

ADJUVANT AND EXTENDED-ADJUVANT THERAPY FOR PATIENTS WITH LOCALIZED HER2+ BREAST CANCER

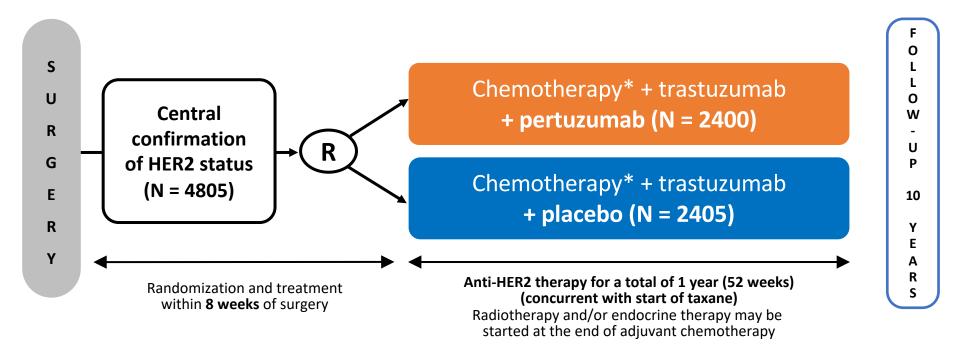
Sara M. Tolaney

Dana-Farber Cancer Institute

ADJUVANT TRASTUZUMAB: LONG TERM OUTCOMES

Perez E et al, J Clin Oncol 2014

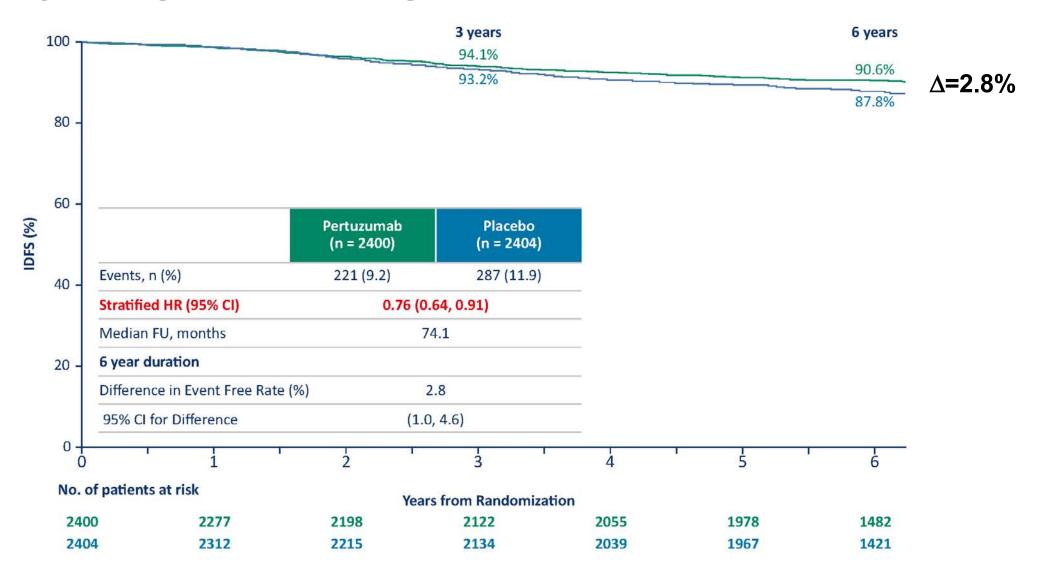
Slamon D et al, SABCS 2015


~25% of patients recur with 10 years of follow-up

NEOADJUVANT PERTUZUMAB/TRASTUZUMAB (3 REGIMENS FDA APPROVED 9/2013)

	NEOSPHERE ¹	TRYPHAENA ²	TRYPHAENA ²
Treatment	Pertuzumab, Trastuzumab, Docetaxel	Docetaxel/Carbo/ Trastuzumab/ Pertuzumab	
	THP x 4 FEC x 3 post-op)	TCHP x 6	FEC x 3 \rightarrow THP x 3
N	107	77	75
ypT0/is ypN0 (%)	39.3	63.6	54.6

