therapy

• JULIET (tisagenlecleucel), TRANSCEND NHL 001 (lisocabtagene maraleucel) and ZUMA-1 (axicabtagene ciloleucel) trials in DLBCL

Module 4: Advanced Hodgkin Lymphoma (HL)

- ECHELON-1 trial: Brentuximab vedotin/AVD vs ABVD as front-line therapy
- Checkpoint inhibitors in relapsed/refractory disease and trials in earlier settings

For most cases of DLBCL, when is the optimal time to refer a patient for a consultation regarding anti-CD19 CAR T-cell therapy?

- 1. At first diagnosis
- 2. At first relapse
- 3. At second relapse, after ASCT
- 4. At third relapse or beyond

For most cases of DLBCL, when is the optimal time to refer a patient for a consultation regarding anti-CD19 CAR T-cell therapy? What about double-hit DLBCL?

	Refer DLBCL for CAR-T consultation?	Refer double-hit DLBCL for consultation?
BRUCE D CHESON, MD	At first relapse	At first diagnosis
ANDREW M EVENS, DO, MSC	At first relapse	At first relapse
ANN S LACASCE, MD, MMSC	At first relapse	At first relapse
JOHN P LEONARD, MD	At second relapse, after ASCT	At first relapse
JULIE M VOSE, MD, MBA	At first relapse	At second relapse, after ASCT

Regulatory and reimbursement issues aside, what is the optimal treatment approach for a patient with relapsed/refractory DLBCL after primary treatment with R-CHOP?

What is the optimal treatment approach for a 65-yearold patient with DLBCL who responds to R-CHOP and then R-DHAP followed by transplant on relapse but subsequently develops disease progression?

CD19: An Ideal Tumor Target in B-Cell Lymphomas

- CD19 expression is generally restricted to B cells and B-cell precursors¹
 - CD19 is not expressed on hematopoietic stem cells¹
- CD19 is expressed by most B-cell lymphomas¹
 - CLL, B-ALL, DLBCL, FL, MCL¹
- Antibodies against CD19 inhibit tumor cell growth

1. Scheuermann RH, et al. *Leuk Lymphoma*. 1995;18:385-397. Image adapted from Janeway CA, Travers P, Walport M, et al. *Immunobiology*. 5th ed. NY, NY: Garland Science; 2001:221-293; Scheuermann RH, et al. *Leuk Lymphoma*. 1995;18:385-397; and Feldman M, Marini JC. Cell cooperation in the antibody response. In: Roitt I, Brostoff J, Male D, eds. *Immunology*. 6th ed. Maryland Heights, Missouri: Mosby;2001:131-146.

Targeting with <u>Chimeric</u> Antigen Receptors

Research To Practice®

Courtesy, David Porter, MD, February 2019

Overview of CAR-T Cell Therapy

Modification, Courtesy, David Porter, MD

CD19 CAR-T Constructs in Pivotal Trials in NHL

Research To Practice®

Adapted: van der Steegen et al. Nat Rev Drug Discov 2015

Pivotal CAR-T Studies in DLBCL: Study and Patient Characteristics

	ZUMA-1 Axicabtagene ciloleucel	JULIET Tisagenlecleucel	TRANSCEND NHL 001 Lisocabtagene maraleucel
Evaluable pts	101	93	102 (Core: 73)
Lymphoma subtypes	DLBCL, transformed lymphoma, PMBCL	DLBCL, transformed lymphoma	DLBCL, transformed lymphoma (Core)
≥3 lines of therapy	69%	51%	50%
Refractory to last therapy	77%	54%	67%
Prior auto HCT	21%	49%	38%

Locke F et al; ZUMA-1 Investigators. *Lancet Oncol* 2019;20(1):31-42. Schuster SJ et al; JULIET Investigators. *N Engl J Med* 2019;380(1):45-56. Abramson JS et al; TRANSCEND NHL 001 Investigators. *Proc ASCO* 2018;Abstract 7505.

