Novel and Emerging Therapeutic Strategies in the Management of Select Gastrointestinal Cancers

Philip A Philip, MD, PhD

Kathryn Cramer Endowed Chair in Cancer Research Professor of Oncology and Pharmacology Leader, GI and Neuroendocrine Oncology Vice President of Medical Affairs Karmanos Cancer Institute Wayne State University Detroit, Michigan

Disclosures

Advisory Committee	ASLAN Pharmaceuticals, BioLineRx, Caris Life Sciences, Celgene Corporation, Eisai Inc, Erytech Pharma, Halozyme Inc, Ipsen Biopharmaceuticals Inc, Merck, TriSalus Life Sciences
Consulting Agreements	AbbVie Inc, Merck, Rafael Pharmaceuticals Inc, TriSalus Life Sciences
Contracted Research	Astellas Pharma Global Development Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, BeiGene, BioLineRx, Boston Biomedical Inc, Bristol-Myers Squibb Company, Caris Life Sciences, Celgene Corporation, Halozyme Inc, Incyte Corporation, Lilly, Novartis, Novocure, QED Therapeutics, Rafael Pharmaceuticals Inc, Roche Laboratories Inc, Taiho Oncology Inc
Data and Safety Monitoring Board/Committee	ASLAN Pharmaceuticals, Blueprint Medicines, Erytech Pharma, Lexicon Pharmaceuticals Inc
Speakers Bureau	Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb Company, Celgene Corporation, Ipsen Biopharmaceuticals Inc, Merck

Grand Rounds Program Steering Committee

Tanios Bekaii-Saab, MD Professor, Mayo Clinic College of Medicine and Science Leader, GI Cancer Program Mayo Clinic Cancer Center Consultant, Mayo Clinic Phoenix, Arizona

Howard S Hochster, MD Distinguished Professor of Medicine Rutgers Robert Wood Johnson Medical School Rutgers-CINJ Associate Director Clinical Research Director, Clinical Oncology Research RWJBarnabas Health New Brunswick, New Jersey

Johanna Bendell, MD Chief Development Officer Director Drug Development Unit Nashville Sarah Cannon Research Institute Nashville, Tennessee

John L Marshall, MD Chief, Hematology and Oncology Director, Ruesch Center for the Cure of GI Cancers Lombardi Comprehensive Cancer Center Georgetown University Washington, DC

Grand Rounds Program Steering Committee

Wells A Messersmith, MD Professor and Head Division of Medical Oncology Associate Director for Translational Research University of Colorado Cancer Center Aurora, Colorado

Philip A Philip, MD, PhD Kathryn Cramer Endowed Chair in Cancer Research Professor of Oncology and Pharmacology Leader, GI and Neuroendocrine Oncology Vice President of Medical Affairs Karmanos Cancer Institute Wayne State University Detroit, Michigan

Eileen M O'Reilly, MD

Winthrop Rockefeller Chair in Medical Oncology Section Head, Hepatopancreaticobiliary/ Neuroendocrine Cancers Gastrointestinal Oncology Service Associate Director David M Rubenstein Center for Pancreatic Cancer Attending Physician, Member Memorial Sloan Kettering Cancer Center Professor of Medicine Weill Cornell Medical College New York, New York

Grand Rounds Program Steering Committee

Alan P Venook, MD The Madden Family Distinguished Professor of Medical Oncology and Translational Research Shorenstein Associate Director Program Development Helen Diller Family Comprehensive Cancer Center University of California, San Francisco San Francisco, California

Project Chair Neil Love, MD Research To Practice Miami, Florida

Which of the following best represents your clinical background?

- 1. Medical oncologist/hematologic oncologist
- 2. Radiation oncologist
- 3. Radiologist
- 4. Surgical oncologist or surgeon
- 5. Other MD
- 6. Nurse practitioner or physician assistant
- 7. Nurse
- 8. Researcher
- 9. Other healthcare professional

Medical oncologist/hematologic oncologist	0%	
Radiation oncologist	0%	
Radiologist	0%	
Surgical oncologist or surgeon	0%	
Other MD	0%	
Nurse practitioner or physician assistant	0%	
Nurse	0%	
Researcher	0%	
Other healthcare professional	0%	Research To Practice®

Novel and Emerging Therapeutic Strategies in the Management of Select Gastrointestinal Cancers

Module 1: Colorectal Cancer

- Primary tumor sidedness and selection of first-line therapy
- Sequencing of available therapies in the second line and beyond
- Novel targeted approaches

Module 2: Hepatocellular Carcinoma

- First-line systemic treatment: Sorafenib versus lenvatinib
- Beyond first-line therapy: Cabozantinib, ramucirumab, regorafenib and anti-PD-1/PD-L1 antibodies

Module 3: Pancreatic Cancer

- Neoadjuvant and adjuvant therapy approaches
- Management of metastatic disease and integration of nanoliposomal irinotecan
- BRCA mutations and PARP inhibition

Module 4: Gastric/Gastroesophageal Junction (GEJ)/Esophageal Cancer

- Pembrolizumab for the treatment of recurrent or advanced gastric, GEJ and esophageal cancer
- Efficacy and safety of TAS-102 for recurrent metastatic gastric or GEJ adenocarcinoma

What is your usual first-line treatment strategy for a <u>65-year-old</u> patient with <u>left-sided</u>, <u>microsatellite-stable</u> (MSS), <u>pan-RAS wild-type</u> metastatic colorectal cancer (mCRC)?

Research

To Practice®

10

- 1. Chemotherapy + bevacizumab
- 2. Chemotherapy + EGFR antibody
- 3. Chemotherapy
- 4. Other

What is your usual first-line treatment strategy for a <u>65-year-old</u> patient with <u>left-sided</u>, <u>microsatellite-stable</u> (<u>MSS</u>), pan-RAS wild-type</u> metastatic colorectal cancer (mCRC)?

How would you compare the global antitumor efficacy of chemotherapy/bevacizumab and chemotherapy/EGFR antibody as firstline therapy for left-sided, MSS, pan-RAS wild-type mCRC?

Do you administer EGFR antibodies to patients with <u>right-sided</u> mCRC?

