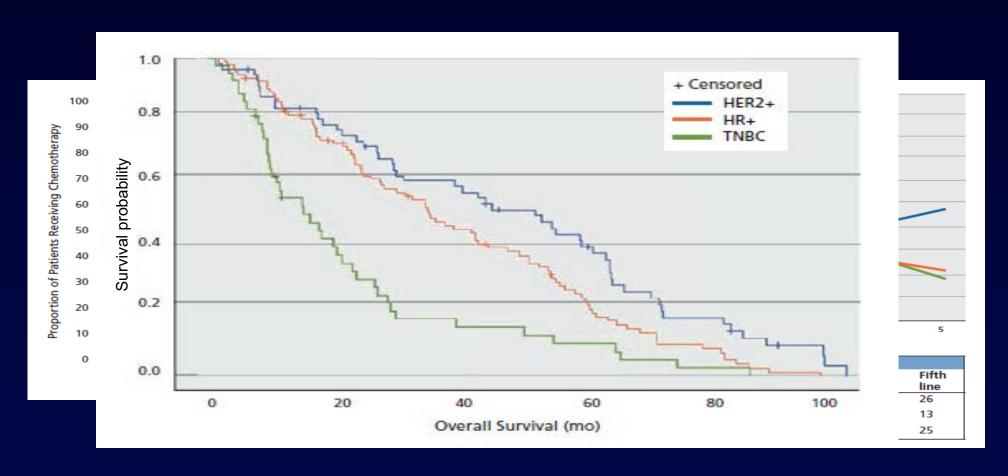

Optimizing the Management of HER2-Positive Metastatic Breast Cancer (mBC)

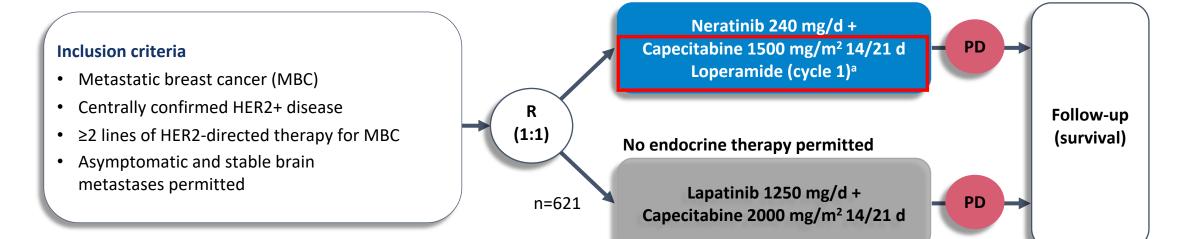
Sara A Hurvitz, MD, FACP Professor of Medicine



2020: 7 FDA APPROVED HER2-DIRECTED THERAPIES

After THP and T-DM1, then what?

Number of Lines and Median Duration of Chemotherapy by Subtype (n=199)



Multiple lines of therapy available & appropriate as long as patient has reasonable performance status & willing to receive therapy

Newly Approved Therapy: Tyrosine Kinase Inhibitor

Neratinib + Capecitabine

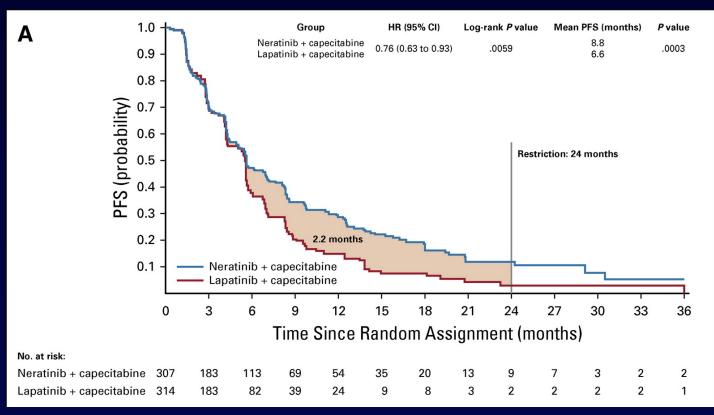
NALA Phase III trial of neratinib: study design

Stratification variables

- Number of prior HER2 therapies for MBC
- Disease location
- HR status
- Geographic location

Endpoints

- Co-primary: PFS (centrally confirmed) and OS
- Secondary: PFS (local), ORR, DoR, CBR, intervention for CNS metastases, safety, health outcomes


Loperamide 4 mg with first dose of neratinib, followed by 2 mg every 4 h for first 3 d, then loperamide 2 mg every 6-8 h until end of Cycle 1. Thereafter as needed

Saura C, et al. ASCO Annual Meeting 2019; Journal of Clinical Oncology 37, no. 15 suppl (May 20, 2019) Abs 1002

Courtesy of Sara Hurvitz, MD

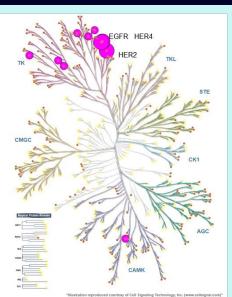
NALA Results

- PFS (by restricted means analysis at 24 mos)
 - 8.8 mos (neratinib) vs. 6.6 mos (lapatinib) p=0.003
- Cumulative incidence intervention CNS mets
 - 22.8% (neratinib) vs 29.2% (lapatinib); p=0.043
- Grade 3/4 diarrhea
 - 24% (neratinib) vs. 13% (lapatinib)

Saura C, et al. Journal of Clinical Oncology 2020:38(27):3138-3149.

CONTROL: Incidence of Treatment-Emergent Diarrhea by Worst Grade in ADJUVANT setting

	LOP (n=137)	LOP + budesonide (n=64)	LOP + colestipol (n=136)	LOP prn + colestipol (n=104)	LOP prn + neratinib dose escalation (n=60)	
	Treatment-emergent diarrhea incidence, N (%)					
No diarrhea	28 (20)	9 (14)	23 (17)	5 (5)	2 (3)	
Gr 1	33 (24)	16 (25)	38 (28)	33 (32)	24 (40)	
Gr 2	34 (25)	21 (33)	47 (35)	31 (30)	25 (42)	
Gr 3	42 (31)	18 (28)	28 (21)	35 (34)	9 (15)	
Gr 4	0	0	0	0	0	

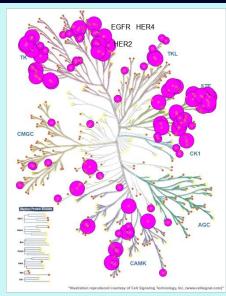

Budesonide 9 mg qd; colestipol 2g BID;

loperamide escalation: 120 mg x 7d \rightarrow 160 mg x 7 d then 240 mg

Neratinib Approval - 2.25.2020

Neratinib approved in combination with capecitabine for adult patients with advanced or metastatic HER2-positive breast cancer who have received two or more prior anti-HER2 based regimens in the metastatic setting.