Pivotal CAR-T Studies in DLBCL: Summary of Efficacy

	ZUMA-1 Axicabtagene ciloleucel	JULIET Tisagenlecleucel	TRANSCEND NHL 001 Lisocabtagene maraleucel
Evaluable pts	101	93	102 (Core: 73)
Median f/up	15.4 mo	19.3 mo	12 mo
Best ORR	83%	52%	75%
CR	58%	40%	55%
6-mo ORR	41%	33%	47%
12-mo OS	59%	49%	63%

Locke F et al; ZUMA-1 Investigators. *Lancet Oncol* 2019;20(1):31-42. Schuster SJ et al; JULIET Investigators. *N Engl J Med* 2019;380(1):45-56. Abramson JS et al; TRANSCEND NHL 001 Investigators. *Proc ASCO* 2018;Abstract 7505.

Timing of T-Cell Immunotherapy Complications

No significant acute infusional toxicity

ICANS = immune effector cell-associated neurotoxicity syndrome

Research To Practice®

Varadarajan I, Lee DW. Cancer J 2019;25(3):223-30.

CAR-T-Associated Cytokine Release Syndrome (CRS) and Neurologic Toxicity

CRS – may be mild or life-threatening

- Occurs with CART19 activation and expansion
- Dramatic cytokine elevations (IL-6, IL10, IFNy, CRP, ferritin)
- Fevers initially (can be quite high: 105°F)
- Myalgias, fatigue, nausea/anorexia
- Capillary leak, headache, hypoxia and hypotension
- CRS-related mortality 3-10%

Neurologic toxicity – may be mild or life-threatening

- Mechanism unclear, referred to as immune effector cell-associated neurotoxicity syndrome (ICANS)
- Encephalopathy
- Seizures
- Delerium, confusion, aphasia, agitation, sedation, coma, seizures

Varadarajan I, Lee DW. *Cancer J* 2019;25(3):223-30. Abramson JS et al. ASCO 2019 Education Book.

Pivotal CAR-T Studies in DLBCL: Select Toxicity

	ZUMA-1 Axicabtagene ciloleucel	JULIET Tisagenlecleucel	TRANSCEND NHL 001 Lisocabtagene maraleucel
All grade CRS	93%	58%	37%
Grade ≥3 CRS	13%	23%	1%
All grade neurotoxicity	64%	21%	23%
Grade ≥3 neurotoxicity	28%	12%	13%
Tocilizumab use	43%	15%	17%
Steroid treatment	27%	11%	21%

Locke F et al; ZUMA-1 Investigators. *Lancet Oncol* 2019;20(1):31-42. Neelapu SS et al. *N Engl J Med* 2017;377:2531-44. Schuster SJ et al; JULIET Investigators. *N Engl J Med* 2019;380(1):45-56. Abramson JS et al; TRANSCEND NHL 001 Investigators. *Proc ASCO* 2018;Abstract 7505. Abramson JS et al. ASCO 2019 Education Book.
Generally Accepted Management Approaches for CRS and Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS)

Cytokine Release Syndrome

- Detailed, immediate evaluation for infection; empiric broad-spectrum antibiotics for first fever
- Repeated IV fluid boluses avoided where possible; may exacerbate complications of capillary leak
- Tocilizumab only FDA-approved agent and is the first line of treatment for CRS
 - Can mitigate CRS severity likely without decreasing efficacy of immunotherapy
 - Usually indicated for any patient with recurrent or refractory hypotension related to CRS; should be used before grade 3 CRS or worse develops
 - Multiple doses may be required but generally do not exceed 2 doses without addition of steroids
- Corticosteroids should be added if there is no response to tocilizumab

Immune Effector Cell-Associated Neurotoxicity Syndrome

- Detailed, immediate evaluation for any suspected neurologic dysfunction; admission to hospital if ICANS suspected
- Tocilizumab should be avoided if patient has ICANS without any ongoing evidence of CRS
- Corticosteroids should be given for grade ≥2 ICANS

Varadarajan I, Lee DW. Cancer J 2019;25(3), pp.223-230.