	Efficacy of chemo/bev vs chemo/EGFR Ab	EGFR Ab for right-sided mCRC?
TANIOS BEKAII-SAAB, MD	Chemo/EGFR Ab somewhat more efficacious	Yes, 3 rd line and beyond
JOHANNA BENDELL, MD	Chemo/EGFR Ab somewhat more efficacious	Yes, 3 rd line and beyond
HOWARD S HOCHSTER, MD	Efficacy about the same	Νο
JOHN L MARSHALL, MD	Chemo/EGFR Ab somewhat more efficacious	Yes, 3 rd line and beyond
EILEEN M O'REILLY, MD	Chemo/EGFR Ab somewhat more efficacious	Yes, 3 rd line and beyond
PHILIP A PHILIP, MD, PHD	Chemo/EGFR Ab somewhat more efficacious	Yes, 2 nd line
ALAN P VENOOK, MD	Chemo/EGFR Ab somewhat more efficacious	Νο

Tumor Sidedness Associated with Genetic Alterations

Research To Practice®

Venook A et al. Proc ASCO 2016; Abstract 3504.

CALGB/SWOG-80405: Overall Survival by Biologic Agent and Primary Tumor Sidedness

Research To Practice®

Venook A et al. Proc ASCO 2016; Abstract 3504.

For a younger, otherwise healthy patient with MSI-high mCRC for whom you are planning to administer immune checkpoint inhibitor therapy, which agent or regimen would you most likely recommend?

Research

To Practice®

10

- 1. Pembrolizumab
- 2. Nivolumab
- 3. Nivolumab/ipilimumab
- 4. Other

For a younger, otherwise healthy patient with MSI-high mCRC for whom you are planning to administer immune checkpoint inhibitor therapy, which agent or regimen would you most likely recommend?

In which line of therapy would you like to use an anti-PD-1/PD-L1 antibody?

	Agent or regimen	Preferred line
TANIOS BEKAII-SAAB, MD	Pembrolizumab	First line
JOHANNA BENDELL, MD	Nivolumab/ipilimumab	First line
HOWARD S HOCHSTER, MD	Nivolumab/ipilimumab	Second line
JOHN L MARSHALL, MD	Pembrolizumab	First line
EILEEN M O'REILLY, MD	Nivolumab/ipilimumab	First line
PHILIP A PHILIP, MD, PHD	Nivolumab/ipilimumab	Second Line
ALAN P VENOOK, MD	Nivolumab	Second line

FDA Approvals and Indications for MSI-H or dMMR Solid Tumors or mCRC

Agent, approval date	Indication	Objective response rate
Pembrolizumab May 23, 2017	Adult and pediatric patients with unresectable or metastatic, MSI-H or dMMR solid tumors that have progressed after treatment who have no satisfactory alternative treatment options OR with MSI-H or dMMR mCRC that has progressed after treatment with a fluoropyrimidine, oxaliplatin and irinotecan	39.6%
<mark>Nivolumab</mark> July 31, 2017	Patients 12 years and older with dMMR and MSI-H mCRC that has progressed after treatment with a fluoropyrimidine, oxaliplatin and irinotecan	28%
Nivolumab + ipilimumab July 10, 2018	Patients 12 years and older with dMMR and MSI-H mCRC that has progressed after treatment with a fluoropyrimidine, oxaliplatin and irinotecan	46%

MSI-H = microsatellite instability high; dMMR = deficient mismatch repair

https://www.accessdata.fda.gov; Accessed July 10, 2019.

CheckMate 142: Long-Term Follow-Up of Nivolumab + Low-Dose Ipilimumab in Previously Treated dMMR/MSI-H mCRC

Patients had target lesion at baseline and at least 1 on-treatment tumor assessment.

- * Confirmed response per investigator assessment
- Select Grade 3/4 treatment-related AEs:
 - Elevated AST (8%), diarrhea (3%), pruritus (2%), fatigue (2%)

Research

To Practice®

Overman MJ et al. Gastrointestinal Cancers Symposium 2019; Abstract 635.

In general, for a younger patient with mCRC, what is your usual starting dose of regorafenib?

- 1. 160 mg
- 2. 120 mg
- 3. 80 mg
- 4. 40 mg
- 5. Other

In general, for a <u>younger patient</u> with mCRC, what is your usual starting dose of regorafenib?

•	
TANIOS BEKAII-SAAB, MD	80 mg
JOHANNA BENDELL, MD	120 mg
HOWARD S HOCHSTER, MD	80 mg
JOHN L MARSHALL, MD	80 mg
EILEEN M O'REILLY, MD	120 mg
PHILIP A PHILIP, MD, PHD	120 mg
ALAN P VENOOK, MD	120 mg

What would be your third-line treatment recommendation for a 65-year-old patient with right-sided, MSS, pan-RAS wild-type mCRC who is experiencing disease progression after first-line FOLFOX/bev and second-line FOLFIRI/bev (PS 0)?

If the patient had a RAS mutation and PS 0 or PS 1-2?

	Pan-RAS WT, PS 0	RAS mutation, PS 0	RAS mutation, PS 1-2
TANIOS BEKAII-SAAB, MD	Regorafenib	Regorafenib	Regorafenib or TAS 102 – coin flip
JOHANNA BENDELL, MD	Regorafenib	Regorafenib or TAS 102 – coin flip	TAS-102
HOWARD S HOCHSTER, MD	lrinotecan + panitumumab	Regorafenib	TAS-102
JOHN L MARSHALL, MD	Regorafenib	Regorafenib	TAS-102 (often w/ bev)
EILEEN M O'REILLY, MD	Regorafenib	Regorafenib	Regorafenib or TAS 102 – coin flip
PHILIP A PHILIP, MD, PHD	lrinotecan + panitumumab	TAS-102	TAS-102
ALAN P VENOOK, MD	lrinotecan + panitumumab	Regorafenib or TAS 102 – coin flip	Regorafenib or TAS 102 – coin flip

Regorafenib Dose Optimization Study (ReDOS): A Phase II Trial to Evaluate Dosing of Regorafenib for Refractory mCRC

Survival	Esc dose (n = 54)	Std dose (n = 62)	HR	<i>p</i> -value
Median OS	9.8 mo	6.0 mo	0.72	0.12
Median PFS	2.8 mo	2.0 mo	0.84	0.38

• Multiple QoL parameters were favorable with the escalating dose versus standard dose strategy primarily at week 2 of cycle 1

Bekaii-Saab TS et al. Lancet Oncol 2019; [Epub ahead of print].

RE-ARRANGE: A Phase II Randomized Trial Comparing Different Regorafenib Doses During the First Cycle of Treatment for mCRC

	SD Arm	RD Arm	ID Arm
	(n = 100)	(n = 98)	(n = 99)
Grade 3 or 4 AEs	60%	56%	55%

Research To Practice®

Argiles G et al. Proc ESMO World Congress GI 2019; Abstract O-026.