- 1. Gianni L, et al. Lancet Oncol. 2012
- 2. Schneeweiss A, et al. Ann Oncol. 2013


APHINITY: A PHASE III ADJUVANT STUDY INVESTIGATING THE BENEFIT OF PERTUZUMAB WHEN ADDED TO TRASTUZUMAB + CHEMOTHERAPY

^{*} Standard anthracycline or non-anthracycline (TCH) regimens were allowed: $3-4 \times FEC$ (or FAC) $\rightarrow 3-4 \times TH$; $4 \times AC$ (or EC) $\rightarrow 4 \times TH$; $6 \times TCH$

- **Primary endpoint:** IDFS (APHINITY definition differs from STEEP definition)
- Secondary endpoints: IDFS with 2nd primary non-breast primary cancers included, DFS, OS, RFI, DRFI, safety, and HRQoL
- Stratification factors: nodal status, HR status, chemotherapy regimen, geographic region, Protocol version (A vs. B)
- Clinical cut off date (CCOD) at the time of primary analysis was 19 Dec 2016, median follow up of 45.4 months

APHINITY UPDATED ANALYSIS: IDFS (ITT POPULATION) 74.1 MONTHS MEDIAN FU

APHINITY UPDATED ANALYSIS: IDFS BY SUBGROUPS 74.1 MONTHS MEDIAN FU

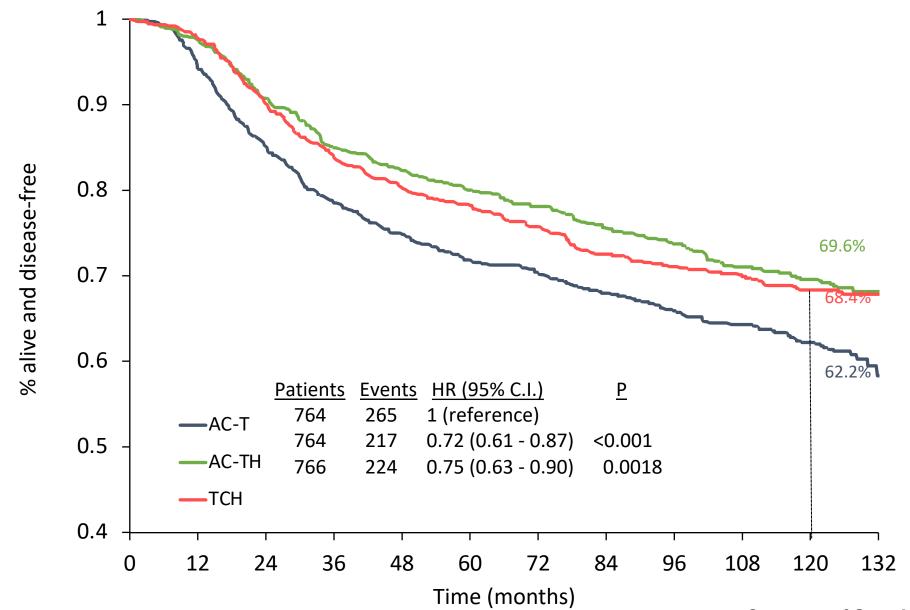
	PERTUZUMAB	PLACEBO	DIFFERENCE	HAZARD RATIO
ITT	90.6%	87.8%	2.8%	0.76
HR+	91.2%	88.2%	3.0%	0.73
HR-	89.5%	87.0%	2.5%	0.83
Node +	87.9%	83.4%	4.5%	0.72
Node -	95.0%	94.9%	0.1%	1.02