Comparison of Axicabtagene Ciloleucel in ZUMA-1 and Treatment in the "Real World" at 17 US Centers

	ZUMA-1	This study
N infused patients	108	165
Patients meeting ZUMA-1 eligibility criteria	100%	51%
Age, median (range)	58 (23-76)	59 (21-82)
ECOG 0 or 1	100%	84%
Prior autologous transplant	23%	31%
DLBCL including HGBCL, not tFL or PMBCL	78%	61%
ORR/CR	82%/58% (best)	79%/50% (day 30)
Grade 3 or higher toxicity	CRS 13%/NEs 31%	CRS 7%/NEs 31%

CRS = cytokine release syndrome; NE = neurologic toxicity

Research To Practice®

Nastoupil LJ et al. Proc ASH 2018; Abstract 91.

Management of Select B-Cell Lymphomas

Module 1: Chronic Lymphocytic Leukemia (CLL)

- First-line ibrutinib-based regimens for younger (E1912) and older patients (A041202)
- Ibrutinib/obinutuzumab in treatment-naïve CLL (iLLUMINATE)
- CLL14 trial: Venetoclax/obinutuzumab in the first-line setting
- Venetoclax/rituximab for relapsed/refractory CLL (MURANO)
- Breakthrough therapy designation for acalabrutinib (ELEVATE-TN, ASCEND)

Module 2: Mantle Cell Lymphoma (MCL)

- BTK inhibitors (ibrutinib, acalabrutinib)
- Venetoclax

Module 3: CAR T-Cell Therapy

• JULIET (tisagenlecleucel), TRANSCEND NHL 001 (lisocabtagene maraleucel) and ZUMA-1 (axicabtagene ciloleucel) trials in DLBCL

Module 4: Advanced Hodgkin Lymphoma (HL)

- ECHELON-1 trial: Brentuximab vedotin/AVD vs ABVD as front-line therapy
- Checkpoint inhibitors in relapsed/refractory disease and trials in earlier settings

In general, what is your usual first-line systemic therapy for a 65-year-old patient with Stage IV HL?

- 1. ABVD (doxorubicin/bleomycin/vinblastine/dacarbazine)
- 2. AVD + brentuximab vedotin
- 3. AVD
- 4. Other

In general, what is your usual first-line systemic therapy for a 65-year-old patient with Stage IV HL?

Regulatory and reimbursement issues aside, what in general would be your preferred bridge to transplant for a patient with HL who is experiencing relapse after up-front ABVD?

	First-line?	Bridge to transplant?
BRUCE D CHESON, MD	AVD	BV/bendamustine
ANDREW M EVENS, DO, MSC	AVD + BV (sequential)	ICE
ANN S LACASCE, MD, MMSC	ABVD	BV/nivolumab
JOHN P LEONARD, MD	AVD or PVAG	BV/bendamustine
JULIE M VOSE, MD, MBA	ABVD	ICE

BV = brentuximab vedotin; ICE = ifosfamide/carboplatin/etoposide; PVAG = prednisone/vinblastine/doxorubicin/gemcitabine

A 27-year-old man is diagnosed with Stage IVB classical Hodgkin lymphoma (HL) with nodal, spleen and bone involvement. Albumin is 3.1 g/dL, hemoglobin (Hgb) is 8.6 g/dL and white blood cell (WBC) count is 17,500. International Prognostic Score (IPS) = 5. What initial treatment would you recommend?

Regulatory and reimbursement issues aside, what would you recommend for an 85-year-old frail patient with symptomatic advanced-stage HL who is not a candidate for aggressive chemotherapy but is seeking active treatment?

ECHELON-1 Phase III Study Schema

Primary endpoint: Modified progression-free survival Key secondary endpoint: Overall survival

Straus DJ et al. *Proc ASCO* 2019;Abstract 7532. Connors JM et al. *N Engl J Med* 2018;378:331-44.

