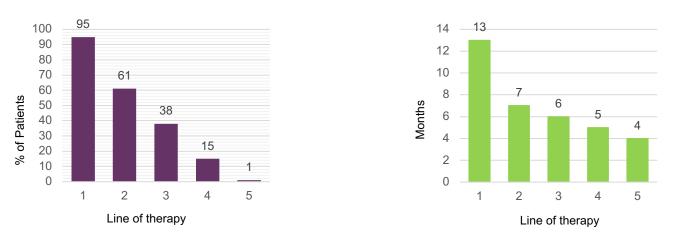
Selection and Sequencing of Available and Recently Approved Therapies for Patients with Relapsed/Refractory MM?

Nikhil C. Munshi, MD

Professor of Medicine Harvard Medical School

Director Basic and Correlative Sciences Jerome Lipper Myeloma Center Dana-Farber Cancer Institute

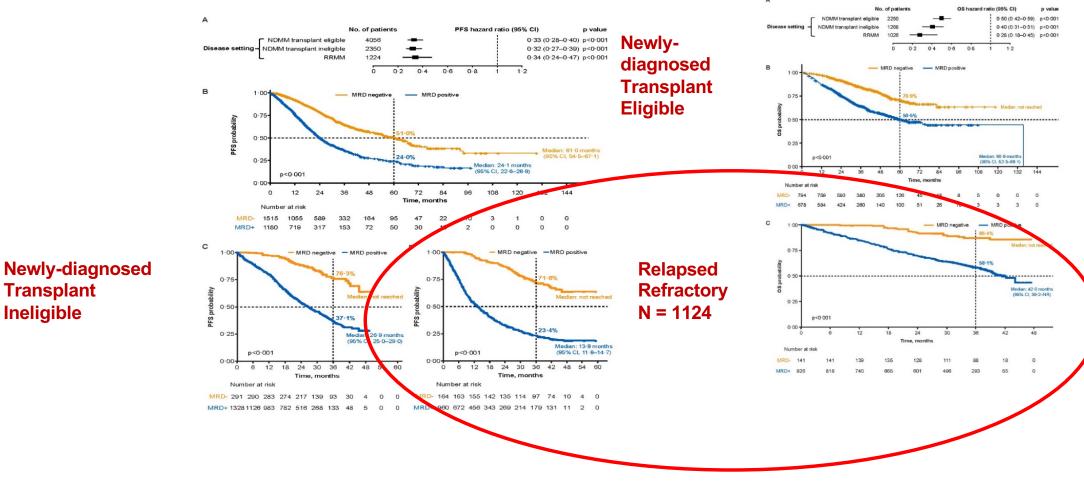


DANA-FARBER CANCER INSTITUTE

Initial Treatment is Best Chance For Deep and Durable Remissions

Attrition % of Patients Able to Get Nth Line of Therapy **Diminishing Returns** Median Duration of Nth Line of Therapy

- Attrition: high risk & frail elderly patients in particular will not live to Nth relapse
- Response rates and duration diminish with each successive line of therapy
- Early use of efficacious regimens to achieve and sustain remissions critical

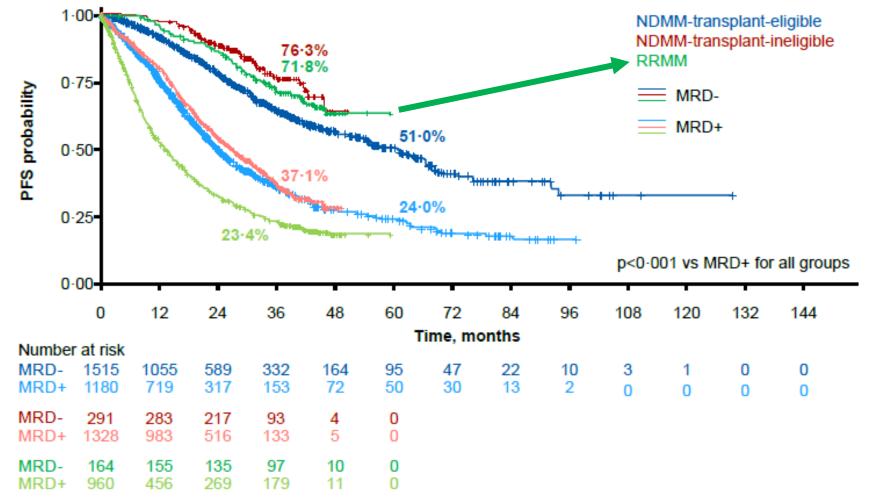

Indications for Retreatment

- Patients with asymptomatic rise in M-protein (biochemical relapse) can be observed to determine the rate of rise and nature of the relapse
- <u>Clinical relapse</u>: direct indicators of increasing disease with end organ dysfunction (MDE)
- <u>Significant paraprotein relapse:</u> Accelerated Doubling of the M-component in two consecutive measurements separated by < 2 months; OR
- High levels of free light chain with renal presentation
- High risk cytogenetics with biochemical progression

What is the Goal of Therapy in Relapsed/Refractory Myeloma? Superior PFS and OS with MRD Negativity in Relapsed Refractory Multiple Myeloma

PFS

OS



Transplant Ineligible

Munshi N et al., Blood Adv 2020

MRD Negativity Provides Similar Benefit in Relapsed/Refractory Disease as in Newly-diagnosed Patient