Tucatinib: HER2 Selective Kinase Inhibitor



Tucatinib

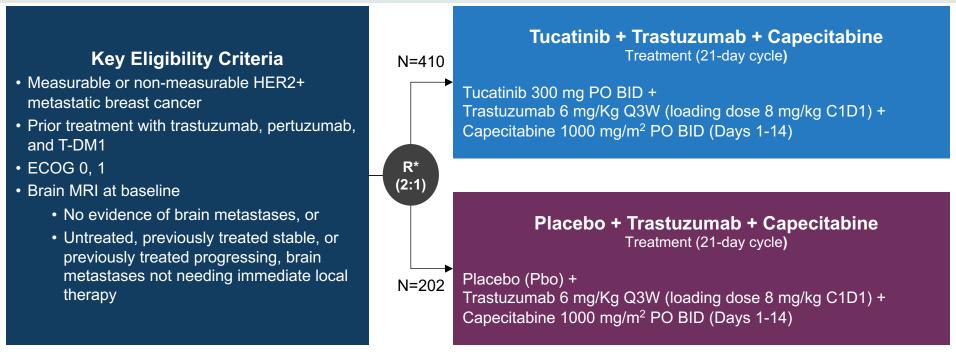
•IC50 < 1uM (large circle)

•IC50 > 10uM (small circle)

•1uM < IC50 < 10uM (medium circle)

- Neratinib
- Kinome scan data from the Library of Integrated Network-based Cellular Signatures

- Kinome analysis shows limited activity in a panel of 237 protein kinases at 1 or 10 μM
 - Activity is restricted to HER2 related kinases EGFR and HER4
- Tucatinib is selective for HER2 vs. EGFR in biochemical assays

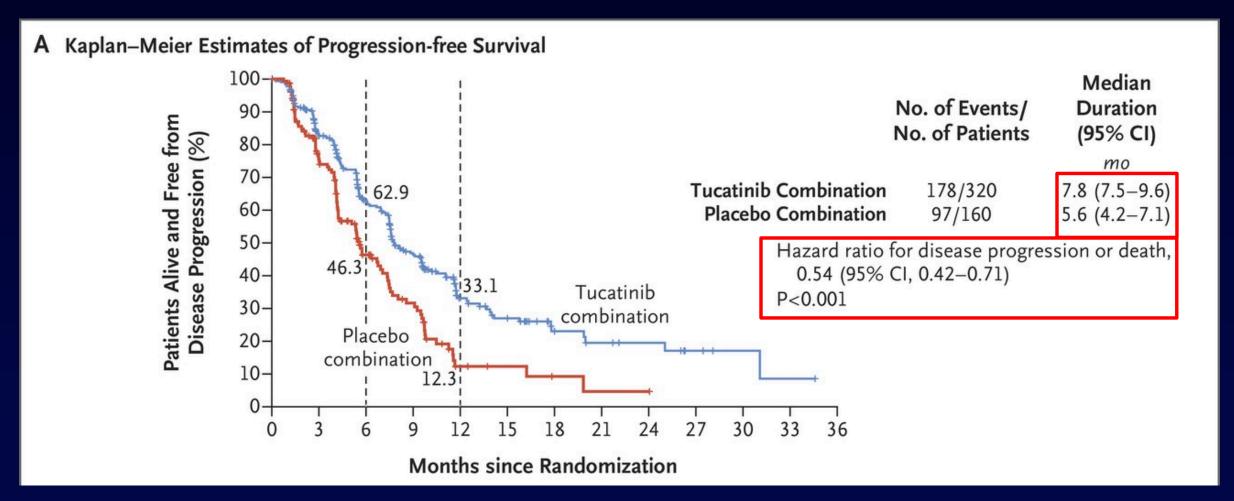

Compound	Biochemical Selectivity (Kinase Assays)			
·	HER2 IC ₅₀ (nM)	EGFR IC ₅₀ (nM)		
Tucatinib	6.9	449		
Neratinib	5.6	1.8		
Lapatinib	109	48		

 Lapatinib and neratinib inhibit EGFR and HER2 with similar potencies

- Less EGFR-associated toxicity than other HER2-targeted TKIs
- CNS penetration
- Well tolerated and active in combinations (eg, with T-DM1, capecitabine, or trastuzumab)

Acces	Cellular Selectivity, IC ₅₀ (nM)			
Agent	HER2	EGFR		
Tucatinib	8	4000		
Neratinib	7	8		
Lapatinib	49	31		