BENEFIT SEEN IN HR+/HR- AND NODE POSITIVE

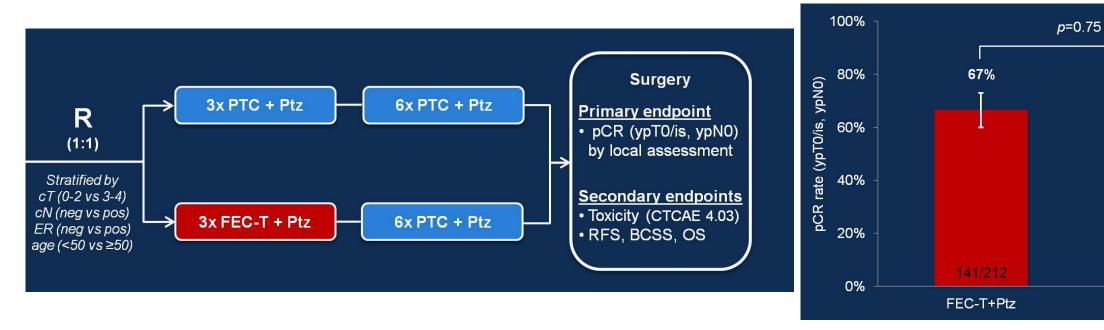
- NO BENEFIT IN NODE NEGATIVE
 - NO OS BENEFITS YET SEEN

WHEN DO WE THEN GIVE PERTUZUMAB?

- Most patients with HER2+ tumors >2cm or clinically node positive disease receive preoperative therapy
- The addition of pertuzumab improves pCR, but will not improve DFS in *all* patients (ie. not node negative patients)
- Administration of preoperative pertuzumab to all patients may result in some overtreatment, but challenging to discern which patients need pertuzumab upfront


IS ANTHRACYCLINE-BASED CHEMOTHERAPY NECESSARY?

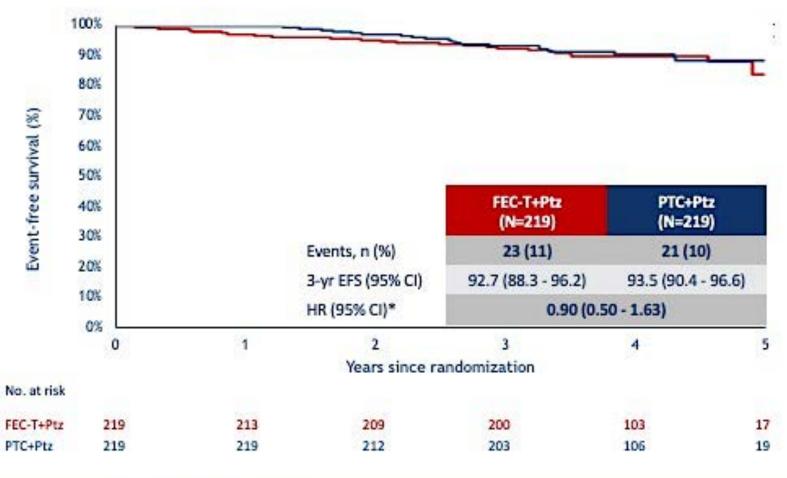
BCIRG006: 10.3 YRS FOLLOW-UP


Outcome	AC → T	AC → TH	TCH
	(n = 1073)	(n = 1074)	(n = 1075)
DFS, % (n/N)	67.9 (328/1073)	74.6 (269/1074)	73.0 (279/1075)
HR (95% CI)	1	0.72 (0.61-0.85); <i>P</i> < .0001	0.77 (0.65-0.90); <i>P</i> = .0011
OS, % (n/N)	78.7 (203/1073)	85.9 (141/1074)	83.3 (167/1075)
HR (95% CI)	1	0.63 (0.51-0.79); <i>P</i> < .0001	0.76 (0.62-0.93); <i>P</i> = .0075
DFS in LN+ pts, % (n/N)	62.2 (265/764)	69.6 (217/764)	68.4 (224/766)
HR (95% CI)	1	0.72 (0.61-0.87); <i>P</i> < .001	0.75 (0.63-0.90); <i>P</i> = .0018

