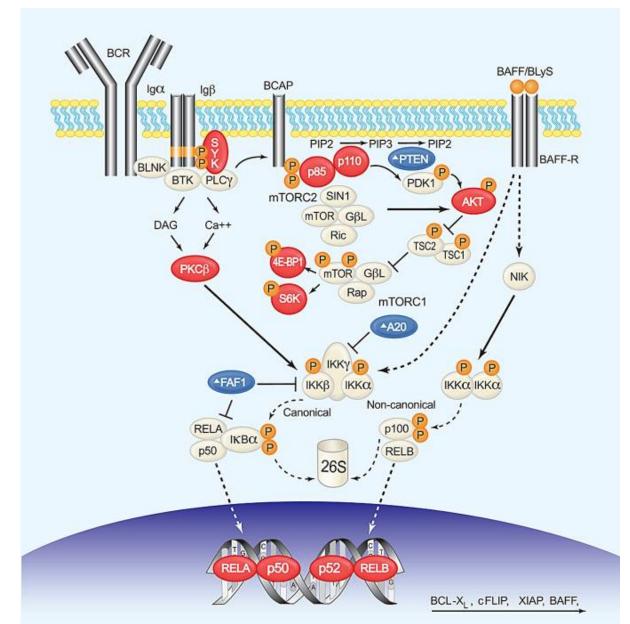
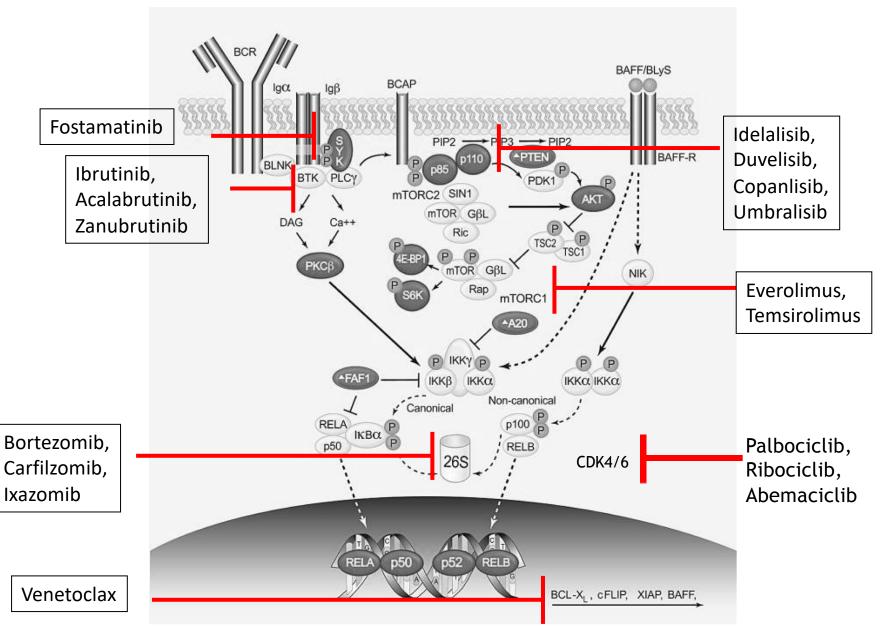

Mantle Cell Lymphoma: Currently Available and Emerging Novel Approaches

ASH 2020 Satellite Symposium

Michael E. Williams, MD, ScM


Byrd S. Leavell Professor of Medicine Physician Lead, Cancer Service Line Associate Director, Clinical Affairs University of Virginia Cancer Center Charlottesville, Virginia

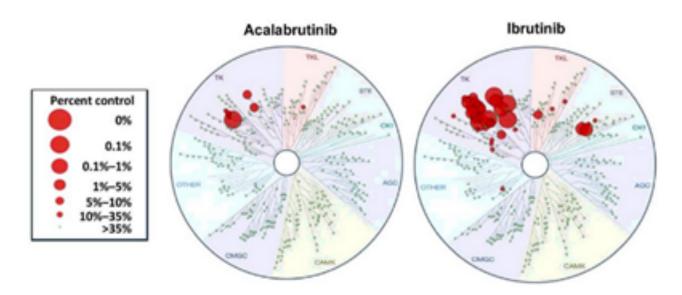
MCL Challenges and Opportunities


- Biologic and clinical heterogeneity
 - Many subtypes → complex Rx decisions
- Better treatment endpoints
 - Emerging role for MRD-directed therapy
- Optimize use of targeted agents
 - Chemotherapy-free regimens
- Post-induction SCT vs Maintenance therapy
 - MRD-driven approaches
- Cure