Association of MRD negativity with PFS by disease settings

Factors to Consider for Treatment Selection

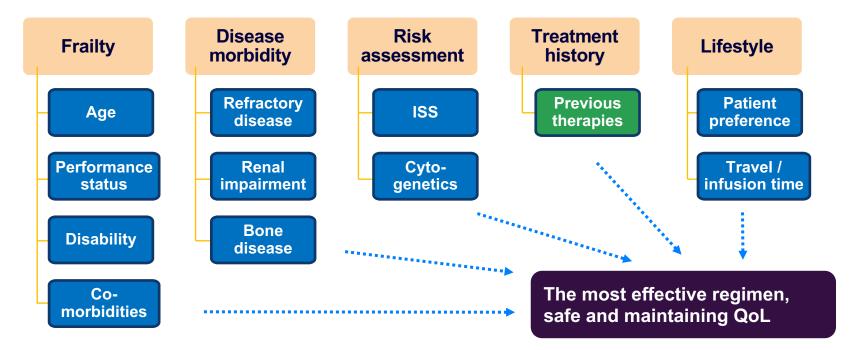
Disease related Factors

- > Nature of relapse
- > Risk stratification
- > Disease burden
- R-ISS staging

Treatment related Factors

- Previous therapy
- Regimen-related toxicity
- Depth and duration of previous response, tumor burden at relapse
- Retreatment with previous therapies

Patient related Factors


- > Renal insufficiency:
- Hepatic impairment Comorbidities and frailty
- > Patient preferences

- 1. Nooka AK, et al. Blood. 2015;125:3085-3099.
- 2. Palumbo A, et al. N Engl J Med. 2011;364:1046-1060.
- 3. Palumbo A, et al. Blood. 2011;118:4519-4529.
- 4. Orlowski RZ, Lonial S. Clin Cancer Res. 2016;22:5443.

- 1. Nooka AK, et al. Blood. 2015;125:3085-3099.
- 2. Palumbo A, et al. N Engl J Med. 2011;364:1046-1060.
- 3. Palumbo A, et al. Blood. 2011;118:4519-4529.

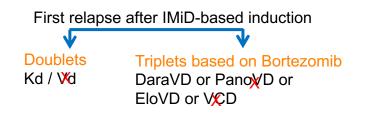
- 1. Nooka AK, et al. Blood. 2015;125:3085-3099.
- 2. Palumbo A, et al. N Engl J Med. 2011;364:1046-1060.
- 3. Palumbo A, et al. Blood. 2011;118:4519-4529.

Disease and Patient-based Factors Influencing the Treatment Decision-making at the Relapsed Setting

- Choice of PI- or IMiD-based partner depends on prior treatment
- Nearly all phase 3 studies show triplets perform better than doublets
- Cross trial comparisons should not be done

Clegg A et al. Lancet 2013;381:752–762; Handforth C et al. Ann Oncol 2015;26:1091–1101; Chen X et al. Clin Interv Aging 2014;9:433–441; Palumbo A et al. Blood 2015;125:2068–2074; Jhaveri D et al. Haematologica 2016;101:1–881 (Abstract E1312); Sonneveld P et al. Leukemia 2013;27:1959–1969; Faiman BM et al. Clin J Oncol Nurs 2011;15:6–76; Miceli TS et al. Clin J Oncol Nurs 2011;15:9–23; Greipp PR et al. J Clin Oncol 2005;23:3412–3420; Binder M et al. Haematologica 2016;101:P665; Merz M et al. Haematologica 2016;101:P650; Chng WJ et al. Leukemia 2013;27:1959–1969; Ramsenthaler C et al. BMC Cancer 2016;16:427; Williams LA et al. J Clin Oncol 2016;34:e18127; Ramasamy K et al. Haematologica 2017;102:E1457.

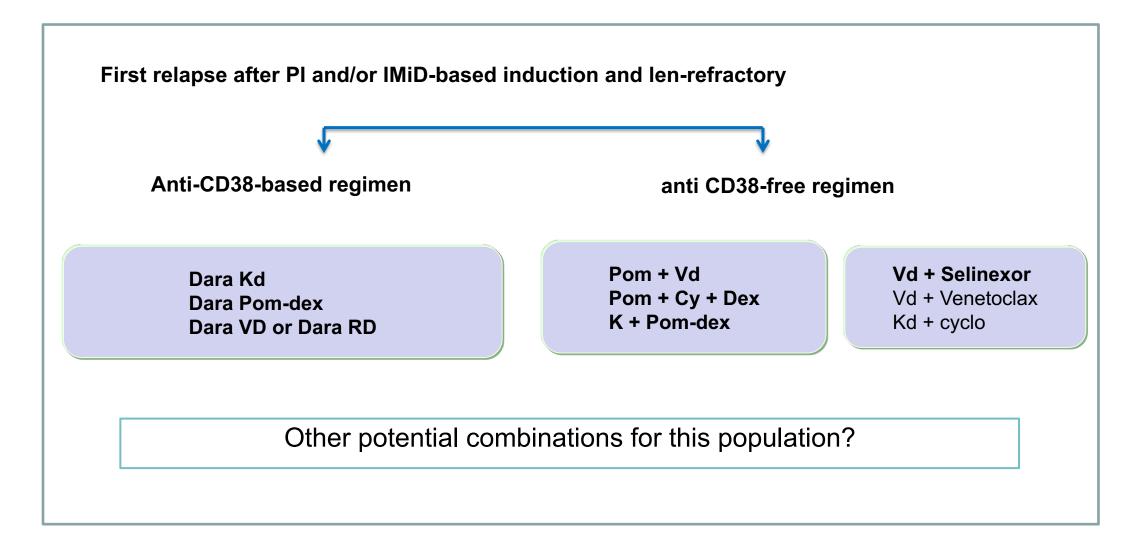
Management of Patients at First Relapse Lenalidomide-Dexamethasone Combination Studies



	lxazomib		Elotuzumab		Carfilzomib		Daratumumab	
N	IRd vs Rd 722		EloRd vs Rd 646		KRd vs Rd 792		DRd vs Rd 569	
Efficacy	IRD	RD	EloRD	RD	KRD	RD	DRD	RD
Median f/u, mos	2	3	Min 48	8 mos	6	7	3	2.9
ORR	78.3%	71.5%	79%	66%	87%	66.7%	93%	76%
CR	12%	7%	5%	9%	32%	9.3%	55%	23%
Median PFS, mos	21	14.7	19	14.9	26	16.6	NR	17.5
				_				_
Median OS, mos	NR	NR	48.3	39.6	48.3	40.4	NR	NR
				_				