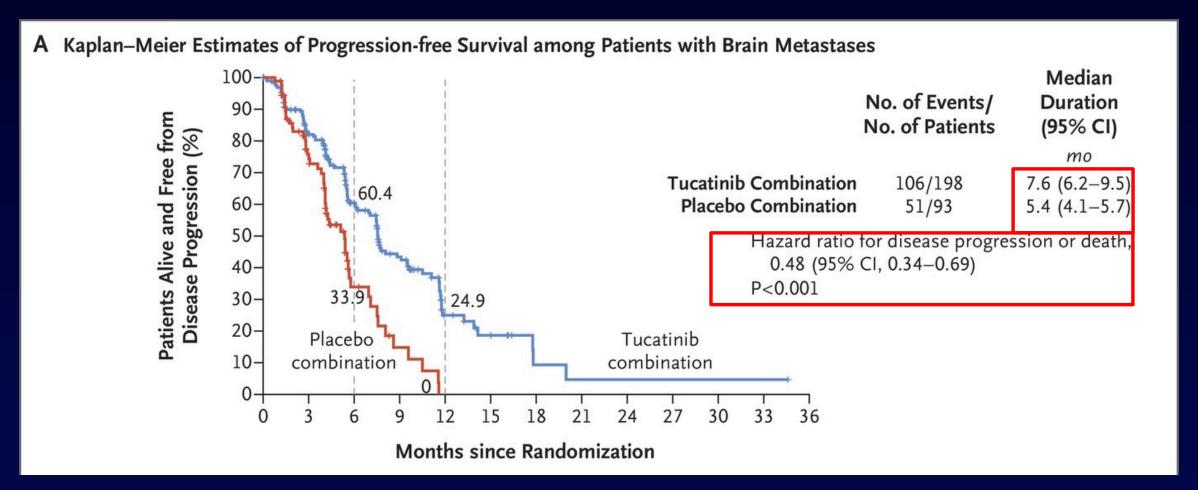
HER2CLIMB Trial Design

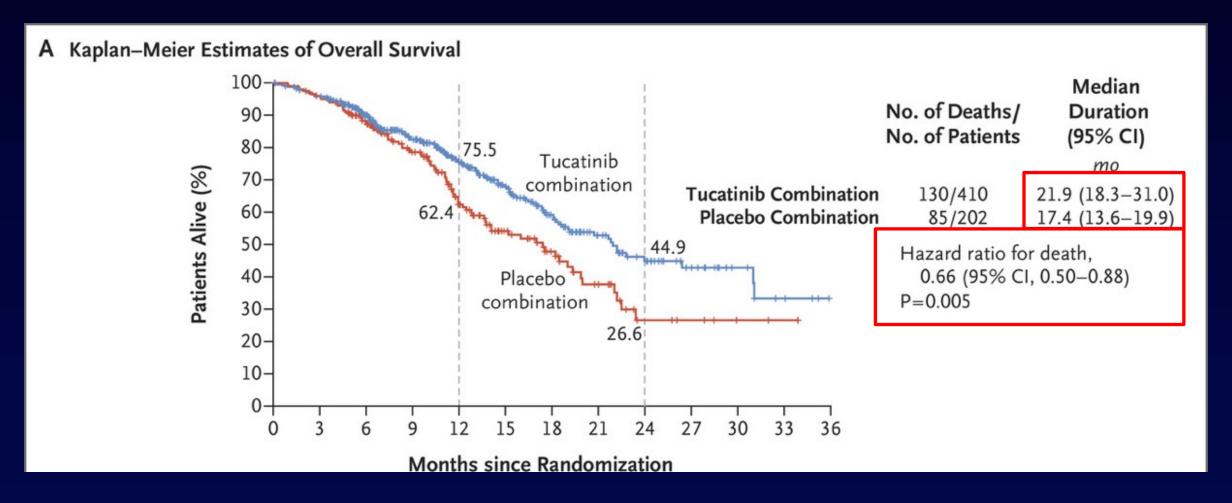

*Stratification Factors: presence of brain metastases (yes/no), ECOG status (0 or 1), and region of world (US or Canada or rest of world)

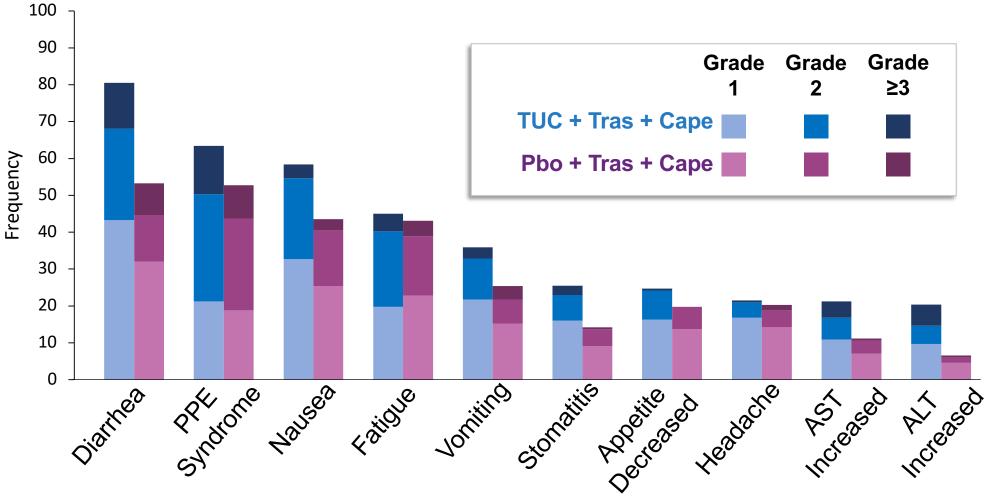
Baseline Characteristics of Note

- 60% HR positive
- 48% CNS Metastases
- 36% de novo metastatic breast cancer
- Median 3 prior lines of therapy in metastatic setting (range 1-14)