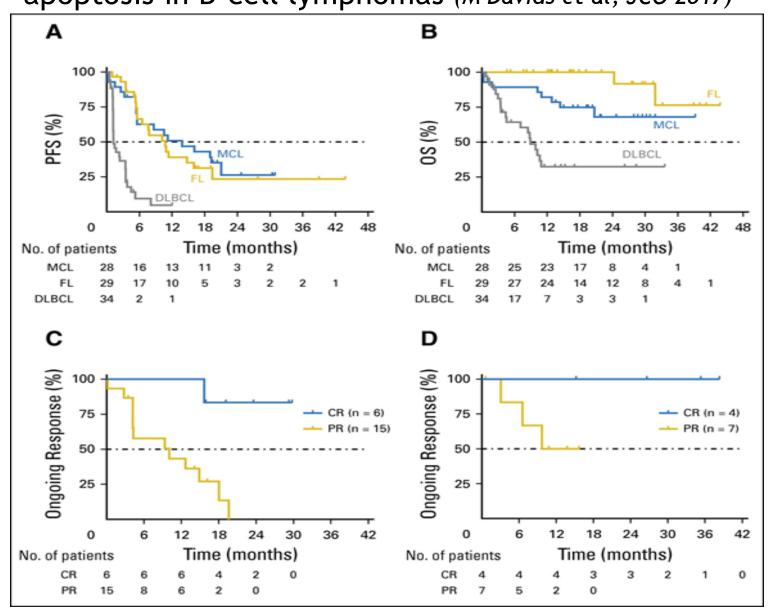
The B-cell receptor pathway is activated in most B-cell malignancies

OverexpressedDown-regulated

The B-cell receptor pathway: Selected Inhibitors



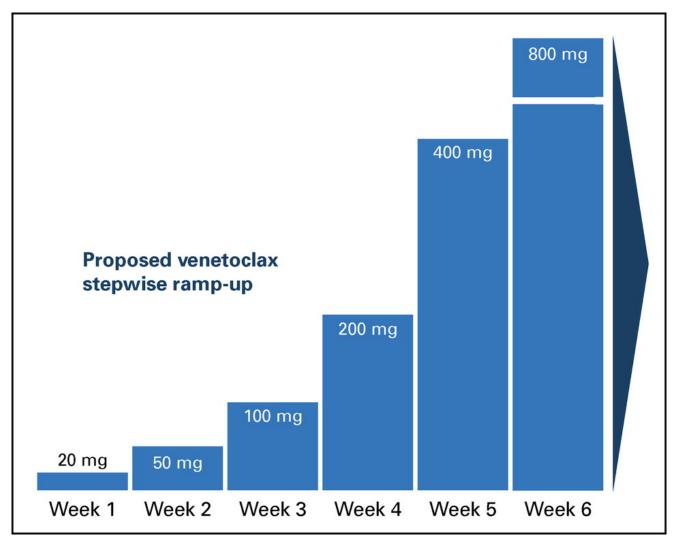
Targeted, non-Chemotherapy Approaches for Relapsed/Refractory MCL


Agent	N	Response Rate	mDOR (mo.)
Bortezomib	155	33%	9.2 m
Temsirolimus	54	22%	7.1 m
Lenalidomide	134	28%	16.6 m
Lenalidomide- rituximab	52	57%	18.9 m
Idelalisib	40	40%	4 m
Ibrutinib	111	68%	17.5 m
Acalabrutinib	124	81%	72% at 12 m
Zanubrutinib	86	84%	16.7 m
Venetoclax	28	75 %	12 m
Ibrutinib-Venetoclax	24	71% (all CR)	80% at 12 m

Overview of FDA-approved BTKi for MCL: Ibrutinib, Acalabrutinib and Zanubrutinib

- Similar overall response rates, ~70-80%
 - Better when used earlier (2nd or 3rd line)
- Improved toxicity profile for acala and zanu
 - More specific BTKi inhibition (Zanu similar to Acala)
 - Less Afib, bruising/bleeding, arthralgia
 - Prefer over ibrutinib if concurrent anticoagulation and/or anti-platelet therapy

Venetoclax: A potent oral inhibitor of bcl-2 that induces apoptosis in B-cell lymphomas (M Davids et al, JCO 2017)


Venetoclax after BTKi failure in MCL

- Single-agent Ven (n=20; median 2-5 prior Rx, ASCT 30%)
 - ORR 53%, CR 18%
 - Median PFS 3.2 m, DOR 8.1 m
 - Median OS 9.4 months
- Venetoclax plus anti-CD20 mAb
 - Increases ORR
 - May "rescue" otherwise suboptimal responses to single-agent Veneto

Dose Ramp-Up to Mitigate the Risk of Tumor Lysis Syndrome When Initiating Venetoclax

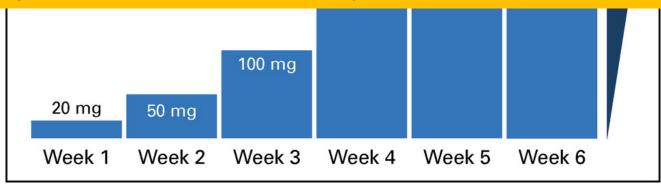
in Patients With Mantle Cell Lymphoma

MS Davids, G von Keudell, CA Portell, JB Cohen, et al J Clin Oncol 2018; 36: 3525-7