Courtesy of Nikhil C Munshi, MD

Moreau P et al. *N Engl J Med.* 2016;374:1621; Dimopoulos MA et al. *Br J Haematol.* 2017;178:896. Stewart AK et al. *N Engl J Med.* 2015;372:142; Stewart AK et al. *Blood.* 2017;130: Abstract 743. Dimopoulos M et al. *J Hematol Oncol.* 2018;11:49; Dimopoulos MA et al. *N Engl J Med.* 2016;375:1319.


Management of Patients at First Relapse Bortezomib-Dexamethasone Combination Studies

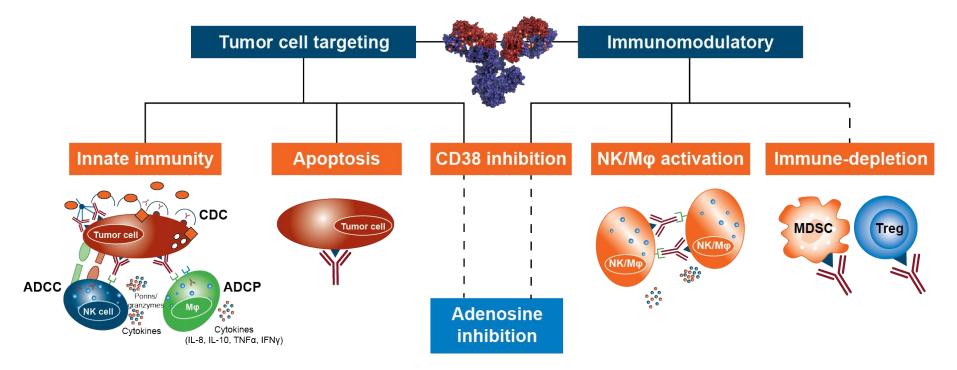
	Poma	alidomide	Dara	tumumab	Carf	ilzomib	Sel	inexor	Vene	etoclax
N	PV	d vs Vd 559	DV	/d vs Vd 498	Kd	vs Vd 929		vs Vd vs 207		D vs VD vs 97
Efficacy	Тх	Control	Тх	Control	Тх	Control	Тх	Control	Тх	Control
Median f/p, mos		16		26.9	3	37.5	ŕ	16.5	1	8.7
ORR	82%	50%	85%	63%	76%	63%	76%	62%	82%	68%
CR	16%	4%	30%	10%	13%	6%	17%	11%	13%	1%
Median PFS, mos	11	7	16.7	7.1	18.7	9.4	13.9	9.46	22.4	11.5
Median OS, mos	NR	NR	NR	NR	47.6	40.0	NR	25	NR	25

Richardson et al. Lancet Oncol 2019; 20: 781–94; Palumbo A et al. *N Engl J Med.* 2016;375:754; Spencer A et al. *Haematologica.* 2018; Sep 20 [epub ahead of print]; Dimopoulos MA et al. *Lancet Oncol.* 2016;17:27; Dimopoulos et al ASCO 2020; Kumar S. EHA 2019.

New Guidelines are Necessary for the Current RRMM Population

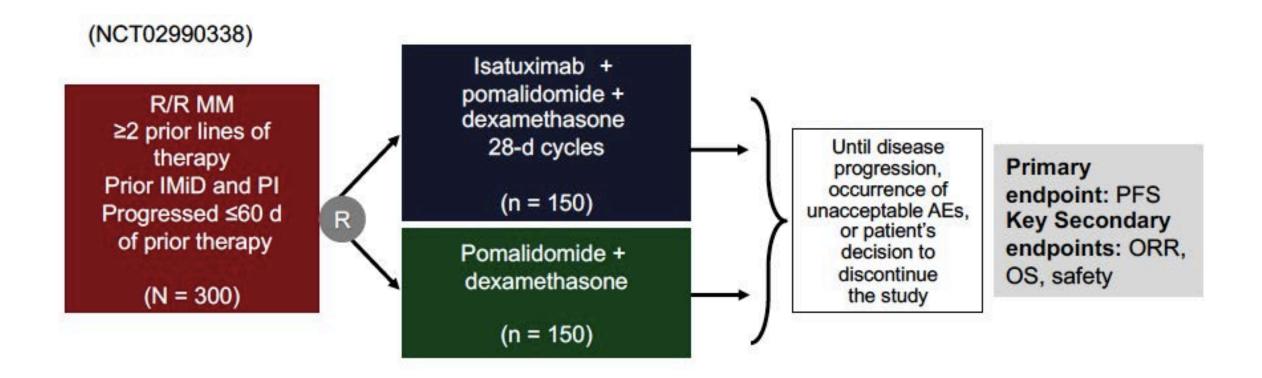
Therapeutic Advances in Multiple Myeloma