Courtesy of Sara Hurvitz, MD

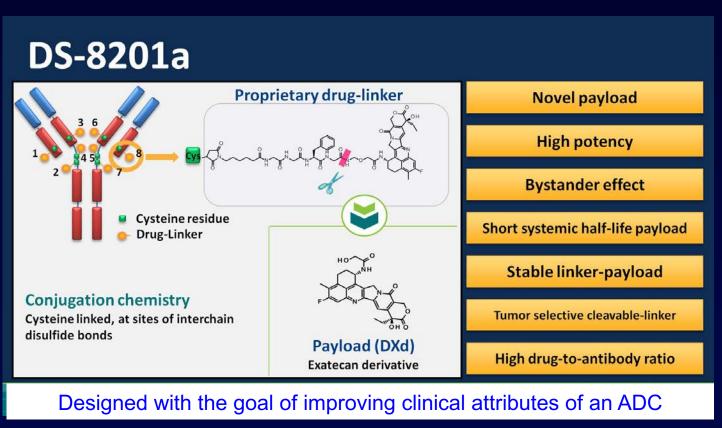

Progression-free Survival

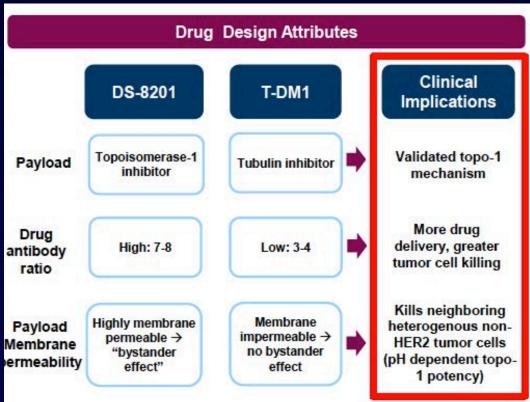



Progression-free Survival among the Patients with Brain Metastases

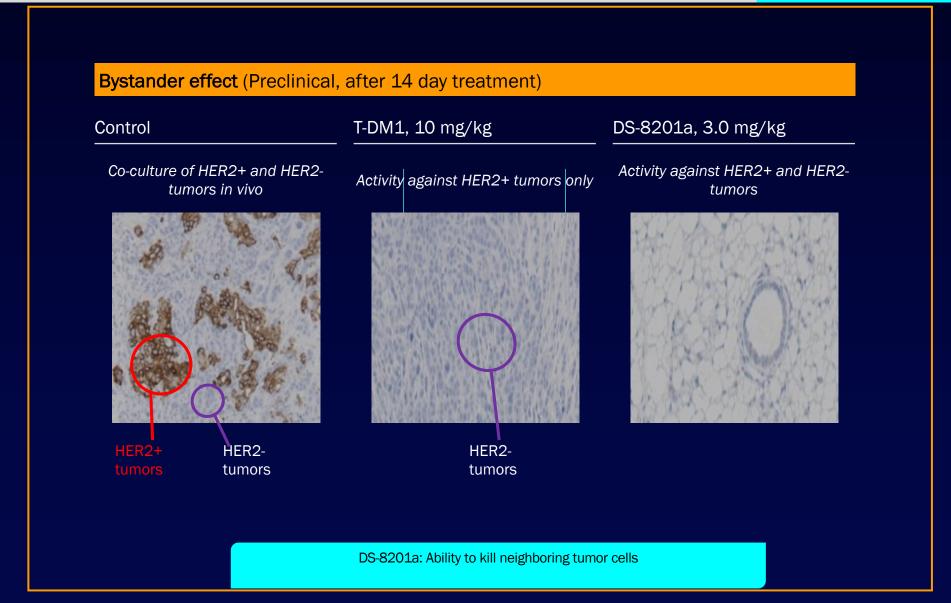
Overall Survival in the Total Population

Most Common Adverse Events (≥20% in the Tucatinib Arm)


PPE: palmar-plantar erythrodysesthesia, AST: aspartate transaminase, ALT: alanine transaminase

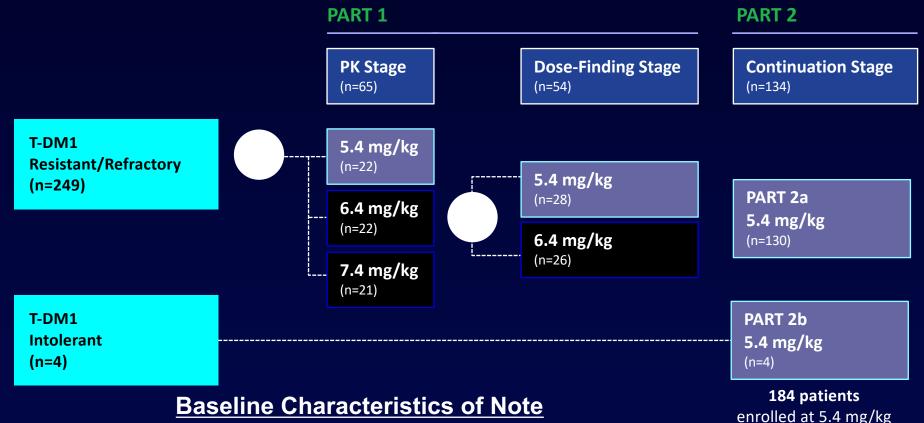

Courtesy of Sara Hurvitz, MD

Tucatinib Approval


On April 17, 2020, the FDA approved tucatinib in combination with trastuzumab/capecitabine for treatment of advanced, unresectable or metastatic HER2+ BC, including patients with brain metastases, who have received ≥ 1 previous HER2-targeted therapy in the metastatic setting

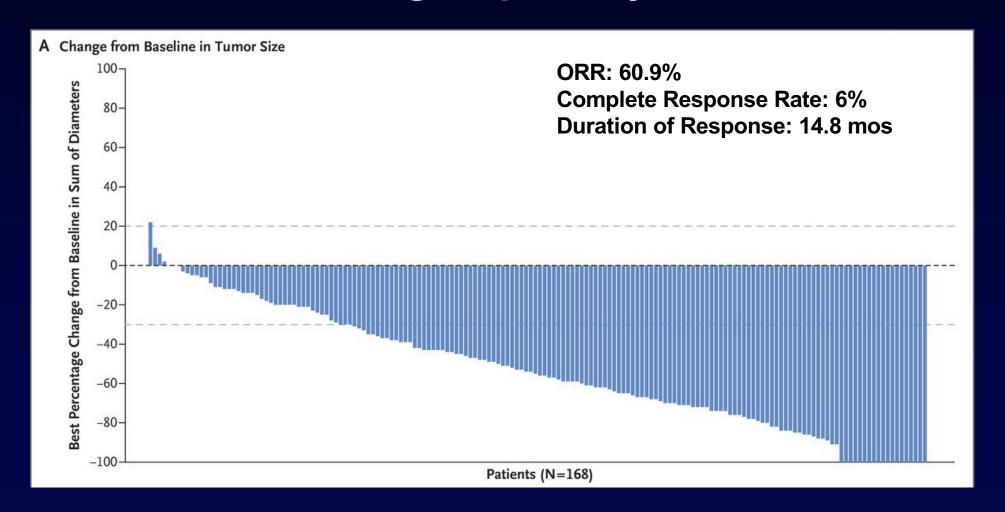
Trastuzumab Deruxtecan (DS-8201a): Structure and Mechanism of Action