TCH ASSOCIATED WITH LESS CARDIAC TOXICITY AND NUMERICALLY FEWER CASES OF SECONDARY LEUKEMIA

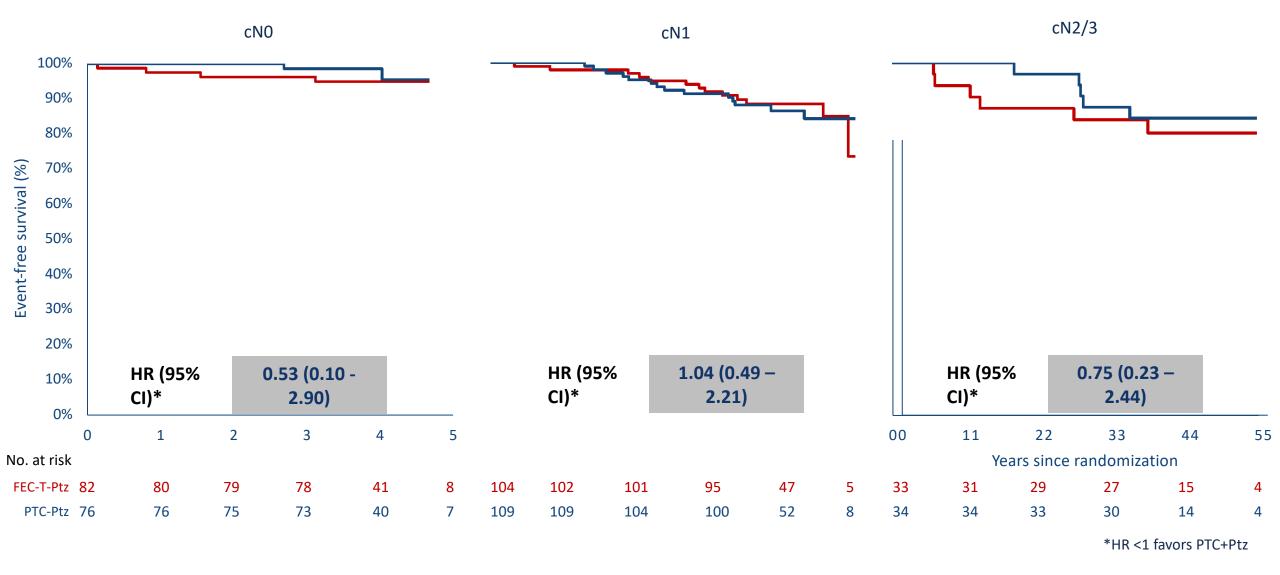
BCIRG 006: DFS LYMPH NODE POSITIVE NO ADVANTAGE FOR ANTHRACYCLINES EVEN IN THE HIGH RISK GROUP

SUBSTITUTING ANTHRACYCLINE WITH TAXANE: TRAIN-2


- 64% node positive, 42% HR negative
- pCR was consistent across all subgroups
- More pts completed 1 year trastuzumab in PTC/Ptz arm (97% vs 89%)
- Significantly more grade 3/4 febrile neutropenia (10% vs 1%) in anthracycline arm