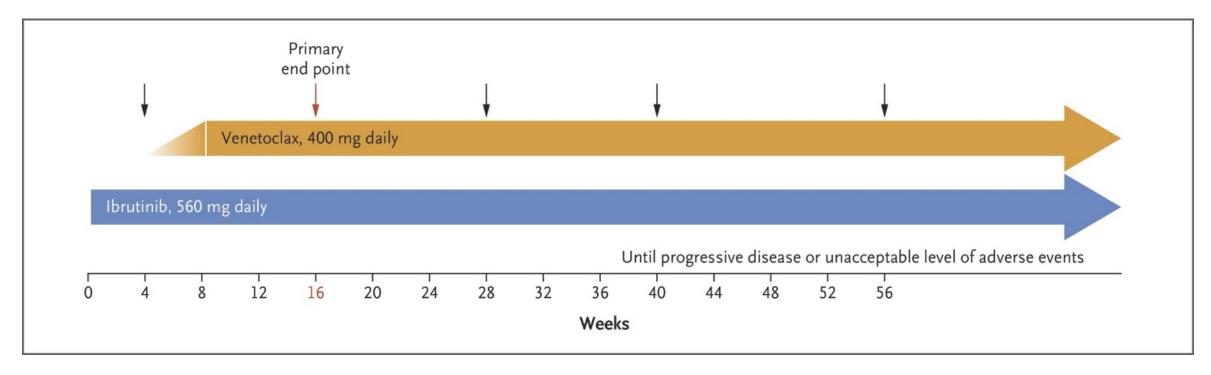
Dose Ramp-Up to Mitigate the Risk of Tumor Lysis Syndrome When Initiating Venetoclax

in Patients With Mantle Cell Lymphoma

MS Davids, G von Keudell, CA Portell, JB Cohen, et al J Clin Oncol 2018; 36: 3525-7


800 mg

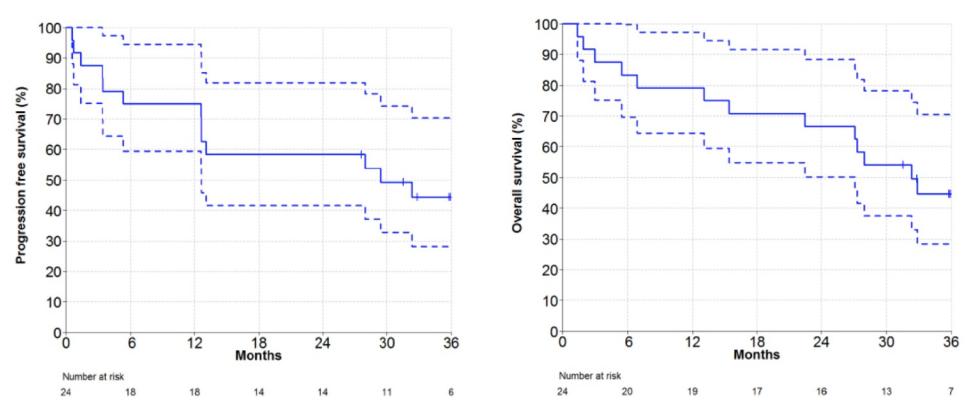
If moderate- to high-risk for TLS, admit for venetoclax initiation:


- High tumor burden, leukemic phase, renal insufficiency
- IV fluids, allopurinol/rasburicase, q 6-8 hr lab monitoring

When initiating in-hospital, may consider a more rapid dose rampup depending upon patient and Rx tolerance:

- e.g., 20-20-50-50- then 100 mg/d x 7 \rightarrow 200 x7 \rightarrow 400 mg/d

Ibrutinib plus venetoclax in MCL: Study Schema


24 MCL patients; 23 relapsed or refractory Most had very poor-risk features, including TP53 del or mutation

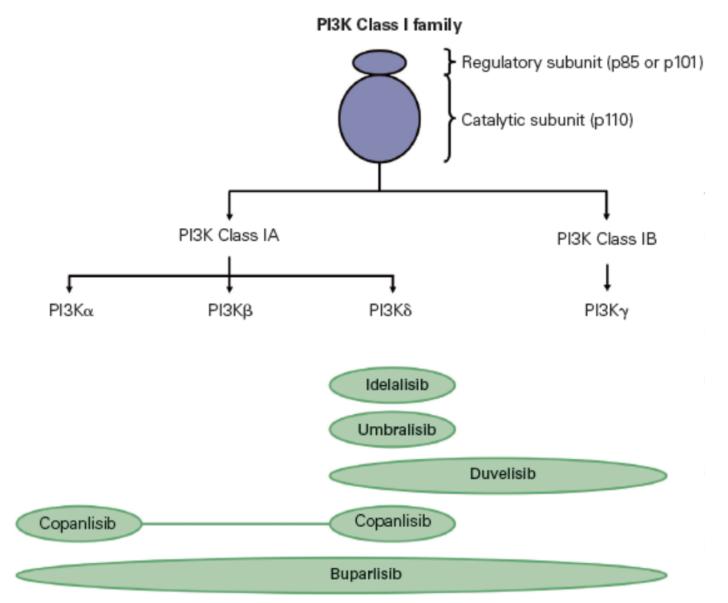
Update: Ibrutinib/Venetoclax in R/R MCL, median 37.5 m f/u (ASH 2019, #756)