- 11 new Agents in last 15 years:
- Proteasome inhibitors: bortezomib, Carfilzomib, Ixazomib
- Immunomodulator: thalidomide, lenalidomide, pomalidomide
- HDAC inhibitor: Panobinostat
- Monoclonal antibodies: elotuzumab, daratumumab
- Exportin inhibitor: Selinexor
- Alkylating Agent: bendamustine
- Existing older agents: melphalan, dexamethasone. cyclophosphamide, anthracycline, etoposide
- Near approval: Ide-cel, Cilta-cel, melflufen, venetoclax, BCMA-bispecifics
- 2-, 3-, 4-drug combinations effective in relapsed/refractory myeloma

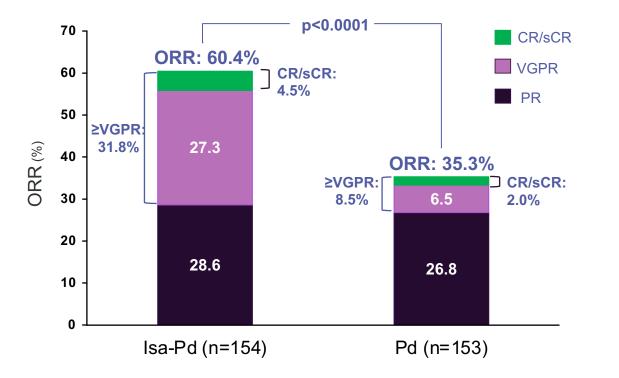

Isatuximab, Belantamab mafodotin

Courtesy of Nikhil C Munshi, MD

12


Isatuximab: Mechanism of Action

• Active in combination studies in R/R MM


- Effective combinations
 - ICARIA-MM Isa Pd
 - IKEMA Isa Kd

ICARIA-MM: Isa-Pd Versus Pd in RRMM

Attal, M et al. Lancet <u>394</u>: 859, 2019.

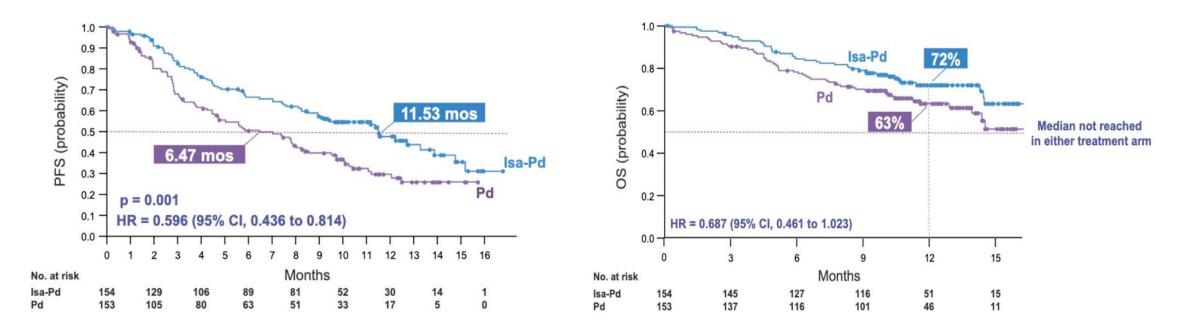
ICARIA-MM: Significant Improvement in Response with Isa-Pd Compared to Pd

Median time to 1st response: Isa-Pd 35 days vs Pd 58 days

True CR rate in Isa-Pd underestimated because of isatuximab interference with M-protein measurement

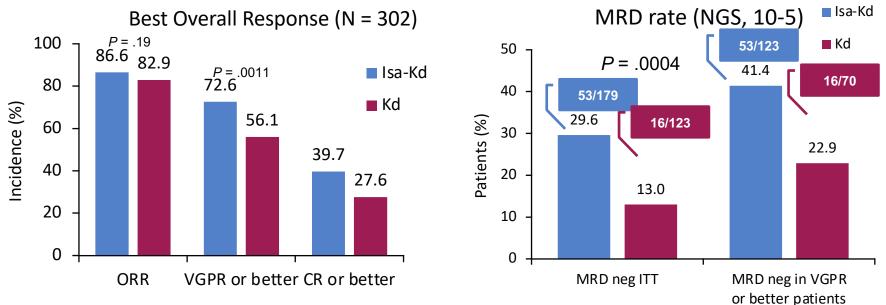
	Isa-Pd (n=154)	Pd (n=153)
nCR, %	15.6	3.3

MRD negativity at 10⁻⁵ (ITT): 5.2% for Isa-Pd vs 0% for Pd


Addition of Isa to Pd resulted in significant improvement in overall and depth of response

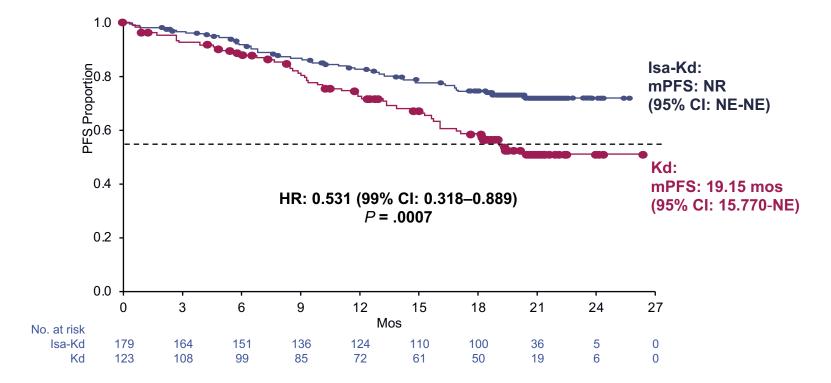
Data cut-off 11 Oct, 2018

CR complete response; d, dexamethasone; IRC, Independent Review Committee; Isa, isatuximab; ITT, intent-to-treat; MRD, minimal residual disease; nCR, near complete response; ORR, overall response rate; P, pomalidomide; PR, partial response; sCR, stringent complete response; VGPR, very good partial response *All criteria for a complete response were met except that immunofixation remained positive [Richardson PG, et al. N Engl J Med. 2003;348(26):2609-2617]