Bystander effect of T-DXd

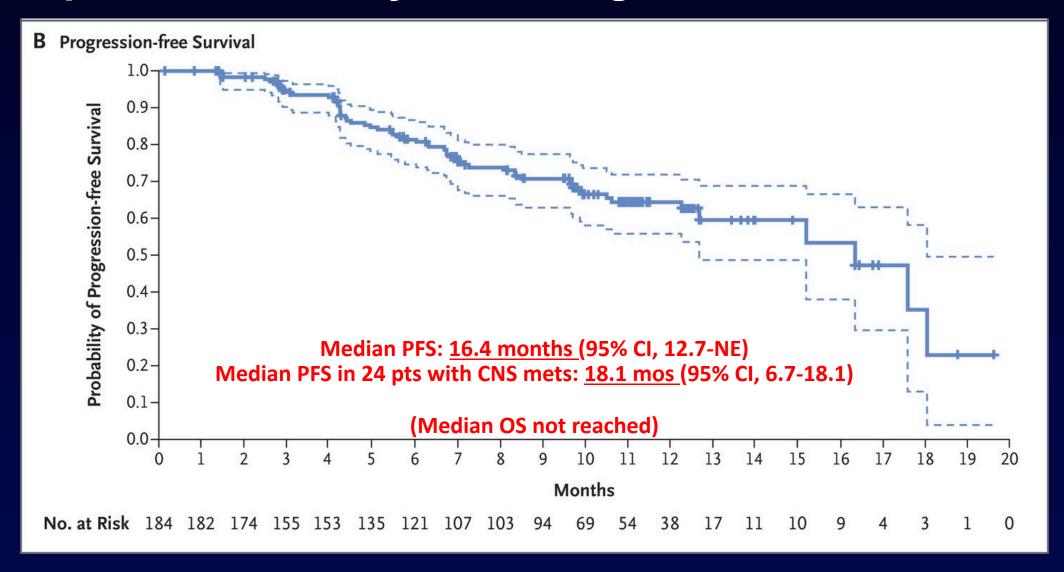


DESTINY-Breast01 Study Design:

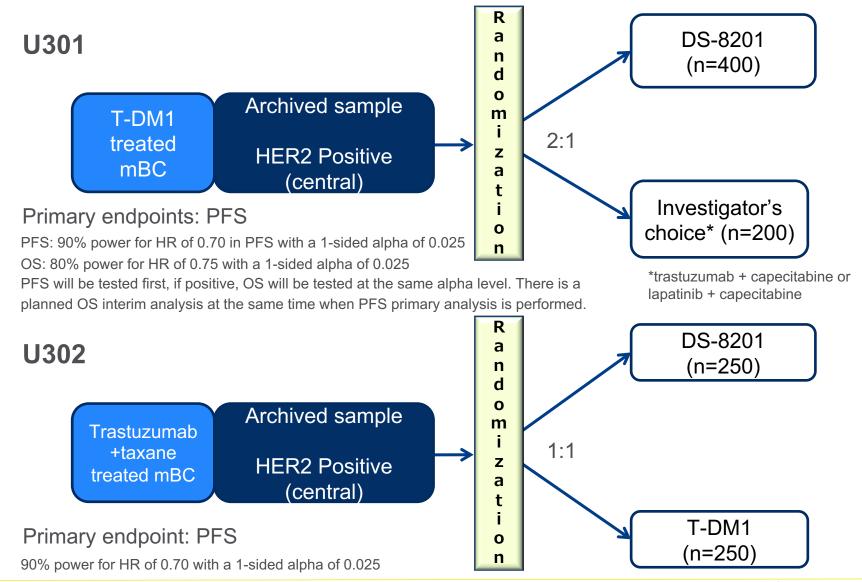
An Open-Label, Multicenter, Phase 2 Study

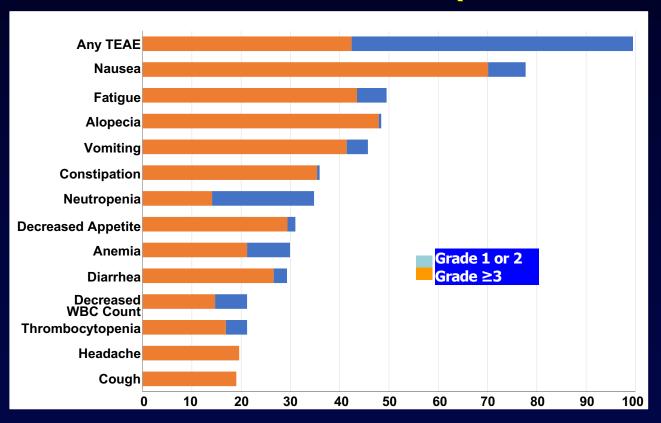

Population

- ≥18 years of age
- Unresectable and/or metastatic BC
- HER2-positive (centrally confirmed on archival tissue)
- Prior T-DM1
- Excluded patients with history of significant ILD
- Stable, treated brain metastases were allowed


- 53% HR positive
- HER2 IHC 3+ 84%; 1+/2+ (FISH+) 16%
- 92% visceral disease; 13% h/o brain metastases
- Median 6 prior lines of therapy (range 2-27)

Response to Trastuzumab Deruxtecan, According to Tumor Size and Subgroup Analyses.


Kaplan-Meier Analysis of Progression-free Survival.



DESTINY-Breast02 and -Breast03: U301 & U302

Ph III HER2+ mBC Trial Designs

TDxD: Treatment-Emergent Adverse Events (in >15% of Patients)

Interstitial Lung Disease

Median time from the first infusion of T-DXd to onset of ILD was 27.6 weeks (range, 6-76 weeks)

	Patients who received T-DXd 5.4 mg/kg (N=184)					
Preferred Term, n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade/ Total
Interstitial lung disease ^a	5 (2.7)	15 (8.2)	1 (0.5)	0	4 (2.2)	25 (13.6)

- Serious TEAEs, 22.8% (drug related, 12.5%)
- TEAEs associated with discontinuation, 15.2% (drug related, 14.7%); the majority were due to pneumonitis/ILD (8.7%)
- 9 (4.9%) TEAE-associated deaths

Pneumonitis-associated with DS-8201a

ILD in Phase 1/2 studies¹

	All-grade	Grade 5
All subjects N=665	9.9%	0.8%
Breast cancer, any dose N=510	10.6%	0.8%
Breast cancer, 5.4 mg/kg N=269	5.6%	0.4%

Conclusions

- Higher likelihood of developing ILD associated with¹:
 - ➤ Higher dose (≥6.4 mg/kg)
 - Japanese origin: Japanese patients 49% of N=665 sample
 - Number of prior therapies: Many patients in Phase1/2 have multiple prior lines of therapy
- Median 149 days (~6 months) to onset¹ allows for monitoring & intervention
- Education and guidelines implementation underway

Management of Interstitial Lung Disease in Clinical Studies of Trastuzumab Deruxtecan

Monitor

Suspected ILD

Interrupt drug

Rule out ILD if the patient exhibits:

- Radiographic changes suggesting ILD
- Acute onset of new/worsening pulmonary or related symptoms (eg, cough, dyspnea, fever)

Confirm

Assessments should include:

- High-resolution CT
- Pulmonologist consultation and, if indicated, ID consultation
- Blood culture and CBC; other blood tests as needed
- Consider bronchoscopy and BAL if indicated and feasible
- PFTs and pulse oximetry
- Arterial blood gasses, if indicated
- As soon as ILD suspected, collect 1 blood sample for PK assessment, if feasible

All ILD events should be followed until resolution and after drug discontinuation.