REVERCE: Overall Survival with Regorafenib Followed by Cetuximab versus the Reverse Sequence

Research

To Practice®

Shitara K et al. Ann Oncol 2019;30:259-65.

REGONIVO: A Phase Ib Study of Regorafenib with Nivolumab for CRC or Advanced Gastric Cancer (GC)

- -100
- Dose of regorafenib reduced to 80 mg due to skin toxicities
- Select Grade ≥3 treatment-related AEs (TRAEs) in all patients: 40%
- Select Grade ≥3 TRAEs in patients given regorafenib 80 mg: 27%
 - Proteinuria (9%)
 - Liver dysfunction (9%)
- One treatment-related death due to diabetic ketoacidosis

Research To Practice®

Fukuoka S et al. ASCO 2019; Abstract 2522.

TAS-102 with Bevacizumab for Chemorefractory mCRC

• Randomized study with N = 93 patients with chemorefractory mCRC

	TAS-102/ bevacizumab	TAS-102	HR	<i>p</i> -value
Median PFS	4.6 mo	2.6 mo	0.45	0.001
Median OS	9.4 mo	6.7 mo	0.55	0.03

- Adverse events were as expected
- Grade 3 or 4 neutropenia (TAS-102/bev vs TAS-102): 67% vs 38% (p < 0.05)
- Serious adverse events (TAS-102/bev vs TAS-102): 19 patients vs 21 patients

Research To Practice®

Pfeiffer P et al. Proc ESMO World Congress GI 2019; Abstract O-014.

In addition to pan-RAS status, which of the following items do you routinely assess in patients with mCRC?

TANIOS BEKAII-SAAB, MD	HER2 status, BRAF status, MSI, multigene panel (NGS)
JOHANNA BENDELL, MD	HER2 status, BRAF status, MSI, multigene panel (NGS)
HOWARD S HOCHSTER, MD	HER2 status, BRAF status, MSI
JOHN L MARSHALL, MD	HER2 status, BRAF status, MSI, multigene panel (NGS)
EILEEN M O'REILLY, MD	HER2 status, BRAF status, MSI, multigene panel (NGS)
PHILIP A PHILIP, MD, PHD	Multigene panel (next-generation sequencing)
ALAN P VENOOK, MD	HER2 status, BRAF status, MSI

MSI = microsatellite instability; NGS = next-generation sequencing

Prevalence of Molecular Alterations in Colorectal Cancer (CRC)

Cervantes A et al. Medicographia 2018;40:101-8.

Reimbursement and regulatory issues aside, what would be your most likely <u>second-line</u> treatment recommendation for a <u>65-year-old patient with left-sided, MSS, pan-RAS wild-type</u> <u>mCRC with a BRAF V600E mutation</u> who received first-line FOLFOXIRI/bevacizumab and experienced disease progression 8 months later (PS 0)?

- 1. Continue bevacizumab and switch chemotherapy
- 2. Chemotherapy + EGFR antibody
- 3. Irinotecan + vemurafenib + EGFR antibody
- 4. Dabrafenib + trametinib + EGFR antibody
- 5. Encorafenib + binimetinib + EGFR antibody
- 6. Other

Continue bevacizumab and switch chemotherapy	0%	
Chemotherapy + EGFR antibody	0%	
- Irinotecan + vemurafenib + EGFR antibody	0%	
Dabrafenib + trametinib + EGFR antibody	0%	
Encorafenib + binimetinib + EGFR antibody	0%	
Other	0%	Research To Practice®

Reimbursement and regulatory issues aside, what would be your most likely <u>second-line</u> treatment recommendation for a <u>65-year-old</u> <u>patient with left-sided, MSS, pan-RAS wild-type mCRC with a BRAF</u> <u>V600E mutation</u> who received first-line FOLFOXIRI/bevacizumab and experienced disease progression 8 months later (PS 0)?

BEACON CRC: A Phase III Trial of Encorafenib and Cetuximab with or without Binimetinib for mCRC with BRAF V600E Mutation

Trial Identifier: NCT02928224

Eligibility

- Histologically or cytologically confirmed metastatic CRC
- Disease progression after 1 or 2 regimens in the metastatic setting
- BRAF V600E mutation in tumor tissue as previously determined by a local assay at any time prior to screening or by the central laboratory

Primary endpoint: OS and ORR (by blinded central review) comparing the triplet to the control arm.

Kopetz S et al. *NEJM* 2019;[Epub ahead of print]. Tabernero J et al. *Proc ESMO* 2019;Abstract LBA32.

BEACON CRC: Encorafenib and Cetuximab with or without Binimetinib for mCRC with BRAF V600E Mutation

	ENCO/CETUX/BINI (n = 224)	ENCO/CETUX (n = 220)	Control – Irinotecan or FOLFIRI + cetuximab (n = 221)
Confirmed ORR	26%	20%	2%*
Median OS	9.0 mo	8.4 mo	5.4 mo
Hazard ratio (<i>p</i> -value)	0.52 (<0.001)	0.60 (<0.001)	Ref

*p < 0.001

Adverse events were as anticipated based on prior trials with each combination.

Kopetz S et al. *NEJM* 2019;[Epub ahead of print]. Tabernero J et al. *Proc ESMO* 2019;Abstract LBA32.

Novel and Emerging Therapeutic Strategies in the Management of Select Gastrointestinal Cancers

Module 1: Colorectal Cancer

- Primary tumor sidedness and selection of first-line therapy
- Sequencing of available therapies in the second line and beyond
- Novel targeted approaches

Module 2: Hepatocellular Carcinoma

- First-line systemic treatment: Sorafenib versus lenvatinib
- Beyond first-line therapy: Cabozantinib, ramucirumab, regorafenib and anti-PD-1/PD-L1 antibodies

Module 3: Pancreatic Cancer

- Neoadjuvant and adjuvant therapy approaches
- Management of metastatic disease and integration of nanoliposomal irinotecan
- BRCA mutations and PARP inhibition

Module 4: Gastric/Gastroesophageal Junction (GEJ)/Esophageal Cancer

- Pembrolizumab for the treatment of recurrent or advanced gastric, GEJ and esophageal cancer
- Efficacy and safety of TAS-102 for recurrent metastatic gastric or GEJ adenocarcinoma
What would be your most likely first-line systemic treatment for a <u>65-year-old</u> patient with hepatocellular carcinoma (HCC), a <u>Child-Pugh A</u> score and a <u>PS of 0</u>?

- 1. Sorafenib
- 2. Lenvatinib
- 3. Sorafenib or lenvatinib coin flip
- 4. Chemotherapy
- 5. Other

What would be your most likely <u>first-line</u> systemic treatment for a 65-year-old patient with...