ICARIA-MM: Significant Improvement in Survival with Isa-Pd Compared to Pd

- 307 patients, after a median number of 3 lines, 95% len-refractory
- Significant and clinically meaningful improvement in PFS; consistent across subgroups

Cl, confidence interval; HR, hazard ratio; IRC, independent review committee; OS, overall survival; PFS, progression-free survival; Isa-Pd, isatuximab-pomalidomide-dexamethasone; Pd, pomalidomide-dexamethasone. Richardson P et al. Lancet. 2019;394(10214):2096-2107.


IKEMA: Carfilzomib/Dexamethasone ± Isatuximab: Response

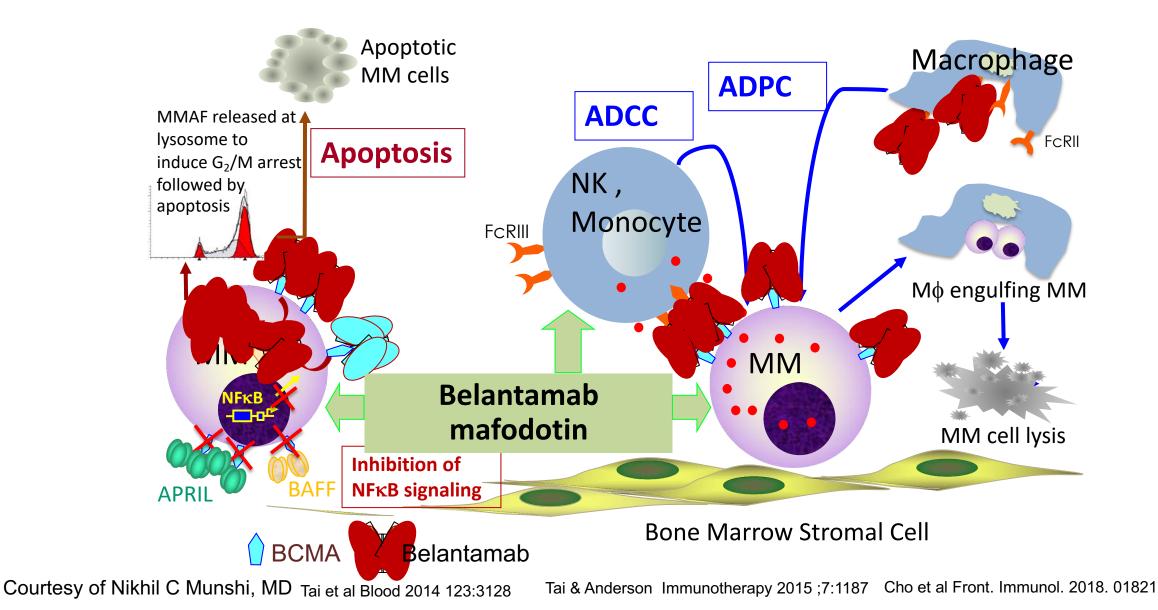
Deeper responses were seen with Isa-Kd consistent with striking PFS improvement

MRD negativity rate with Isa-Kd was approximately 30% in ITT population

IKEMA: Isa-Kd Showed Improvement in PFS vs Kd : 47% Reduction of Risk

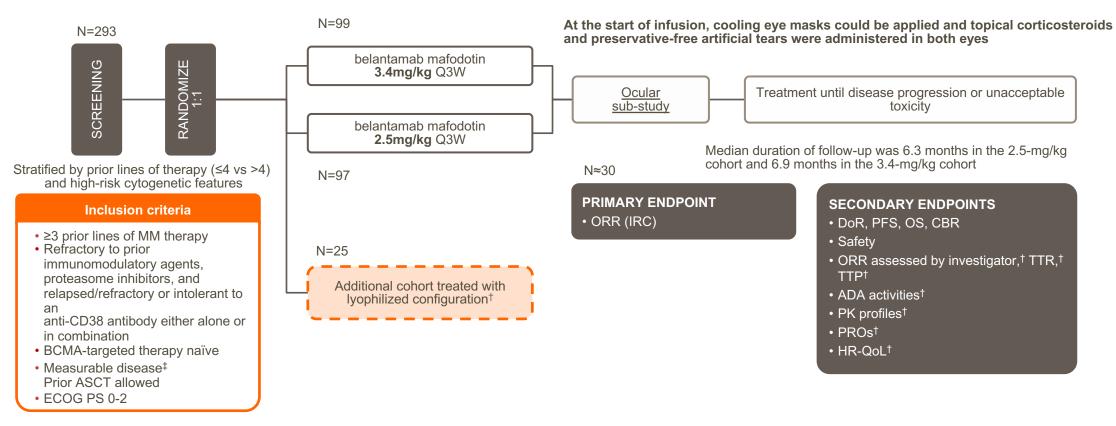


Moreau. EHA 2020. Abstr LB2603.