68%

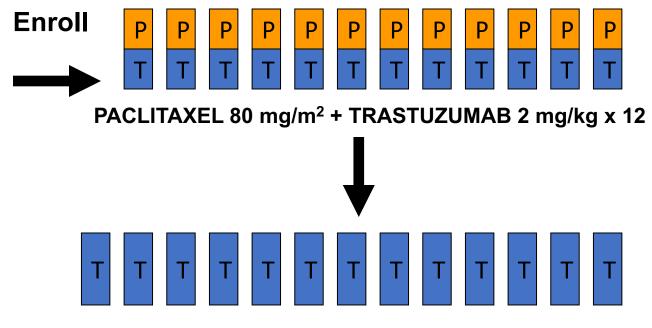
140/206


PTC+Ptz

TRAIN-2: EFS

- Significantly less cardiac toxicity PTCPtz
- 2 leukemia in FEC-arm

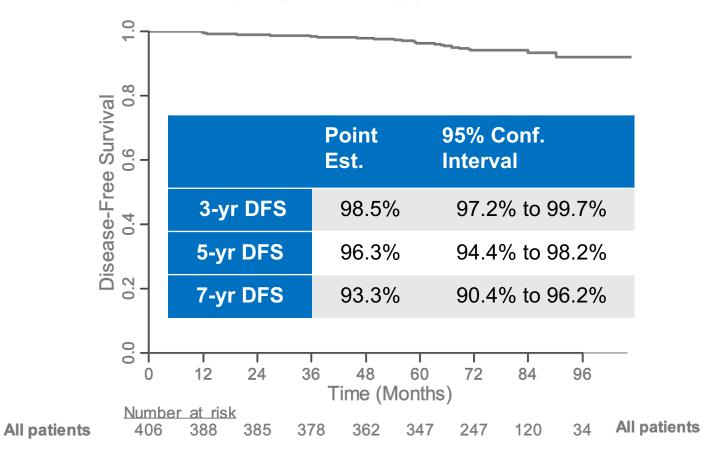
EFS TRAIN-2 BY NODAL STATUS

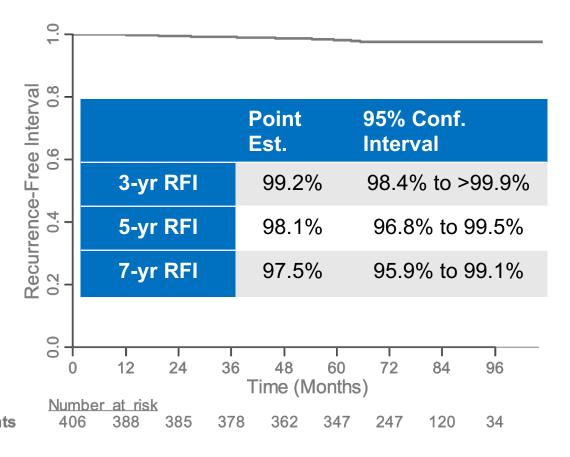

ANTHRACYCLINE CAN BE SUBSTITUTED WITH TAXANE-BASED HER2 DIRECTED THERAPY

- BCIRG-006 and TRAIN-2 demonstrate similar long term outcomes with taxane-based therapy as with anthracycline-based therapy, even in high risk node-positive patients
- Less cardiac toxicity and numerically less leukemia
- Hard to justify use of anthracyclines in era of HER2-directed therapies

WHAT ABOUT STAGE 1 HER2+ PATIENTS? APT TRIAL: STUDY DESIGN

HER2+
ER+ or ERNode Negative
< 3 cm

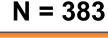

Planned N=400


FOLLOWED BY 13 EVERY 3 WEEK DOSES
OF TRASTUZUMAB (6 mg/kg)

APT: OUTCOMES AT 7 YRS

DISEASE-FREE SURVIVAL

RECURRENCE-FREE INTERVAL


RFI Events=

- •Invasive Local/Regional Recurrence
- Distant Recurrence
- Death from Breast Cancer

Does T-DM1 have a role for Stage I HER2+ Disease? ATEMPT Trial

Key Eligibility Criteria

- Stage 1 HER2+ breast cancer
 - HER2 centrally tested (ASCO CAP 2013 guidelines)
- N0 or N1mic
- Left Ventricular EF ≥ 50%
- No prior invasive breast cancer
- ≤90 days from last surgery