Figure 1. Progression free survival (Dashed lines represent 95% confidence interval)

Figure 2. Overall survival (Dashed lines represent 95% confidence interval)

- MRD-negative by flow in 67%, and by ASO-PCR in 38%
- 5 MRD-negative patients discontinued Rx at median of 18.5 mo
- →4 remained MRD-neg after 6, 13, 17 and 18 months off Rx

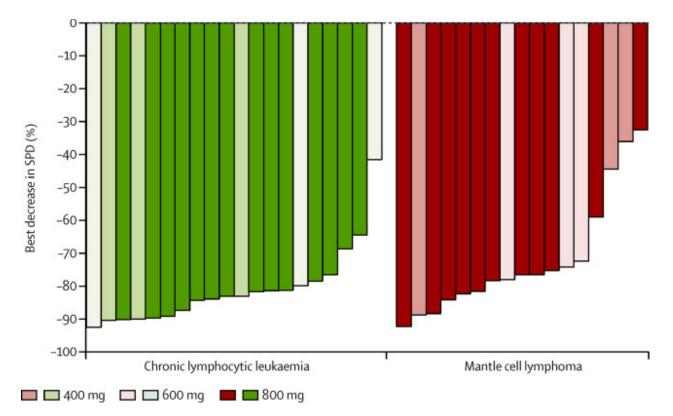
Ibrutinib Combined With Venetoclax in R/R Mantle Cell Lymphoma (SYMPATICO)


- Initiated May 2017
- Phase 3 multinational, randomized, double-blind study to compare the efficacy and safety of the combination of ibrutinib/venetoclax vs. ibrutinib/placebo
- R/R MCL, 1-5 prior treatments
- Study revised to include front-line MCL therapy

Ibrutinib plus venetoclax in R/R MCL: **SYMPATICO** safety run-in period

- Schema: IBR 560 mg/d plus stepped-up Ven (or placebo) 20 mg → 400 mg/d over 5 weeks
 - At 24 mo, Ven/placebo discontinued, IBR continued
- N = 21, TLS low-risk in 6, high-risk in 15
- Lab TLS in 1 high-risk patient (leukemic MCL)
 - No clinical TLS observed
- DLTs in 3 patients
- Recommendation from safety run-in analysis:

Continue concurrent initiation of IBR + Ven in low- and high-risk patients


PI3Ki (Phosphatidylinositol 3-kinase inhibitors)

Umbralisib in combination with ibrutinib in patients with relapsed or refractory

CLL or Mantle Cell Lymphoma: a multicentre phase 1–1b study

M. Davids et al, Lancet Haematol 2019

MCL, n = 21 ORR 67% (CR = 4/21) Median PFS 10.5 mo Median OS 29.7 mo

Recommended phase 2 dose: Umbra 800 mg po qd plus Ibrutinib at standard dose (420 mg or 560 mg qd) Umbralisib is investigational, not yet FDA approved

Sustained remission with Lenalidomide plus Rituximab as **initial therapy** of MCL

J Ruan et al, NEJM 2015; **JCO 2018**

- n=38, median f/u 64 mo. (21-78 mo.)
- ORR 92%, CR 64% (by PET +/- BM; med. 11 mo. to reach CR)
- 3 yr PFS 80%, OS 90%
- 5 yr estimated PFS 64%, OS 77%
 - 8/10 patients in CR @ 3 yr are MRD negative
 - No difference in ORR for Low- vs High-risk MIPI
 - No correlation with Ki-67 score

Toxicity:

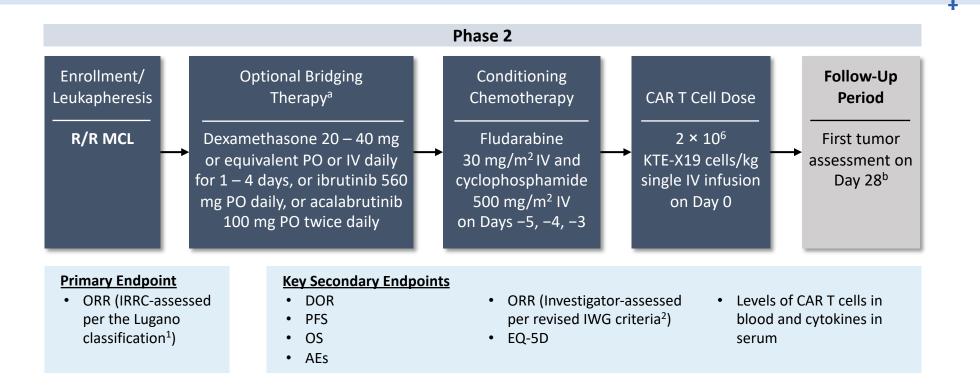
- Grade 3-4 neutropenia 50%, thrombocytopenia 13%
- 1 pancreas cancer, 6 non-inv. skin cancer
- Grade 3 infection in 3 pts
- Relapsing pts respond to second line Rx

KTE-X19, an Anti-CD19 Chimeric Antigen Receptor T Cell Therapy, in Patients With Relapsed/Refractory Mantle Cell Lymphoma: Results of the Phase 2 ZUMA-2 Study

[Presented at ASH 2019, published NEJM April 2020]

Michael Wang,¹ Javier Munoz,² Andre Goy,³ Frederick L. Locke,⁴ Caron A. Jacobson,⁵ Brian T. Hill,⁶ John M. Timmerman,⁷ Houston Holmes,⁸ Samantha Jaglowski,⁹ Ian W. Flinn,¹⁰ Peter A. McSweeney,¹¹ David B. Miklos,¹² John M. Pagel,¹³ Marie José Kersten,¹⁴ Noel Milpied,¹⁵ Henry Fung,¹⁶ Max S. Topp,¹⁷ Roch Houot,¹⁸ Amer Beitinjaneh,¹⁹ Weimin Peng,²⁰ Lianqing Zheng,²⁰ John M. Rossi,²⁰ Rajul K. Jain,²⁰ Arati V. Rao,²⁰ and Patrick M. Reagan²¹

¹The University of Texas MD Anderson Cancer Center, Houston, TX; ²Banner MD Anderson Cancer Center, Gilbert, AZ; ³John Theurer Cancer Center, Hackensack, NJ; Moffitt Cancer Center, Tampa, FL; ⁵Dana-Farber Cancer Institute, Boston, MA; ⁶Cleveland Clinic Foundation, Cleveland, OH; ⁷David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁸Texas Oncology, Dallas, TX; ⁹The Ohio State University Comprehensive Cancer Center, Columbus, OH; ¹⁰Sarah Cannon Research Institute, Nashville, TN; ¹¹Colorado Blood Cancer Institute, Denver, CO; ¹²Stanford University School of Medicine, Stanford, CA; ¹³Swedish Cancer Institute, Seattle, WA; ¹⁴Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; ¹⁵CHU Bordeaux, Service D'hematologie et Therapie Cellulaire, F-33000 Bordeaux, France; ¹⁶Fox Chase Cancer Center, Philadelphia, PA; ¹⁷Universitatsklinikum Wurzburg, Wurzburg, Germany; ¹⁸CHU Rennes, Univ Rennes, Inserm & EFS, Rennes, France; ¹⁹University of Miami, Miami, FL, USA; ²⁰Kite, a Gilead Company, Santa Monica, CA; ²¹University of Rochester Medical Center, Rochester, NY


KTE-X19, an Anti-CD19 Chimeric Antigen Receptor T Cell Therapy, in Patients With Relapsed/Refractory Mantle Cell Lymphoma: Results of the Phase 2 ZUMA-2 Study

Michael Wang,¹ Javier Munoz,² Andre Goy,³ Frederick L. Locke,⁴ Caron A. Jacobson,⁵ Brian T. Hill,⁶ John M. Timmerman,⁷ Houston Holmes,⁸ Samantha Jaglowski,⁹ Ian W. Flinn,¹⁰ Peter A. McSweeney,¹¹ David B. Miklos,¹² John M. Pagel,¹³ Marie José Kersten,¹⁴ Noel Milpied,¹⁵ Henry Fung,¹⁶ Max S. Topp,¹⁷ Roch Houot,¹⁸ Amer Beitinjaneh,¹⁹ Weimin Peng,²⁰ Lianqing Zheng,²⁰ John M. Rossi,²⁰ Rajul K. Jain,²⁰ Arati V. Rao,²⁰ and Patrick M. Reagan²¹

The Ular Cen Cle Comproint Control Con

EFS, Rennes, France; ¹⁹University of Miami, Miami, FL, USA; ²⁰Kite, a Gilead Company, Santa Monica, CA; ²¹University of Rochester Medical Center, Rochester, NY