IKEMA: PFS Subgroup Analyses

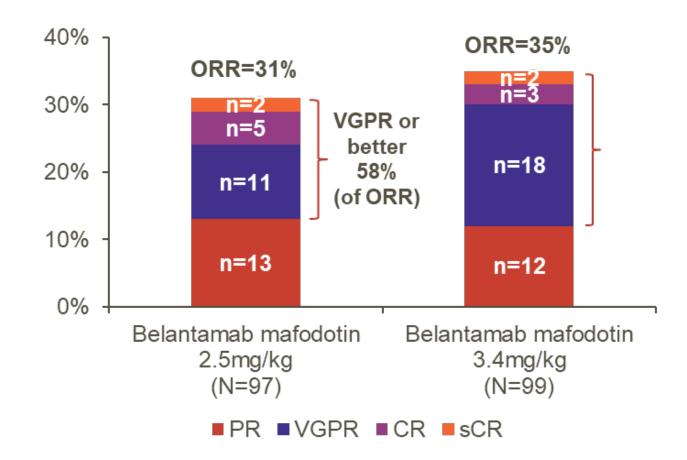
		lsa-Kd	Kd	
	Subgroup	No. of events	s/total no.	Hazard Ratio (95%
All patients		48/179	55/123	0.531 (0.359-0.78
A	< 65 yrs	25/88	26/66	0.640 (0.370-1.10
Age	≥ 65 yrs	23/91	29/57	0.429 (0.248-0.74
Baseline eGFR	≥ 60 mL/min/1.73 m²	32/122	38/93	0.625 (0.391-1.00
(MDRD)	< 60 mL/min/1.73 m ²	10/43	10/18	0.273 (0.113-0.66
Number of prior lines	1	18/80	19/55	0.589 (0.309-1.12
of therapy	> 1	30/99	36/68	0.479 (0.294-0.77
Prior PI treatment*	Yes	22/81	20/47	0.565 (0.308-1.03
	No	26/98	35/76	0.493 (0.296-0.8
Prior IMiD treatment*	Yes	22/81	29/62	0.498 (0.286-0.80
Prior IMID treatment	No	26/98	26/61	0.542 (0.314-0.93
Refractory to Len	Yes	23/57	25/42	0.598 (0.339-1.05
terraciony to Lerr	No	5/15	9/17	0.448 (0.149-1.34
ligh-risk	Yes	17/42	15/31	0.724 (0.361-1.45
cytogenetic status	No	27/114	35/77	0.440 (0.266-0.72
SS staging	1	20/89	24/71	0.592 (0.327-1.07
at study entry	11	17/63	16/31	0.375 (0.188-0.74
at olday only	III	11/26	14/20	0.650 (0.295-1.43
				Isa-Kd better Kd better

B-Cell Maturation Antigen (BCMA) A Promising Target in Multiple Myeloma


Belantamab mafodotin - a BCMA Auristatin Immunotoxin Induces Strong Anti-MM Effects via multiple MOAs

A Phase II, Open-label, Randomized, 2-dose study in Relapsed Refractory Multiple Myeloma

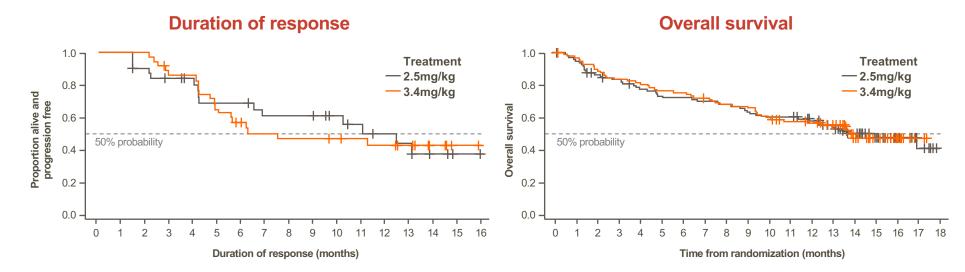
Study design DREAMM-2


Refractory to an immunomodulatory drug, proteasome inhibitor, and refractory/intolerant to an anti-CD38 monoclonal antibody

1. Lonial S et al. *Lancet Oncol.* 2020;21(2):207-221. **2**. Lonial S et al. Poster presented at: American Society of Clinical Oncology Annual Meeting;. Poster 436.

Belantamab mafodotin: Overall response

DREAMM-2 13-month follow-up



1. Lonial S et al. Lancet Oncol. 2020;21(2):207-221. 2. Lonial S et al. Poster presented at: American Society of Clinical Oncology Annual Meeting; Poster 436.

Belantamab mafodotin: Survival Outcome in heavily pretreated MM Patients

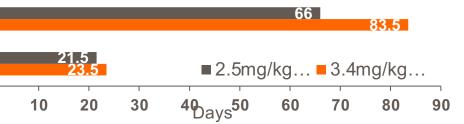
DREAMM-2 13-month follow-up

	belantamab mafodotin 2.5mg/kg (n=97)	belantamab mafodotin 3.4mg/kg (n=99)
mOS	14.9 months (95% CI: 9.9-NR)	14.0 months (95% CI: 10-NR)
mDOR	11.0 months (95% CI: 4.2-NR)	6.2 months (95% CI: 4.8-NR)
mPFS	2.8 months (95% CI: 1.6-3.6)	3.9 months (95% CI: 2.0-5.8)

1. Lonial S et al. Lancet Oncol. 2020;21(2):207-221. 2. Lonial S et al. Poster presented at: American Society of Clinical Oncology Annual Meeting;. Poster 436.