Manage

Hold drug for any ILD events independent of grade

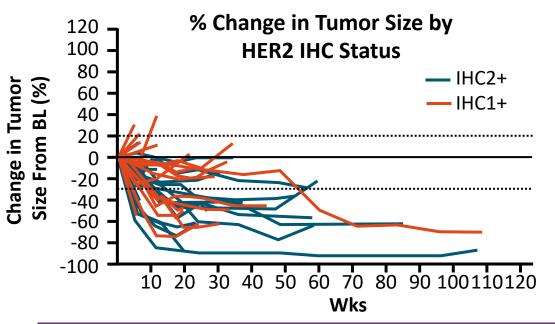
- **Grade 1:** Hold until fully resolved, then:
- If resolved ≤ 28 d from onset: maintain dose
- If resolved > 28 d after onset: reduce dose by 1 level
- If grade 1 ILD occurs beyond cycle Day 22 and has not resolved within 49 d from last infusion: discontinue drug
- Grades 2-4: permanently discontinue treatment and follow toxicity management guidelines for trastuzumab deruxtecan

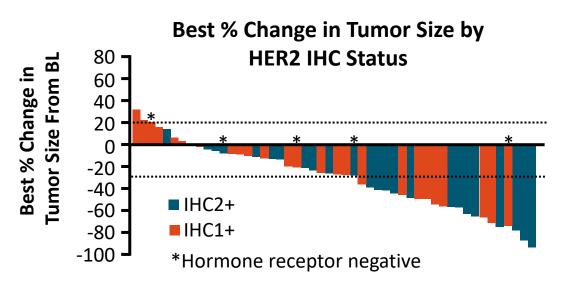
FDA Accelerated Approval 12.20.2019

fam-trastuzumab deruxtecan-nxki approved for patients with unresectable or metastatic HER2-positive breast cancer <u>who have received two</u> <u>or more prior anti-HER2-based regimens in the metastatic setting</u>.

How to Best Sequence New ≥3rd-Line Agents?

	Trastuzumab Deruxtecan	Tucatinib + Tras/Cape	Neratinib + Capecitabine
PROS	Very high ORR	OS and PFS benefit	PFS benefit
	Durable benefit Long PFS	Activity in both treated and progressive brain mets	Delays time to CNS Rx
	Activity maintained in pts with treated brain mets	Manageable toxicity profile	
CONS	ILD is serious potential risk	Absolute PFS benefit modest	Serious diarrhea is common
	No data on efficacy in progressive brain mets		Benefit modest

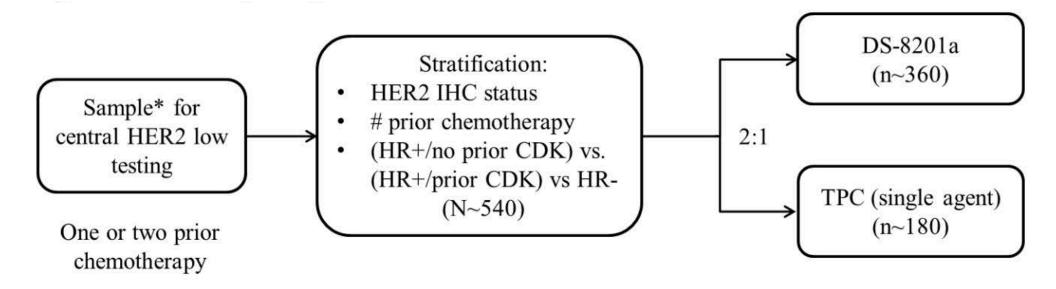

Approach to Therapy for Metastatic HER2+ Disease: Move to Personalization


Taxane + trastuzumab + pertuzumab (THP) 1st Line (if HP in early stage disease<12 mos from recurrence, skip to next line) T-DM1 (consider Tucatinib/tras/cape if substantial CNS disease) 2nd Line (if HP in early stage disease<12 mos from recurrence, skip to next line) No CNS disease or prior neratinib or capecitabine **CNS** disease or history of ILD or difficulty with oral regimen/bowel issues **Tucatinib** 3rd Line Trastuzumab deruxtecan Trastuzumab/capecitabine **Tucatinib** 4th Line Trastuzumab deruxtecan Trastuzumab/capecitabine 5th Line+ Trastuzumab+ chemotherapy or Trastuzumab+Endocrine therapy Possibly coming soon: Margetuximab+ chemotherapy (if low affinity FcR genotype)

Investigational: Use CDK4/6i, PI3K-pathway inhibitors, other ADCs, immune-based therapy

Courtesy of/adapted from Ian Krop

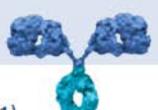
HER2-Low MBC: Use of trastuzumab deruxtecan??



Line at 20% indicates PD; line at -30% indicates PR.

Efficacy in HER2-Low MBC	Confirmed ORR, %	Median DoR, Mos	Median PFS, Mos
All (N = 51)	44.2	9.4	7.6
IHC 2+ (n = 24)	54.5	11.0	13.6
IHC 1+ (n = 27)	33.3	7.9	5.7
HR+ (n = 45)	47.4	11.0	7.9
Prior CDK4/6 inhibitor (n = 15)	33.3	NR	7.1

DESTINY-Breast04 HER2 Low (1+ or 2+ IHC)


CDK = cyclin-dependent kinase, HER2 = human epidermal growth factor receptor 2, IHC = immunohistochemistry, TPC = treatment of physician's choice.

Margetuximab: Fc-engineered to Activate Immune Responses

Trastuzumab

Fab:

- Binds HER2 with high specificity
- Disrupts signaling that drives cell proliferation and survival

Fc:

- Wild-type immunoglobulin G1 (IgG1) immune effector domains
- Binds and activates immune cells

Margetuximab^{1,2}

Fab:

- Same specificity and affinity
- Similarly disrupts signaling

- ↑ Affinity for activating FcyRIIIA (CD16A)
- ◆ Affinity for inhibitory FcyRIIB (CD32B)

Margetuximab Binding to FcyR Variants:

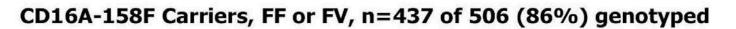
Receptor Type	Receptor	Allelic Variant	Relative Fc Binding	Affinity Fold-Change
	CD16A	158F	Lower	6.6x ↑
	CDIGA	158V	Higher	4.7x ↑
Activating	1/2 (20%) (34.5)	131R	Lower	6.1x ↓
	CD32A	131H	Higher	\leftrightarrow
Inhibitory	CD32B	232I/T	Equivalent	8.4x ↓

Nordstrom JL, et al. Breast Cancer Res. 2011;13(6):R123. 2. Stavenhagen JB, et al. Cancer Res. 2007;67(18):8882-8890.