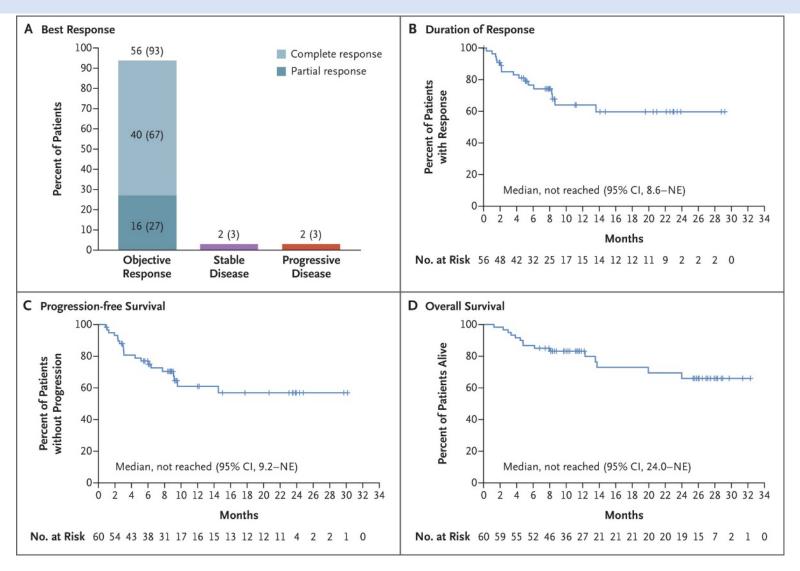
ZUMA-2 Study Design

a Administered after leukapheresis and completed ≤ 5 days before initiating conditioning chemotherapy; PET-CT was required post-bridging.
 b Bone marrow biopsy was done at screening and if positive, not done, or indeterminate, a biopsy was needed to confirm CR.
 AE, adverse event; CAR, chimeric antigen receptor, DOR, duration of response; EQ-5D, European Quality of Life-5 Dimensions; IRRC, Independent Radiology Review Committee; IWG, International Working Group;

MCL, mantle cell lymphoma; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PO, oral; R/R, relapsed/refractory.

1. Cheson BD, et al. J Clin Oncol. 2014;32:3059-3068. 2. Cheson BD, et al. J Clin Oncol. 2007;25:579-586.

Bridging Therapy


Characteristic	N = 68
Any bridging therapy, n (%)	25 (37)
Ibrutinib	14 (21)
Acalabrutinib	5 (7)
Dexamethasone	12 (18)
Methylprednisolone	2 (3)
Both BTKi and steroids, n (%)	6 (9)
Ibrutinib + steroid	4 (6)
Acalabrutinib + steroid	2 (3)

- Bridging therapy was administered for rapid
 PD at PI discretion
- No chemotherapy was allowed
- Not intended to be curative but to keep MCL stable during manufacturing
- 23/25 patients had post-bridging PET-CT scans and the majority had an increase in SPD mm² from screening

BTKi, Bruton tyrosine kinase inhibitor; MCL, mantle cell lymphoma; PET-CT, positron emission tomography-computed tomography; PD, progressive disease; PI, principal investigator; SPD, sum of product diameters.

Courtesy of Michael E Williams, MD, ScM

Results: from Wang et al, NEJM 2020; 382:1331-1342

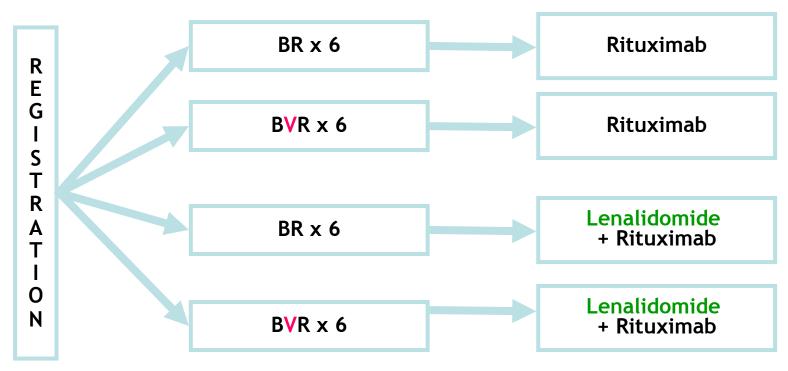
Authors' Conclusions (ASH 2019)

‡

- KTE-X19 [brexucabtagene autoleucel] demonstrates high rates of response in R/R MCL
 - 93% ORR, with a 67% CR rate
 - Of the initial 28 patients treated, 43% are in remission after ≥ 2 years of follow-up
- The safety profile is consistent with that reported in prior studies of anti-CD19 CAR T cell therapies in aggressive NHL
 - No deaths due to CRS or neurologic events; most symptoms occurred early and were generally reversible

Summary (NEJM 2020)

- KTE-X19 induced durable remissions in a majority of patients with relapsed or refractory mantle-cell lymphoma.
- The therapy led to serious and life-threatening toxic effects that were consistent with those reported with other CAR T-cell therapies.