	Child-Pu	Child-Pugh A HCC		n B7 HCC
	PS 0	Painful bone mets	PS 0	PS 1
TANIOS BEKAII-SAAB, MD	Sorafenib	Lenvatinib	Sorafenib or Ienvatinib – coin flip	Sorafenib or lenvatinib – coin flip
JOHANNA BENDELL, MD	Lenvatinib	Lenvatinib	Lenvatinib	Lenvatinib
HOWARD S HOCHSTER, MD	Sorafenib or lenvatinib – coin flip	Sorafenib or lenvatinib – coin flip	Lenvatinib	Lenvatinib
JOHN L MARSHALL, MD	Sorafenib	Lenvatinib	Sorafenib or Ienvatinib – coin flip	Sorafenib
EILEEN M O'REILLY, MD	Lenvatinib	Lenvatinib	Sorafenib	Sorafenib or Ienvatinib – coin flip
PHILIP A PHILIP, MD, PHD	Lenvatinib	Lenvatinib	Lenvatinib	Lenvatinib
ALAN P VENOOK, MD	Sorafenib or lenvatinib – coin flip	Sorafenib or lenvatinib – coin flip	Sorafenib or Ienvatinib – coin flip	Sorafenib or lenvatinib – coin flip

Based on current clinical trial data and your personal experience, how would you compare the global antitumor efficacy and tolerability profile of sorafenib and lenvatinib as first-line therapy for HCC?

	Efficacy	Tolerability
TANIOS BEKAII-SAAB, MD	About the same	Sorafenib has somewhat more toxicity
JOHANNA BENDELL, MD	Lenvatinib is somewhat more efficacious	Sorafenib has somewhat more toxicity
HOWARD S HOCHSTER, MD	About the same	About the same
JOHN L MARSHALL, MD	Lenvatinib is somewhat more efficacious	Lenvatinib has somewhat more toxicity
EILEEN M O'REILLY, MD	Lenvatinib is somewhat more efficacious	About the same
PHILIP A PHILIP, MD, PHD	Lenvatinib is somewhat more efficacious	Lenvatinib has somewhat more toxicity
ALAN P VENOOK, MD	About the same	About the same

REFLECT: A Phase III Trial of Lenvatinib versus Sorafenib as First-Line Treatment for Unresectable HCC

Outcomes	Lenvatinib (n = 478)	Sorafenib (n = 476)	HR or OR	<i>p</i> -value
Median PFS	7.4 mo	3.7 mo	HR 0.66	<0.0001
Median time to progression	8.9 mo	3.7 mo	HR 0.63	<0.0001
Objective response rate	24.1%	9.2%	OR 3.13	<0.0001

HR = hazard ratio; OR = odds ratio

The safety and tolerability profiles of lenvatinib were consistent with those previously observed.

Research To Practice®

Kudo M et al. Lancet 2018;391(10126):1163-73.

REFLECT: Select Treatment-Emergent AEs

	Lenvatinib (n = 476)		Sorafenib (n = 475)	
Adverse event, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4
Hypertension	201 (42)	111 (23)	144 (30)	68 (14)
Diarrhea	184 (39)	20 (4)	220 (46)	20 (4)
Decreased appetite	162 (34)	22 (5)	127 (27)	6 (1)
Decreased weight	147 (31)	36 (8)	106 (22)	14 (3)
Fatigue	141 (30)	18 (4)	119 (25)	17 (4)
Palmar-plantar erythrodysesthesia	128 (27)	14 (3)	249 (52)	54 (11)
Proteinuria	117 (25)	27 (6)	54 (11)	8 (2)
Dysphonia	113 (24)	1 (0)	57 (12)	0 (0)
Nausea	93 (20)	4 (1)	68 (14)	4 (1)
Decreased platelet count	87 (18)	26 (6)	58 (12)	16 (3)
Vomiting	77 (16)	6 (1)	36 (8)	5 (1)

Kudo M et al. Lancet 2018;391(10126):1163-73; Cheng AL et al. Proc ASCO 2017; Abstract 4001. To Practice®

Research

What would be your most likely <u>second-line systemic therapy</u> for a <u>65-year-old</u> patient with HCC, a <u>Child-Pugh A</u> score and a <u>PS of 0</u> who received first-line standard-dose sorafenib with minimal toxicity, had stable disease for 14 months and then experienced disease progression (alpha-fetoprotein [<u>AFP</u>] <u>2,500 ng/mL</u>)?

- 1. Lenvatinib
- 2. Regorafenib
- 3. Ramucirumab
- 4. Chemotherapy
- 5. Nivolumab
- 6. Pembrolizumab
- 7. Cabozantinib
- 8. Palliative care
- 9. Other

What would be your most likely <u>second-line systemic therapy</u> for a 65-year-old patient with HCC who received <u>first-line standard-dose</u> sorafenib with minimal toxicity, had stable disease for 14 months and then experienced disease progression?

	Child-Pug	gh A, PS 0	Child-Pugh	B7, PS 1
	AFP 2,500 ng/mL	AFP 300 ng/mL	AFP 2,500 ng/mL	AFP 300 ng/mL
TANIOS BEKAII-SAAB, MD	Regorafenib	Regorafenib	Ramucirumab	Pembrolizumab
JOHANNA BENDELL, MD	Cabozantinib	Cabozantinib	Cabozantinib	Cabozantinib
HOWARD S HOCHSTER, MD	Regorafenib	Regorafenib	Regorafenib	Regorafenib
JOHN L MARSHALL, MD	Regorafenib	Regorafenib	Pembrolizumab	Pembrolizumab
EILEEN M O'REILLY, MD	Regorafenib	Regorafenib or nivolumab	Ramucirumab	Nivolumab
PHILIP A PHILIP, MD, PHD	Regorafenib	Regorafenib	Ramucirumab	Regorafenib
ALAN P VENOOK, MD	Nivolumab	Nivolumab	Nivolumab	Nivolumab

What would be your most likely <u>second-line systemic therapy</u> for a 65-year-old patient with HCC who received <u>first-line sorafenib</u> and required a dose reduction to 400 mg daily, had stable disease for 5 months and then experienced disease progression?