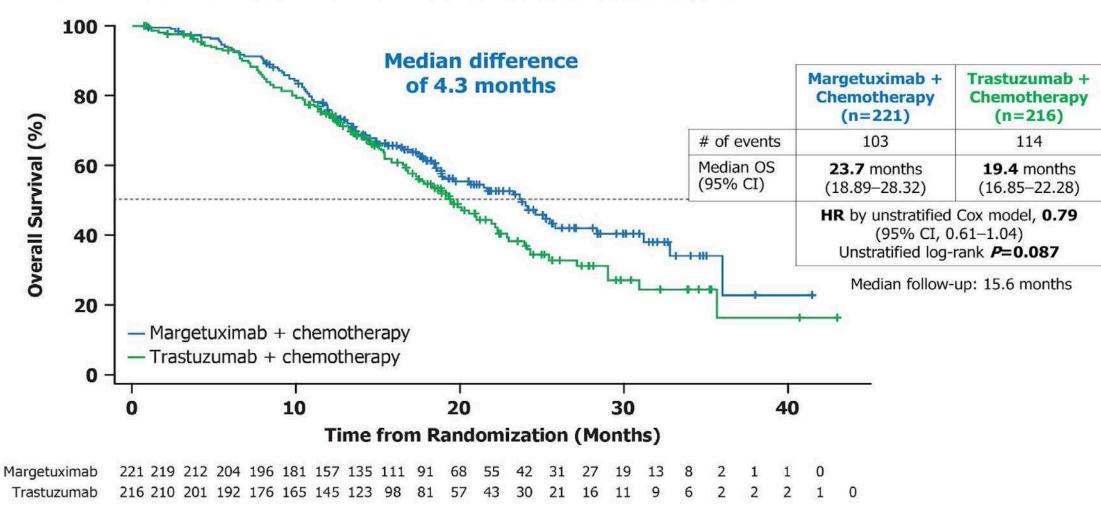
Planned* Exploratory PFS Analyses by FcyR Genotypes (CBA)

Margetuximab benefit appears to be increased in low-affinity CD16A-158F allele carriers

		Median PFS (95% CI), Months			HR by		Unstratified
		Margetuximab + Chemotherapy	Trastuzumab + Chemotherapy		Unstratified Cox Model	Unstratified 95% CI	
	All patients	5.8 (5.52-6.97)	4.9 (4.17-5.59)	H 	0.78	(0.61-0.99)	0.044
- (CD16A/F carrier (FV or FF), n=437	6.9 (5.55-8.15)	5.1 (4.14-5.59)	H O -I	0.68	(0.52-0.90)	0.005
	CD16A/FF, n=192	8.2 (5.52-10.51)	5.6 (4.50-8.31)	⊢●	0.69	(0.46-1.05)	0.080
Activating function	CD16A/FV, n=245	6.3 (5.52-7.23)	4.3 (4.01-5.59)	+←	0.71	(0.50-1.01)	0.055
	CD16A/VV, n=69	4.8 (2.46-5.65)	5.6 (2.86–11.04)	•	1.78	(0.87-3.62)	0.110
	CD32A/RR, n=122	5.7 (4.80-10.55)	5.5 (2.76-8.21)	H	0.69	(0.41-1.17)	0.166
	CD32A/RH, n=247	6.9 (5.55-8.15)	5.6 (4.17-6.67)	⊢● -I	0.74	(0.52-1.06)	0.102
	CD32A/HH, n=137	5.6 (3.29-8.28)	4.1 (2.79-5.59)	⊢	0.80	(0.49-1.30)	0.365
Inhibitory function	CD32B/II ⁺ , n=380	5.8 (5.55-7.66)	5.5 (4.17-5.65)	H	0.85	(0.64-1.13)	0.265
	CD32B/IT*, n=117	6.0 (4.14-NA)	5.5 (2.79-7.16)	H	0.63	(0.36-1.10)	0.098


0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.

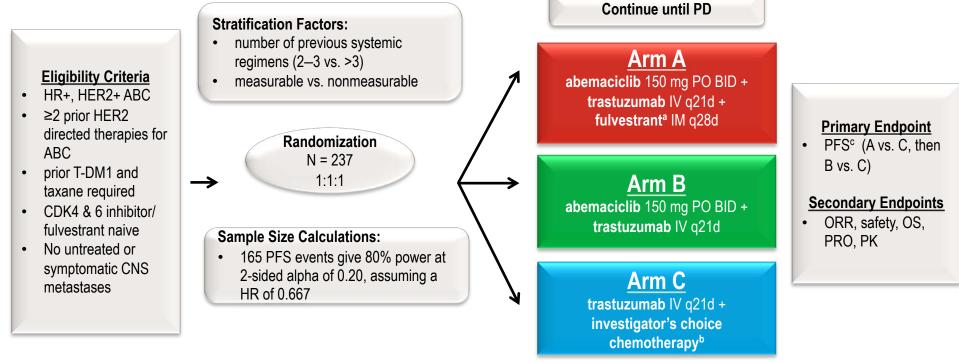
Margetuximab Better Trastuzumab Better


^{*}Non-alpha allocating, exploratory analysis.

^{*}CD32B/TT not included on forest plot because n=9 is too small (5 on margetuximab, 4 on trastuzumab) to make analysis meaningful.