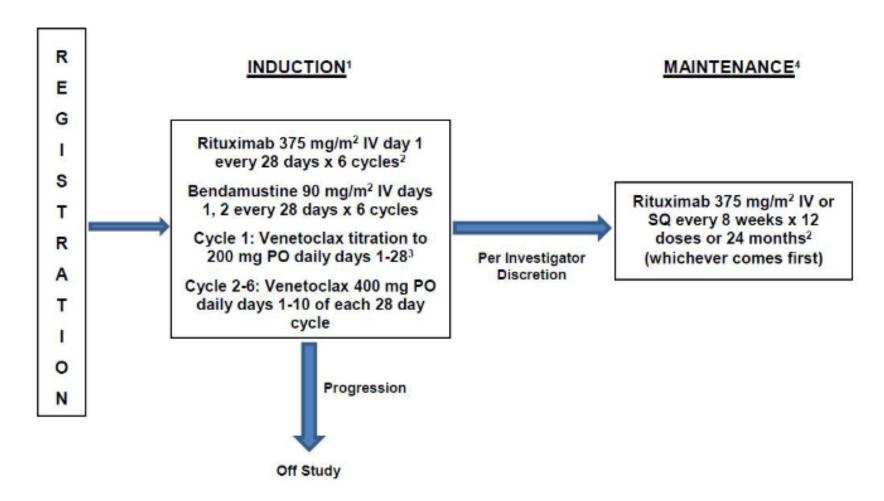

MRC-00172 01/20

Selected Ongoing Combinatorial MCL Trials

Front-line

- E4181: BR-HiDAC +/- Acalabrutinib vs BR + Acala
- PrE0405: BR + Venetoclax (not ASCT eligible)
- Ibrutinib + Veneto (SYMPATICO)
- BR vs Zanubrutinib + R (Not ASCT eligible)
- BR +/- Acalabrutinib
- Acala + Veneto + R (MDACC)
- Post-ASCT maintenance with acalabrutinib or ixazomib
- R/R MCL: PrE0404: Ibrutinib plus ixazomib
- And many more......

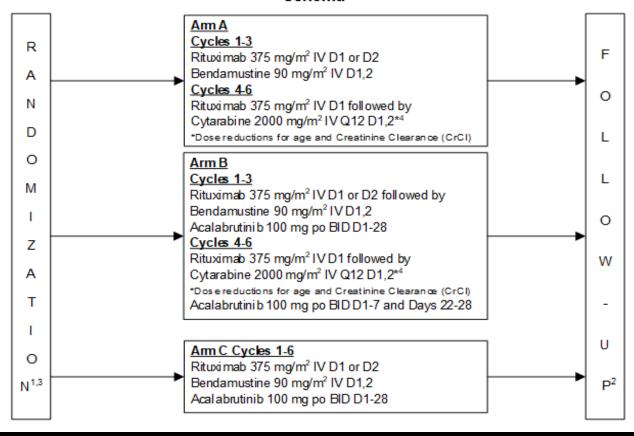
ECOG Trial: E1411 - Phase 2 Intergroup Trial: Initial Therapy of Mantle Cell Lymphoma


BR = Bendamustine, Rituximab

V= Bortezomib

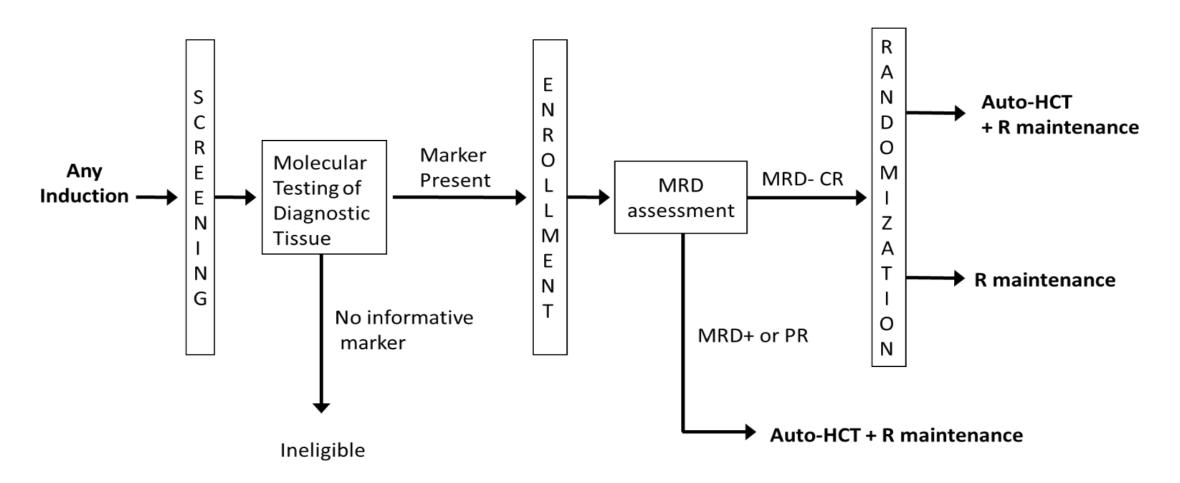
M. Smith, Study PI; accrual completed September 2016; Data analysis in progress as of Sept. 2020