	Child-Pug	jh A, PS 0	Child-Pugh B7, PS 1	
	AFP 2,500 ng/mL	AFP 300 ng/mL	AFP 2,500 ng/mL	AFP 300 ng/mL
TANIOS BEKAII-SAAB, MD	Cabozantinib	Cabozantinib	Ramucirumab	Cabozantinib
JOHANNA BENDELL, MD	Ramucirumab	Cabozantinib	Ramucirumab	Cabozantinib
HOWARD S HOCHSTER, MD	Regorafenib	Regorafenib	Ramucirumab	Nivolumab
JOHN L MARSHALL, MD	Pembrolizumab	Pembrolizumab	Pembrolizumab	Pembrolizumab
EILEEN M O'REILLY, MD	Nivolumab	Nivolumab	Nivolumab	Nivolumab
PHILIP A PHILIP, MD, PHD	Ramucirumab	Regorafenib	Ramucirumab	Cabozantinib
ALAN P VENOOK, MD	Nivolumab	Nivolumab	Nivolumab	Nivolumab

CELESTIAL: A Phase III Trial of Cabozantinib versus Placebo for Advanced HCC

OS in cabozantinib group by AFP response ^{*2}	Median OS	No. of deaths
AFP response (N = 117)	16.1 mo	81
No AFP response (N = 119)	9.1 mo	85

* ≥20% decrease in AFP level from baseline at week 8

¹Abou-Alfa GK et al. *N Engl J Med* 2018;379(1):54-63; ² Merle P et al. *Proc ESMO GI* 2018;Abstract O-011.

FDA Grants Approval to Ramucirumab for HCC Press Release – May 10, 2019

"The Food and Drug Administration approved ramucirumab as a single agent for hepatocellular carcinoma (HCC) in patients who have an alpha fetoprotein (AFP) of ≥400 ng/mL and have been previously treated with sorafenib.

Approval was based on REACH-2 (NCT02435433), a multinational, randomized, double-blind, placebo-controlled, multicenter study in 292 patients with advanced HCC with AFP ≥400 ng/mL who had disease progression on or after sorafenib or who were intolerant."

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approvesramucirumab-hepatocellular-carcinoma

REACH-2: A Phase III Trial of Ramucirumab After Sorafenib for Patients with Advanced HCC and Increased AFP

Grade \geq 3 AEs associated with ramucirumab included hypertension and hyponatremia.

Research To Practice®

Zhu AX et al. Proc ASCO 2018; Abstract 4003; Lancet Oncol 2019; 20(2): 282-96.

RESORCE: A Phase III Trial of Regorafenib for Patients with HCC Who Experienced Disease Progression on Sorafenib

	Regorafenib (n = 379)	Placebo (n = 194)	HR	<i>p</i> -value
Median PFS ¹	3.1 mo	1.5 mo	0.46	<0.0001
Median OS (primary analysis) ¹	10.6 mo	7.8 mo	0.63	<0.0001
Median OS (updated analysis) ^{2,3}	10.7 mo	7.9 mo	0.62	<0.0001
ORR (mRECIST) ¹	11%	4%	_	0.0047
Disease control rate ¹	65%	36%	_	<0.0001

- Common clinically relevant Grade 3/4 TEAEs: Hypertension (15% vs 5%), hand-foot skin reaction (13% vs 1%), fatigue (9% vs 5%) and diarrhea (3% vs 0%)¹
 - Data cutoff for primary analysis: February 29, 2016
 - Data cutoff for updated OS analysis: January 23, 2017

¹ Bruix J et al. *Lancet* 2017;389(10064):56-66; ² Bruix J et al. *Proc ESMO 2017 World Congress GI*;Abstract O-009; ³ Bruix J et al. *Proc ILCA* 2018;Abstract O-023.

CheckMate 040: A Phase I/II Dose Escalation and Expansion Trial of Nivolumab for Advanced HCC

Dose-Expansion Phase (3 mg/kg)

Efficacy	All patients (n = 214)	Uninfected untreated/ intolerant (n = 56)	Uninfected progressor (n = 57)	HCV infected (n = 50)	HBV infected (n = 51)
Objective response rate	20%	23%	21%	20%	14%
Median DOR	9.9 mo	8.4 mo	NYR	9.9 mo	NYR
9-mo overall survival	74%	82%	63%	81%	70%

HCV = hepatitis C virus; HBV = hepatitis B virus; DOR = duration of response; NYR = not yet reached

On September 22, 2017, the Food and Drug Administration granted accelerated approval to nivolumab for the treatment of HCC in patients who have previously received sorafenib.

El-Khoueiry AB et al. *Lancet* 2017;389(10088):2492-502; https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm577166.htm.

Phase III KEYNOTE-240 Trial: Pembrolizumab versus Best Supportive Care as Second-Line Therapy for Advanced HCC

- Accelerated approval for pembrolizumab granted in 2018 based on Phase II KEYNOTE-224 study
- Confirmatory KEYNOTE-240 trial: Numerical but not statistical advantage in PFS and OS
- Results of Phase III KEYNOTE-394 are pending

Finn R et al. *Proc ASCO* 2019;Abstract 4004; https://investors.merck.com/news/pressrelease-details/2019/Merck-Provides-Update-on-KEYNOTE-240-a-Phase-3-Study-of-KEYTRUDA-pembrolizumab-in-Previously-Treated-Patients-with-Advanced-Hepatocellular-Carcinoma/default.aspx

Ongoing Phase III Studies of Checkpoint Inhibitors in Advanced HCC

Study identifier	Target accrual	Eligibility	Randomization
LEAP-002 (NCT03713593)	750	First line, advanced HCC	Lenvatinib + PembrolizumabLenvatinib
IMbrave150 (NCT03434379)	480	First line, locally advanced or advanced HCC	 Atezolizumab + Bevacizumab Sorafenib
HIMALAYA (NCT03298451)	1,310	First line, advanced HCC	 Durvalumab Durvalumab + Tremelimumab (2 regimens) Sorafenib
COSMIC-312 (NCT03755791)	640 (6:3:1)	First line, advanced HCC	 Cabozantinib + Atezolizumab Sorafenib Cabozantinib

www.clinicaltrials.gov, Accessed July 2019

What would be your most likely <u>third-line systemic therapy</u> recommendation for an otherwise healthy <u>65-year-old</u> patient with HCC who experienced disease progression on first-line sorafenib and secondline nivolumab (AFP 2,500 ng/mL)? If their AFP was 300 ng/mL?