Belantamab mafodotin: Common adverse events Keratopathy and Thrombocytopenia

DREAMM-2


	Any grade, n (%)		Grades ≥ 3, n (%)		
Adverse events*	2.5mg/kg n=95	3.4mg/kg n=99	2.5mg/kg n=95	3.4mg/kg n=99	
Any event	93 (98)	99 (100)	80 (84)	83 (84)	
Keratopathy (MECs) - changes to the superficial corneal epithelium	68 (72)	76 (77)	44 (46)	42 (42)	
Thrombocytopenia	36 (38)	56 (57)	21 (22)	32 (32)	
Anemia	NR	NR	20 (21)	27 (27)	
Neutropenia	NR	NR	10 (11)	17 (17)	
Pneumonia	NR	NR	6 (6)	11 (11)	

1. Lonial S et al. Lancet Oncol. 2020;21(2):207-221. 2. Lonial S et al. Poster presented at: American Society of Clinical Oncology Annual Meeting;. Poster 436.

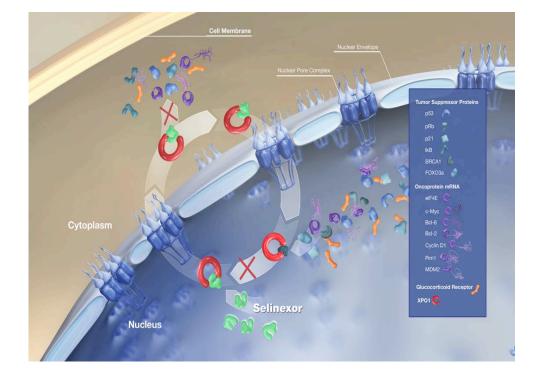
Keratopathy with Belantamab mafodotin Dose modifications

Median time of duration, days

First events resolved in ⁻82% in 2.5mg/kg group AND 100% in 3.4mg/kg group

1. Lonial S et al. Lancet Oncol. 2020;21(2):207-221. 2. Lonial S et al. Poster presented at: American Society of Clinical Oncology Annual Meeting;. Poster 436.

0

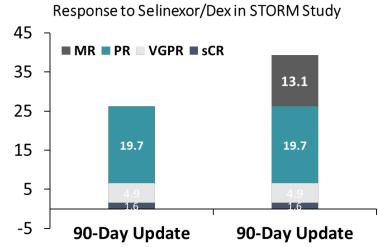

Future Options: DREAMM-6 Belantamab/Bor/dex

- All patients had evaluable responses
- ORR: 78% (95% CI: 52.4-93.6)^[1]
 - Higher than previously reported ORRs for Vd in patients with ≥ 1 prior therapy (50% to 63%)^[2-4]
- Median duration of response not yet reached

Best Confirmed Response, n (%)	Belantamab mafodotin + Vd (N = 18)
Clinical benefit rate*	15 (83)
ORR	14 (78)
VGPR	9 (50)
PR	5 (28)
MR	1 (6)
SD	3 (17)

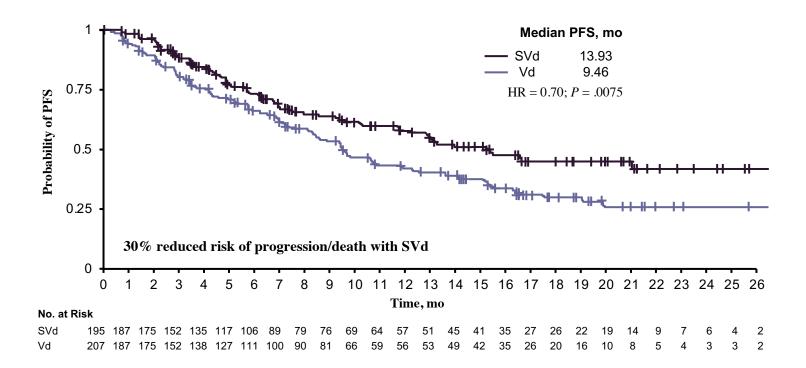
*sCR + CR + VGPR + PR + MR.

Selinexor approved for use in pts with RRMM who have received four prior therapies (including pts refractory to two proteasome inhibitors or IMiDs and an anti-CD38 antibody)

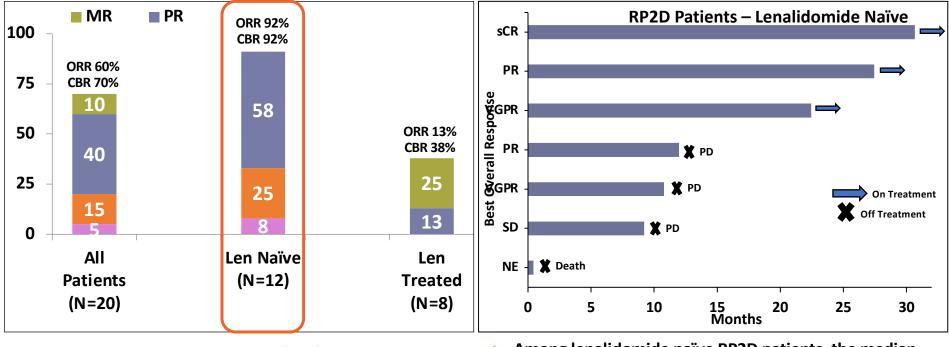

Selinexor is an oral XPO-1 inhibitor that induces nuclear retention and activation of TSPs and the GR in the presence of steroids, and suppresses oncoprotein expression¹

> ¹Schmidt et al., Leukemia, 2013, ²Tai et al., Leukemia, 2013, ³Argueta et al., Oncotarget, 2018 ⁴Turner et al, 2017 unpublished

Targeting Nuclear Transport Selinexor


- Inhibits XPO1
 - XPO1 is the major nuclear export protein
 - XPO1 is overexpressed in MM
- Results of STORM Study
 - N = 122; median 7 prior treatments
 - 86% refractory to bortezomib, carfilzomib, lenalidomide, pomalidomide, and daratumumab
 - mDOR = 4.4 months
 - Associated with hematologic and GI toxicity
 - Aggressive supportive care needed

• Chari A, et al. N Engl J Med. 2019;381:727-738.