Update of ECHELON-1: PFS at 3 Years

Group	BV + AVD	ABVD	Hazard ratio	<i>p</i> -value
All pts (ITT) (n = 664, 670)	83%	76%	0.70	0.005
PET2-negative (n = 577, 573)	86%	80%	0.69	0.009
PET2-positive (n = 58, 63)	68%	52%	0.59	0.077
Patients <60 years				
PET2-negative (n = 512, 489)	87%	81%	0.71	0.034
PET2-positive (n = 51, 54)	69%	55%	0.60	0.117

PET2, PET conducted at the end of the second 28-day cycle of treatment

Research To Practice®

Straus DJ et al. Proc ASCO 2019; Abstract 7532.

ECHELON-1: Efficacy and Safety of Brentuximab Vedotin + AVD versus ABVD in Older Patients

	Pts aged ≥60 yrs		Pts aged <60 yrs	
	BV + AVD (n = 84)	ABVD (n = 102)	BV + AVD (n = 580)	ABVD (n = 568)
2-yr mPFS (IRF)	70%	71%	84%	78%
	HR = 1.0 <i>, p</i> = 0.993		HR = 0.73 <i>, p</i> = 0.025	
Grade 3/4 AEs	88%	80%	82%	63%
Fatal AEs	4%	5%	1%	1%
Any grade neutropenia	73%	66%	68%	53%
Any grade febrile neutropenia	37%	17%	17%	6%
Any grade peripheral neuropathy	65%	43%	67%	43%
Any grade pulmonary AEs	2%	13%	2%	6%

Research To Practice®

Evens AM et al. Proc ASH 2018; Abstract 1618.

ECHELON-1: Efficacy of Brentuximab Vedotin (BV) with Chemotherapy in North American Patients with Newly Diagnosed Stage III or IV Hodgkin Lymphoma

Time (months) from randomization

mPFS by regional patient population	HR	<i>p</i> -value
North America	0.60	0.012
Europe	0.83	0.281
Asia	0.91	0.810

Research To Practice®

Ramchandren R et al. Clin Cancer Res 2019;25(6):1718-26.

ECHELON-1: Complete Resolution and Improvement of Peripheral Neuropathy at 3 Years

Straus DJ et al. Proc ASCO 2019; Abstract 7532.

CheckMate 205 Phase II Study Schema

Clinicaltrials.gov. Accessed Sept 20, 2019 (NCT02181738). Younes A et al. *Lancet Oncol* 2016;17:1283-94. Ramchandren R et al. *J Clin Oncol* 2019;37(23):1997-2007.

CheckMate 205 (Cohort D): Nivolumab for Newly Diagnosed Advanced-Stage Classic HL

Ramchandren R et al. J Clin Oncol 2019;37(23):1997-2007.

CheckMate 205: Select Safety Outcomes with Nivolumab → Nivolumab/AVD

	N = 51		
Treatment-related AE	Any grade	Grade 3-4	
Total pts with TRAE	49 (96%)	30 (59%)	
Neutropenia	28 (55%)	25 (49%)	
Febrile neutropenia	5 (10%)	5 (10%)	
ALT increase	4 (8%)	2 (4%)	
Peripheral neuropathy	4 (8%)	0 (0%)	
Nonendocrine IMAEs			
Rash	3 (6%)	0 (0%)	
Endocrine IMAEs			
Hypothyroidism/thyroiditis	9 (18%)	0 (0%)	
Hyperthyroidism	4 (8%)	0 (0%)	

31% (n = 16) of patients experienced infusion-related reaction, all Grade 1-2 IMAEs = immune-mediated AEs

Ramchandren R et al. J Clin Oncol 2019;37(23):1997-2007.

Novel and Emerging Therapeutic Strategies in the Management of Select B-Cell Lymphomas *An Interactive Grand Rounds Series*

John P Leonard, MD

Richard T Silver Distinguished Professor of Hematology and Medical Oncology Associate Dean for Clinical Research Executive Vice Chair, Joan and Sanford I Weill Department of Medicine Weill Cornell Medicine New York, New York