Prespecified OS in CD16A-158F carriers

¹Sep-2019 Cutoff



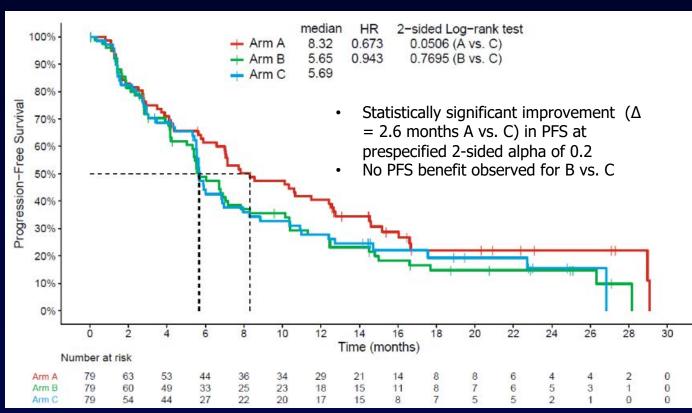
This presentation is the intellectual property of the author/presenter. Contact her at hope.nego@ucsf.edu for permission to reprint and/or distribute.

Additional HER2 Targeting ADCs in Breast Cancer

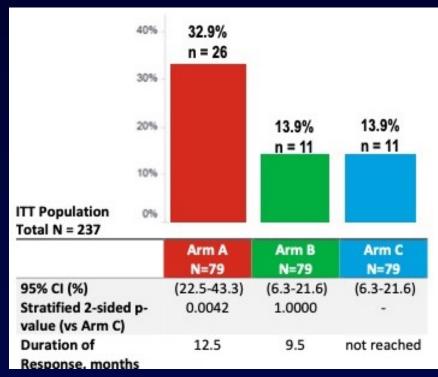
Drug Name	Clinical Trials	Setting
A166	Phase 1/2: NCT03602079	HER2+ locally advanced/metastatic solid tumors that did not respond or stopped responding to approved therapies
ALT-P7 (HM2-MMAE)	Phase 2: NCT03281824	HER2+ metastatic breast cancer patients who have progressed on previous trastuzumab-based therapy
ARX788	Phase 1: NCT02512237 Phase 1: NCT03255070	HER2+ advanced cancers
DHES0815A (anti-HER2/PBD-MA)	Phase 1: NCT03451162	HER2+ breast cancer
MEDI4276	Phase 1: NCT02576548	HER2+ advanced solid tumors
RC48	Phase 1b/2: NCT03052634 Phase 2: NCT03500380	HER2+ advanced breast cancer
SYD985 ([vic-]trastuzumab duocarmazine)	Phase 3: TULIP; NCT03262935	HER2+ unresectable locally advanced or metastatic breast cancer vs. physician's choice
XMT-1522 (TAK-522)	Phase 1: NCT02952729	HER2+ advanced breast cancer and other advanced tumors

CDK4/6 inhibitor for HER2+/HR+ breast cancer: monarcHER STUDY DESIGN

Abbreviations: ABC = advanced breast cancer, HR+ = hormone receptor-positive, HER2(+) = human epidermal growth factor receptor-2 (positive), n = number of patients, PD = progressive disease, BID= twice daily, q21d= every 21 days, PFS = Progression Free Survival, ORR = Objective Response Rate, OS = Overall Survival, PRO = Patient Reported Outcomes, PK = pharmacokinetics



^aDosing per fulvestrant label


bStandard-of-care single-agent chemotherapy should include approved drug in breast cancer.

cinvestigator assessed

Phase II monarchHER: PFS and ORR

OBJECTIVE RESPONSE RATE

- Arm A= abemaciclib + trastuzumab + fulvestrant
- Arm B= abemaciclib + trastuzumab
- Arm C= trastuzumab + chemotherapy

Tolaney S, et al. *Ann Oncol.* 2019;30(suppl_5):v851-v934.

Summary

- VERY exciting time for novel therapies to treat HER2+ metastatic breast cancer
- 3 new approvals in the last year (tucatinib, trastuzumab deruxtecan, neratinib)
- Many novel agents being evaluated:
 - Margetuximab may be next approval?
 - Other ADCs
 - Novel antibodies
 - CDK4/6 inhibitors
 - Immune therapy

CASE 1: A patient with HER2-positive breast cancer who received trastuzumab deruxtecan

50 y.o. female diagnosed 2002 with stage III ER+ HER2+ BC, s/p TCH, lumpectomy with residual disease, tamoxifen. 2 years later metastases to spine. Treated with trastuzumab/endocrine therapy, lapatinib/trastuzumab/ endocrine therapy; vinorelbine/trastuzumab/pertuzumab; T-DM1, went on HER2CLIMB trial of trastuzumab/capecitabine +/- tucatinib; I thought she was getting tucatinib because she had rash, SBO, colitis, dose reduced tucatinib (or placebo), ultimately taken off study for PD 14 mos after enrolling (Later found out she was on <u>placebo</u> arm!). Placed on study of trastuzumab deruxtecan 9/2018. Still on study with disease control (cycle 37 now). Tolerating well but significant hair thinning. Nausea much better than at beginning of study.

CASE 2: A patient with HER2-positive breast cancer who received tucatinib (?)

65 yo woman diagnosed with right breast calcs 2015 s/p incisional biopsy showing DCIS, mastectomy revealing multifocal invasive ductal carcinoma (1,2,4,4,4,5 mm) from DCIS. T1a(m) N0(i-). ER 95%, PR neg, HER2 3+. Received APT regimen 2015-2016. Started AI 2016. Diagnosed with metastatic breast cancer 4 years later in 2020. Liver biopsy revealed metastatic ductal carcinoma ER (1-2+) 5-10%, PR 0%, HER2 2+ by IHC, positive by FISH (copy 11.45, ratio 4.98). Signed consent for a trial evaluating T-DM1 +/- tucatinib (unknown if she is on tucatinib). Tolerating GREAT but third cycle delayed 3 weeks due to grade 3 ALT/AST elevation. Post-cycle 3 scans showing disease shrinkage (near PR)

CASE 3: A patient with HER2-positive breast cancer who received neratinib

61 yo female diagnosed with stage III ER/PR+ HER2+ left BC 1999 s/p ddAC-T, high dose chemo → ASCT, RT, tamoxifen. Four years later (2003) metastatic recurrence to lungs. ER+PR- HER2+. Treated with AI, trastuzumab/cape, tras/vinorelbine, gemcitabine/trastuzumab, fulvestrant/tras, CMF, T-DM1, trastuzumab/lapatinib, eribulin/tras, THP, Palbociclib/trastuzumab/letrozole, tucatinib/cape/tras compassionate use (brain mets), then at PD, took neratinib/taxane and response only lasted 3 months before progression—underscoring fact that there is likely cross-resistance with TKI's. Passed in 2020 after 17 years with MBC.

Thank you!