	AFP 2,500 ng/mL	AFP 300 ng/mL
TANIOS BEKAII-SAAB, MD	Cabozantinib	Cabozantinib
JOHANNA BENDELL, MD	Cabozantinib	Cabozantinib
HOWARD S HOCHSTER, MD	Palliative care	Palliative care
JOHN L MARSHALL, MD	Ramucirumab	Regorafenib
EILEEN M O'REILLY, MD	Ramucirumab	Cabozantinib
PHILIP A PHILIP, MD, PHD	Ramucirumab	Cabozantinib
ALAN P VENOOK, MD	Cabozantinib	Cabozantinib

Novel and Emerging Therapeutic Strategies in the Management of Select Gastrointestinal Cancers

Module 1: Colorectal Cancer

- Primary tumor sidedness and selection of first-line therapy
- Sequencing of available therapies in the second line and beyond
- Novel targeted approaches

Module 2: Hepatocellular Carcinoma

- First-line systemic treatment: Sorafenib versus lenvatinib
- Beyond first-line therapy: Cabozantinib, ramucirumab, regorafenib and anti-PD-1/PD-L1 antibodies

Module 3: Pancreatic Cancer

- Neoadjuvant and adjuvant therapy approaches
- Management of metastatic disease and integration of nanoliposomal irinotecan
- BRCA mutations and PARP inhibition

Module 4: Gastric/Gastroesophageal Junction (GEJ)/Esophageal Cancer

- Pembrolizumab for the treatment of recurrent or advanced gastric, GEJ and esophageal cancer
- Efficacy and safety of TAS-102 for recurrent metastatic gastric or GEJ adenocarcinoma

Phase II Studies of (Neo)Adjuvant Chemotherapy for Resectable Pancreatic Adenocarcinoma

NEONAX: Neoadjuvant and adjuvant or adjuvant gemcitabine/nab paclitaxel

Outcome	Arm A (n = 25) (perioperative)	Arm B (n = 23) (adjuvant)
Tumor resection: Yes No	80% 20%	91.3% 8.7%
Postoperative complications	45%	42.8%

Grade ≥3 adverse events increased in the perioperative arm, but this was manageable and did not result in peri- or postoperative mortality.

SWOG-S1505: Neoadjuvant mFOLFIRINOX versus gemcitabine/nab paclitaxel

Outcome	Total (n = 99)
Reached protocol surgery: Yes	77%
No	23%

Research

To Practice®

Preoperative chemotherapy was safe and feasible.

Uhl W et al. Proc ASCO 2019; Abstract 4128; Sohal D et al. Proc ASCO 2019; Abstract 4137.

What is your likely adjuvant systemic therapy recommendation for an otherwise healthy <u>75-year-old</u> patient after surgical resection of pancreatic cancer?

- 1. Gemcitabine
- 2. Gemcitabine/capecitabine
- 3. Gemcitabine/nab paclitaxel
- 4. 5-FU/leucovorin (LV)
- 5. Modified FOLFIRINOX
- 6. Other

What is your likely adjuvant systemic therapy recommendation for an otherwise healthy <u>75-year-old</u> patient after surgical resection of pancreatic cancer?

Would you administer *nab* paclitaxel/gemcitabine as adjuvant therapy for a patient with pancreatic cancer?

	Adjuvant therapy	<i>Nab</i> paclitaxel/gemcitabine as adjuvant therapy?
TANIOS BEKAII-SAAB, MD	Modified FOLFIRINOX	No
JOHANNA BENDELL, MD	Modified FOLFIRINOX	Νο
HOWARD S HOCHSTER, MD	Modified FOLFIRINOX	Νο
JOHN L MARSHALL, MD	Modified FOLFIRINOX	Νο
EILEEN M O'REILLY, MD	Modified FOLFIRINOX	No
PHILIP A PHILIP, MD, PHD	Modified FOLFIRINOX	Not a candidate or refuses FFX Good performance status
ALAN P VENOOK, MD	Modified FOLFIRINOX	Yes, patient w/ poor PS or hyperbilirubinemia

PRODIGE 24/CCTG PA.6: Survival and Safety with FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer

Outcome	mFOLFIRINOX (n = 247)	Gem (n = 246)	HR	<i>p</i> -value
Median DFS	21.6 mo	12.8 mo	0.58	<0.001
Median OS	54.4 mo	35.0 mo	0.64	0.003

- Grade 3/4 AEs: mFOLFIRINOX, 75.9%; gemcitabine, 52.9%
- Grade 3/4 AEs higher in mFOLFIRINOX arm: diarrhea, paresthesia, fatigue, peripheral neuropathy, vomiting, abdominal pain, mucositis
- Grade 3/4 AEs higher in the gemcitabine arm: thrombocytopenia

Research To Practice®

Conroy T et al. N Engl J Med 2018;379(25):2395-406.

Phase III APACT Trial of Adjuvant Gemcitabine/Nab Paclitaxel for Surgically Resected Pancreatic Adenocarcinoma

Months

- The primary endpoint was not met.
- Interim-analysis OS was improved for *nab*-P + Gem compared to Gem (40.5 mo vs 36.2 mo; HR 0.82, nominal P = 0.045).

Tempero M et al. *Proc ASCO* 2019;Abstract 4000; Reni M et al. *Proc ESMO World Congress GI* 2019;Abstract O-001.

Phase II LAPACT Trial of Nab Paclitaxel and Gemcitabine for Unresectable Locally Advanced Pancreatic Cancer: Survival, Response and Safety Results

Outcome (all patients)	N = 107
Objective response rate	32.7%
Partial response rate	32.7%
Disease control rate (SD ≥24 weeks)	65.4%
Median PFS	10.8 mo
Estimated 1-y OS (interim analysis)	72%

Nab paclitaxel/gemcitabine was tolerable and QoL was maintained for most patients.

Research To Practice®

Hammel P et al. Gastrointestinal Cancers Symposium 2018; Abstract 204.

What <u>second-line therapy</u> would you recommend to a <u>75-year-old</u> who is not a candidate for FOLFIRINOX and who receives first-line gemcitabine/*nab* paclitaxel for metastatic pancreatic cancer and experiences disease progression after 5 months?

Research

To Practice®

10

- 1. Nal-IRI + 5-FU/LV
- 2. FOLFOX
- 3. FOLFIRI
- 4. Other

What <u>second-line therapy</u> would you recommend to a <u>75-year-old</u> who is not a candidate for FOLFIRINOX and who receives first-line gemcitabine/*nab* paclitaxel for metastatic pancreatic cancer and experiences disease progression after 5 months?

NAPOLI-1: Final Overall Survival and Tolerability with Nal-IRI/5-FU/LV vs 5-FU/LV as Second-Line Therapy

- Grade 3 and 4 adverse events with nal-IRI + 5-FU/LV included neutropenia (15.4%), diarrhea (9.4%), vomiting (6.0%) and fatigue (6.8%)
- Health-related quality of life was maintained with nal-IRI + 5-FU/LV

Wang-Gillam A et al. *Eur J Cancer* 2019;108:78-87; Hubner RA et al. *Eur J Cancer* 2019;106:24-33; *Lancet* 2016;387:545-57.