PrECOG0405: Bendamustine and Rituximab Plus Venetoclax in Untreated Mantle Cell Lymphoma over 60 Years of Age: A Phase II Study



C. Portell, Study PI: Study opened 2020, Accruing

ECOG 4181: Front-line MCL (age </=70 y)


Schema

N. Wagner-Johnston, Study PI: Trial opened 2019, Accruing

ECOG 5141: ASCT in MCL

ASCT → Maintenance Rituximab vs MR alone if MRD negative following Front-line induction therapy

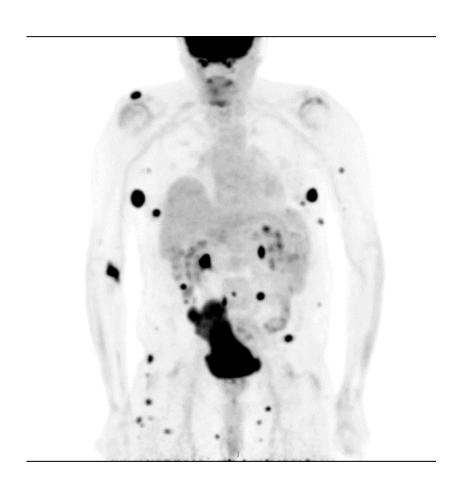
T. Fenske, Study PI: study open, accruing

MCL Case 1

- 72 yo physician referred July 2015 with fatigue, anemia and lymphocytosis 20k
 - Exam: diffuse adenopathy, splenomegaly to umbilicus
- PB flow c/w MCL, typical phenotype
- LN biopsy: MCL, mantle zone pattern, Ki67 30%
- He declined Rx with any cytotoxic agents
- Treated with rituximab weekly x 4 then maint. R → PR, cleared circulating cells
- 2 yr later, PD: orbital mass, diffuse adenopathy
 - \rightarrow Ibrutinib 560/d \rightarrow PR
 - Discontinued after 4 mo due to severe rash

MCL: Case 1 (cont'd)

- Acalabrutinib 100 mg bid → transient decrease in adenopathy x 4 mo, then progressive adenopathy and splenomegaly. No recurrence of rash.
- Venetoclax stepped up dosing to 400 mg/d
 - Nodes and spleen decreased x 3 months, then progressed
 - Lymphocyte count remained normal
- Added obinutuzumab to Veneto, with goal of achieving synergy for apoptotic response
 - Obinu 100 mg IV, given IV fluids and he pushed po fluids, returned on day 2 for 900 mg dose. On allopurinol.
 - Patient asymptomatic, clear decrease in cervical and axillary node size, decreased splenomegaly on exam
 - Laboratory TLS: LDH 2000, phos 6.8, K 4.7, creat 1.1, uric acid 8.4 → resolved with IV and po fluids


MCL: Case 1 (cont'd)

- Continued Veneto, gave dose 2 obinu 1 week later
 - No further TLS
- Completed obinu induction phase, then q2mo x 1 y
 - Achieved CR by imaging and exam at 3 months from initiation of obinu
- Obinu d/c due to pneumonia in Dec. 2019
- Continues Veneto 400 mg/d
- Oct. 2020: Remains in CR by exam and imaging

MCL: Case 2

- 70 yo man presented with base of tongue mass
 - Biopsy: MCL, pleomorphic subtype, Ki67 50%
 - Marrow +, complex karyotype including t(11;14)
- Treated with Bendamustine/Rituximab x 6 cycles
 - Achieved CR by PET/CT
- Initiated maintenance Rituximab q2mo
- After 2nd dose, developed multiple subq skin lesions, largest 5x5 cm on R arm
 - Biopsy confirmed MCL
- Initiated phase 1b/2 Clinical trial: PrECOG 0404:
 - Ibrutinib 560 mg/d plus ixazomib 4 mg po on days 1, 8 and 15 of each 28-day cycle

MCL: Case 2 (cont'd)

Multiple subcutaneous nodules, 1st relapse MCL → achieved CR on Ibrutinib plus Ixazomib by PET/CT

2nd relapse with 10x14 cm soft tissue mass L leg, 6 mo after CR on IBR/IXAZ; biopsy = pleomorphic MCL, Ki67 40%

MCL: Case 2 (cont'd)

- Treatment of isolated LLE mass:
 - Clinical trial therapy discontinued
 - Patient continues Ibrutinib 560 mg daily to mitigate risk of near-term systemic progression
 - Completed radiation therapy to the leg mass
- Evaluating for CAR-T cell therapy with brexucabtagene autoleucel