FDA-Approved July 2019 In combination with Dex in adults with RRMM after \geq 4 prior therapies (\geq 2 PIs, \geq 2 immunomodulatory drugs, and an anti-CD38 antibody)

Early and Sustained PFS Benefit (Assessed by IRC)

Selinexor-Lenalidomide-Dexamethasone: Efficacy

• The median time to response (≥PR) was 1 month

 Among lenalidomide naïve RP2D patients, the median time on treatment was 12 months

Responses were adjudicated according to the International Myeloma Working Group criteria, *four patients not evaluable for response withdrew consent prior to disease follow-up. Two unconfirmed PRs, ORR=Overall Response Rate (sCR+VGPR+PR), CBR=Clinical Benefit Rate (ORR+MR), sCR=Stringent Complete Response, VGPR=Very Good Partial Response, PR=Partial Response, MR=Minimal Response. Responses as of August 1, 2019 based on interim unaudited data.

Conclusions

- Select from daratumumab-, elotuzumab-, and isatuximab-based triplets
- No solid data to support a specific sequence or preference for one agent over another
- Data from high-risk subgroups show that they benefit, but not as much as standard risk
- Possibility that proteasome inhibitor-based triplets may have a greater benefit in high-risk

Conclusions

- Exciting novel approaches in pipeline, including both small molecules and new immunotherapies (S. Jagannath)
 - SINE, BCL2, MCL1 inhibitors
 - BiTEs, bispecific antibodies
- Immunotherapies such as CAR T-cells are showing impressive activity in the relapsed and refractory setting
 - Challenges remain, including toxicity, manufacturing time, and cost
- Due to earlier use of novel agents, relapsed and especially refractory disease is becoming more challenging to manage
- Better use of our current drugs in new combinations can have efficacy even if these agents were given previously
- Novel(er) drugs available on clinical trials offer the possibility of new mechanisms of action and may overcome prior drug resistance

Case 1: Young patient with relapsed/refractory disease – 4th line

61-year-old lady with active legal practice presented with new onset back pain and anemia

- Serum M spike: 4 g/dL; Serum IgG 5460 mg/dL
- SFLC: kappa: 184 mg/L; lambda: 1.86 mg/L; kappa:lambda ratio: 98.9
- Bone marrow Bx: 70% plasma cells
- FISH: amp 1q;
- Conventional cytogenetics: no abnormality

- Hb 11.6 g/dL (dropped from 13.2 g/dL two months prior)
- Sr. Calcium 9.6 mg/dL
- Sr Creatinine: 0.9 mg/dL
- Sr. albumin: 4 g/dL; LFTs: WNL
- B2M: 3.84 ug/dL
- Bone survey: L3 and T8 compression; fracture of Left 3rd rib
- Diagnosed with IgG lambda light chain multiple myeloma, with amp 1q

Case 1 (Continued): Young patient with relapsed/refractory disease – 4th line

61-year-old lady with IgG λ multiple myeloma, with amp 1q

- VRd x 5 with minimal response (45% reduction) → changed to CyBorD with PR
- Autologous cell stem cell transplant \rightarrow
- Relapsed 4 months post ASCT
- - Carfilzomib/cyclophosphamide/dexamethasone.
 - Response 3 months
- Daratumumab/pomalidomide/dexamethasone
 - Response 4 months
- Multiple lines of therapy with initial response with quick subsequent relapse
- What would be the next line of therapy?

Case 2: Young patient with 1st relapse

- 62-year-old male in good physical condition. Presented for evaluation of recent fatigue and shortness of breath. Labs are as follows
 - M-spike, IgG kappa: 6.1 g/dL
 - Beta-2-microglobulin: 9.8 mg/dL
 - Bone marrow aspirate: 90% plasma cells
 - FISH: t(11;14)
 - Hemoglobin: 7.8 g/dL
 - Calcium: 9.0 mg/dL
 - Creatinine 1.5 mg/dL
 - Albumin: 2.6 g/dL
 - Skeletal survey: Diffuse lytic lesions
- VRd \rightarrow ASCT \rightarrow lenalidomide maintenance x 24 mo. \rightarrow PD
- What are his options at first relapse?

Case 3: Older patient with relapsed disease – 3rd line

- 75-year-old male with CAD 2 vessel disease, Mild diabetes and hypertension.
- Presented with rib pain, fatigue, and anemia

Hemoglobin	8.1 g/dL	M-protein	4.9 (IgA-kappa)
Calcium	9.5 mg/dL	Kappa/Lambda/FLC	91/3.3/32.4
Creatinine	1.5 mg/dL	Urine M-protein	27 mg/24 hours
PET-CT	Vertebral Compression fractures; rib lesions	Albumin	3.2 g/dL
BM biopsy	80% (kappa-restricted)	Beta-2-microglobulin	8.1 mg/dL
Cytogenetics	Normal	LDH	125
FISH	t(4;14), del(17p),del 13	ECOG PS	1

- Initial therapy with RVD-lite x 8 cycles → PR but neuropathy Gr2; R maintenance x 1.5 years → relapsed while on R 10 mg qd
- Dara-PomDex \rightarrow PR, remission for 14 months, but now PD
- During the past 3 years close follow-up for his cardiac function; EF ~50%
- What are the treatment options for this patient?