NAPOLI-1: Impact on OS of Dose Modifications or Dose Delays of Nal-IRI + 5-FU/LV

No significant impact of dose reduction or dose delay on OS in the nal-IRI/5-FU/LV arm

Research To Practice®

Wang-Gillam A et al. Gastrointestinal Cancers Symposium 2018; Abstract 388.

Regulatory and reimbursement issues aside, which treatment would you recommend to a <u>65-year-old</u> patient who is diagnosed with unresectable metastatic pancreatic cancer with a <u>deleterious germline BRCA2 mutation</u>?

- 1. Chemotherapy
- 2. Olaparib
- 3. Rucaparib
- 4. Chemotherapy followed by maintenance with a PARP inhibitor
- 5. Other

Regulatory and reimbursement issues aside, which treatment would you recommend to a <u>65-year-old</u> patient who is diagnosed with unresectable metastatic pancreatic cancer with a <u>deleterious germline BRCA2 mutation</u>?

Do you test for germline BRCA mutation status in your patients with metastatic pancreatic cancer and no significant family history of cancer?

	Tx for de novo mPCa with BRCA mutation	Test for BRCA mutations?
TANIOS BEKAII-SAAB, MD	mFOLFIRINOX	Yes (Invitae assay)
JOHANNA BENDELL, MD	FOLFIRINOX → maintenance olaparib	Yes (Foundation Medicine)
HOWARD S HOCHSTER, MD	FOLFIRINOX → maintenance olaparib	Νο
JOHN L MARSHALL, MD	FOLFOX → maintenance olaparib	No (somatic and WES)
EILEEN M O'REILLY, MD	mFOLFIRINOX → maintenance olaparib	Yes (multigene panel)
PHILIP A PHILIP, MD, PHD	modified FFX → Olaparib	Yes (germline and NGS)
ALAN P VENOOK, MD	FOLFIRINOX	Yes (UCSF500 assay)

WES = whole exome sequencing

DNA Damage Response (DDR) Tumor Mutations in Pancreatic Cancer

 17%-25% of pancreatic adenocarcinomas harbor mutations in DDR genes, including those involved with homologous recombination

Gene (≥1% Detection)	KYT (N = 616)	Caris (N = 833)
ATM	4.5%	3.60%
BRCA2	2.9%	3.33%
SMARCA4	1.6%	NR
BAP1	1.3%	0.48%
BRCA1	1.3%	1.41%
BRIP1	1.0%	0.48%
PALB2	0.8%	1.2%

Know Your Tumor[®] (KYT) Data Set; Caris Database Review

Research To Practice®

Adapted from Michael Pishvaian, MD, PhD

POLO: A Phase III Trial of Maintenance Olaparib for Metastatic Adenocarcinoma of the Pancreas

Primary endpoint: Progression-free survival

Key secondary endpoints include overall survival, time to second disease progression, response rate and health-related quality of life, disease control rate

www.clinicaltrials.gov (NCT02184195); https://www.astrazeneca.com/media-centre/pressreleases/2019/lynparza-significantly-delayed-disease-progression-as-1st-line-maintenancetreatment-in-germline-brca-mutated-metastatic-pancreatic-cancer-26022019.html.
POLO: A Phase III Trial of Maintenance Olaparib for Metastatic Pancreatic Cancer with BRCA Mutation

- An interim analysis of overall survival showed no difference between olaparib and placebo (median 18.9 mo vs 18.1 mo, HR 0.91, *p* 0.68)
- The adverse-effect profile of maintenance olaparib was similar to that observed in other tumor types

Research To Practice®

Golan T et al. N Engl J Med 2019;381(4):317-27.

Phase II Interim Analysis of Maintenance Rucaparib for Patients with Advanced Pancreatic Cancer and BRCA1/2 or PALB2 Mutations

Outcome	n = 24	
PFS	9.1 mo	
Overall response rate	36.8%	
Disease control rate	89.5%	

- Patients with advanced pancreatic cancer and pathogenic germline or somatic mutation in BRCA1/2 or PALB2 were enrolled
- Treatment with rucaparib was well tolerated without doselimiting toxicities
- Most common adverse events: nausea, dysgeusia, fatigue

Research To Practice®

Binder KR et al. Proc AACR 2019; Abstract CT234.

Novel and Emerging Therapeutic Strategies in the Management of Select Gastrointestinal Cancers

Module 1: Colorectal Cancer

- Primary tumor sidedness and selection of first-line therapy
- Sequencing of available therapies in the second line and beyond
- Novel targeted approaches

Module 2: Hepatocellular Carcinoma

- First-line systemic treatment: Sorafenib versus lenvatinib
- Beyond first-line therapy: Cabozantinib, ramucirumab, regorafenib and anti-PD-1/PD-L1 antibodies

Module 3: Pancreatic Cancer

- Neoadjuvant and adjuvant therapy approaches
- Management of metastatic disease and integration of nanoliposomal irinotecan
- BRCA mutations and PARP inhibition

Module 4: Gastric/Gastroesophageal Junction (GEJ)/Esophageal Cancer

- Pembrolizumab for the treatment of recurrent or advanced gastric, GEJ and esophageal cancer
- Efficacy and safety of TAS-102 for recurrent metastatic gastric or GEJ adenocarcinoma

Regulatory and reimbursement issues aside, what would you currently recommend as <u>second-line therapy</u> for a patient with metastatic <u>HER2-negative</u>, <u>MSS</u> gastric cancer who has experienced disease progression on first-line FOLFOX?

- 1. Ramucirumab
- 2. Paclitaxel/ramucirumab
- 3. Other chemotherapy
- 4. Test for PD-L1 CPS and administer pembrolizumab if 1 or higher
- 5. Test for PD-L1 CPS and administer pembrolizumab if 10 or higher

Research

To Practice[®]

10

- 6. Pembrolizumab
- 7. Nivolumab
- 8. Other

Regulatory and reimbursement issues aside, what would you currently recommend as <u>second-line therapy</u> for a patient with metastatic <u>HER2-negative</u>, <u>MSS</u> gastric cancer who has experienced disease progression on first-line FOLFOX?