T-DM1

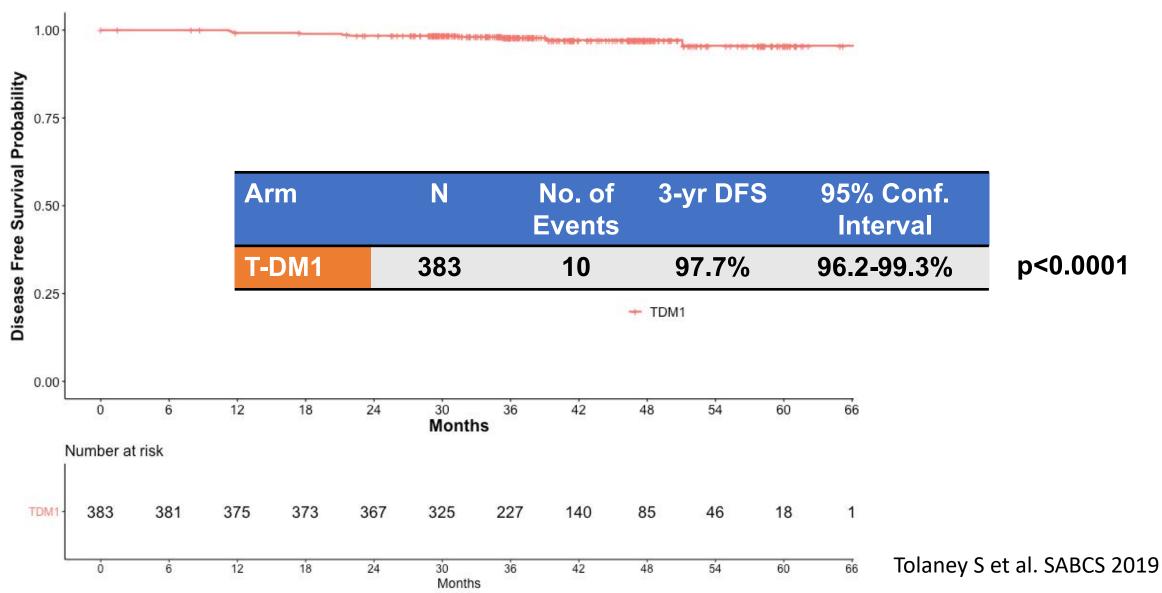
3.6 mg/kg IV q3 wks x 17

$$N = 114$$

TH

Paclitaxel 80 mg/m² IV + Trastuzumab 2 mg/kg IV wkly x12 → Trastuzumab 6 mg/kg every 3 wks x13

Stratification factors:

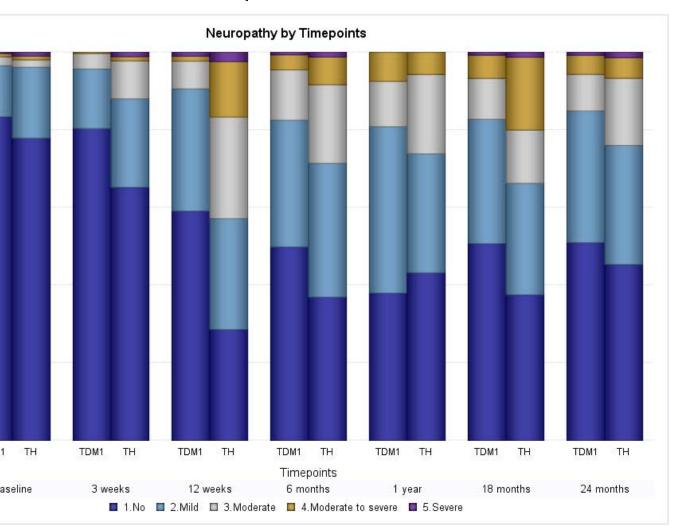

- Age (<55, ≥55)
- Planned radiation (Yes/No)
- Planned hormonal therapy (Yes/No)

N = 497

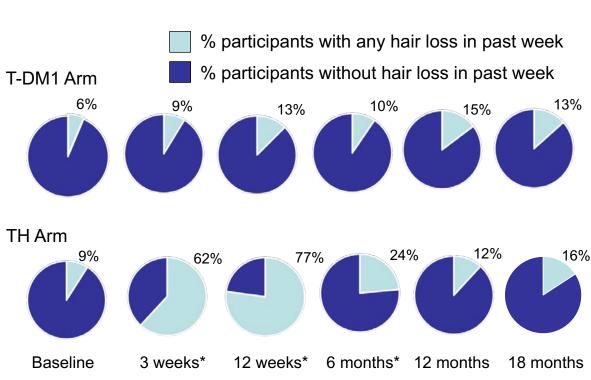
Tolaney S et al. SABCS 2019

^{*}Radiation and endocrine therapy could be initiated after 12 weeks on study therapy