TANIOS BEKAII-SAAB, MD	Test for PD-L1 CPS, administer pembrolizumab if ≥10
JOHANNA BENDELL, MD	Paclitaxel/ramucirumab
HOWARD S HOCHSTER, MD	Test for PD-L1 CPS, administer pembrolizumab if ≥10
JOHN L MARSHALL, MD	Paclitaxel/ramucirumab
EILEEN M O'REILLY, MD	Test for PD-L1 CPS, administer pembrolizumab if ≥10
PHILIP A PHILIP, MD, PHD	Test for PD-L1 CPS, administer pembrolizumab if ≥10
ALAN P VENOOK, MD	Test for PD-L1 CPS, administer pembrolizumab if ≥1

KEYNOTE-059 Trial Cohort 1: PD-L1 Expression and Combined Positive Score (CPS)

• PD-L1 expression is determined by the CPS

CPS = <u>Number of PD-L1 staining cells (tumor cells, lymphocytes, macrophages)</u> x 100 Total number of viable tumor cells

• A specimen is considered to have positive PD-L1 expression if CPS $\geq 1\%$

PD-L1-negative

PD-L1-positive

Research To Practice®

Fuchs CS et al. Proc ASCO 2017; Abstract 4003.

Pembrolizumab in Advanced Gastric or Gastroesophageal Cancer

- Accelerated approval of pembrolizumab monotherapy as third- or laterline therapy was based on the Phase II KEYNOTE-059 study
 - ORR: 11.6% (all patients); 15.5% (PD-L1-positive); 57% (MSI-high)
- Phase III KEYNOTE-061 trial of pembrolizumab versus paclitaxel as second-line therapy did not meet its primary endpoint of OS in patients with CPS ≥1
 - Median OS: Pembrolizumab 9.1 mo, paclitaxel 8.3 mo (HR 0.82; p = 0.042)
- Phase III KEYNOTE-062 trial evaluates pembrolizumab with or without chemotherapy versus chemotherapy as first-line therapy

Fuchs C et al. JAMA Oncol 2018;4(5):e180013; Shitara K et al. Lancet 2018;392(10142):123-33; Tabernero J et al. Proc ASCO 2019;Abstract LBA4007. Shitara K et al. Proc ESMO 2019;Abstract LBA44.

KEYNOTE-062: A Phase III Trial of Pembrolizumab with and without Chemotherapy as First-Line Treatment for Advanced Gastric or GEJ Adenocarcinoma

CPS ≥1	Pembro + chemo (n = 257)	Pembro (n = 256)	Chemo (n = 250)
Median OS	12.5 mo	10.6 mo	11.1 mo
HR, <i>p</i> -value	0.85, 0.046	0.91, 0.91	Ref
MSI-H	Pembro + chemo (n = 17)	Pembro (n = 14)	Chemo (n = 19)
Median OS	Not reached	Not reached	8.5 mo
HR	0.37	0.29	Ref

- Pembrolizumab was noninferior to chemotherapy for OS in patients with CPS ≥1, and a clinically meaningful improvement in OS was reported with pembro versus chemo for patients with CPS ≥10 (17.4 mo vs 10.8 mo, HR 0.69)
- Pembrolizumab + chemotherapy did not show superior OS or PFS for patients with CPS ≥1 or OS for CPS ≥10.

Research To Practice®

Shitara K et al. Proc ESMO 2019; Abstract LBA44.

Pembrolizumab Approved as Monotherapy for Recurrent Locally Advanced or Metastatic Squamous Cell Carcinoma of the Esophagus Press Release – July 31, 2019

"The US Food and Drug Administration has approved pembrolizumab as monotherapy for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (<u>Combined Positive Score [CPS] ≥10</u>) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

The approval was based on data from KEYNOTE-181, a multicenter, randomized, open-label, active-controlled trial [for] patients with recurrent locally advanced or metastatic esophageal cancer who progressed on or after one prior line of systemic treatment for advanced disease."

https://www.businesswire.com/news/home/20190731005305/en/FDA-Approves-New-Monotherapy-Indication-Merck%E2%80%99s-KEYTRUDA%C2%AE

KEYNOTE-181: A Phase III Trial of Second-Line Pembrolizumab Compared to Chemotherapy for Advanced Esophageal Cancer

- ORR higher with pembrolizumab than with chemotherapy for patients with CPS ≥10 (21.5% vs 6.1%)
- Lower frequency of Grade 3-5 treatment-related adverse events with pembrolizumab than with chemotherapy (18.2% vs 40.9%); no new safety signals observed

Kojima T et al. Gastrointestinal Cancers Symposium 2019; Abstract 2; Metges J et al. *Proc ESMO World GI Congress* 2019; Abstract O-012.

What is your usual <u>third-line treatment</u> for a patient with metastatic <u>HER2-negative</u>, <u>MSS</u> gastric cancer (<u>PD-L1 CPS</u> <u>lower than 1</u>) who has experienced disease progression on FOLFOX and paclitaxel/ramucirumab?

- 1. TAS-102
- 2. Other chemotherapy
- 3. Nivolumab
- 4. Palliative care
- 5. Other

What is your usual <u>third-line treatment</u> for a patient with metastatic <u>HER2-negative</u>, <u>MSS</u> gastric cancer (<u>PD-L1 CPS</u> <u>lower than 1</u>) who has experienced disease progression on FOLFOX and paclitaxel/ramucirumab?

TANIOS BEKAII-SAAB, MD	TAS-102
JOHANNA BENDELL, MD	Irinotecan
HOWARD S HOCHSTER, MD	TAS-102
JOHN L MARSHALL, MD	TAS-102
EILEEN M O'REILLY, MD	Nivolumab
PHILIP A PHILIP, MD, PHD	FOLFIRI
ALAN P VENOOK, MD	TAS-102

Phase III TAGS Trial of Trifluridine/Tipiracil for Patients with Heavily Pretreated Metastatic Gastric Cancer: Outcome Summary

Time since randomisation (months)

Clinical variable	Trifluridine/tipiracil	Placebo	HR	<i>p</i> -value
Median PFS	2.0 mo	1.8 mo	0.57	<0.0001
ORR	4.0%	2.0%	_	0.28

Research To Practice®

Shitara K et al. Lancet Oncol 2018;19(11):1437-48.

Questions?

To view the slides please visit www.ResearchToPractice.com/Meetings/Slides

Novel and Emerging Therapeutic Strategies in the Management of Select Gastrointestinal Cancers

Philip A Philip, MD, PhD

Kathryn Cramer Endowed Chair in Cancer Research Professor of Oncology and Pharmacology Leader, GI and Neuroendocrine Oncology Vice President of Medical Affairs Karmanos Cancer Institute Wayne State University Detroit, Michigan