ATEMPT: DISEASE-FREE SURVIVAL FOR T-DM1


Courtesy of Sara M Tolaney, MD, MPH

ATEMPT: CLINICALLY RELEVANT TOXICITY


Clinically Relevant Toxicity	T-DM1 (n = 383) N (%)	TH (n = 114) N (%)
Grade ≥3 non-hematologic toxicity	37 (10%)	13 (11%)
Grade ≥ 2 neurotoxicity	42 (11%)	26 (23%)
Grade ≥4 hematologic toxicity	4 (1%)	0 (0%)
Febrile neutropenia	0 (0%)	2 (2%)
Any toxicity requiring dose delay	106 (28%)	30 (26%)
Any toxicity requiring early discontinuation	67 (17%)	7 (6%)
Total	176 (46%)	53 (46%) _{0.91}

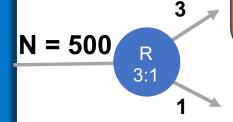
ATEMPT TRIAL: PROS

QUALITY OF LIFE

Alopecia

 * Indicates statistically significantly (p<0.05) greater hair loss at timepoint for TH vs. T-DM1

WHICH PATIENTS WITH STAGE I HER2+ DISEASE SHOULD GET T-DM1?


- T-DM1 for 1 year was associated with very few recurrences in patients with Stage I HER2+ disease
 - 3 year DFS 97.7% (95% CI: 96.2-99.3), RFI 99.1% (95% CI: 98.1-100)
- T-DM1 was not associated with significantly fewer clinically relevant toxicities than TH
- No difference seen in the overall incidence of clinically relevant toxicities (CRT) between the two arms, but there were differences in toxicity profiles between T-DM1 and TH
- Not all toxicities are captured in the CRT endpoint, including alopecia, and patient reported outcomes (PROs) should be considered when assessing tolerability (generally favored T-DM1)
- Given the low event rate seen in this trial, T-DM1 may be an alternative to TH

PLANNED STUDY: ATEMPT 2.0

Key Eligibility Criteria

- Stage 1 HER2+ breast cancer
 - HER2 centrally tested (ASCO CAP 2013 guidelines)

 HER2 3+
- N0 or N1mic
- Left Ventricular EF ≥ 50%
- No prior invasive breast cancer
- ≤90 days from last surgery

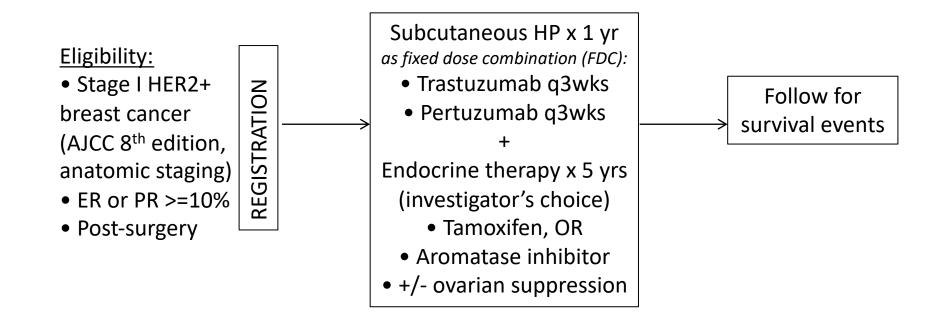
N = 375

T-DM1→ H

3.6 mg/kg IV q3 wks x 6 cycles → SQ Trastuzumab every 3 wks x 11

N = 125

TH


Paclitaxel 80 mg/m² IV + Trastuzumab every 3 wks x4 → SQ Trastuzumab every 3 wks x13

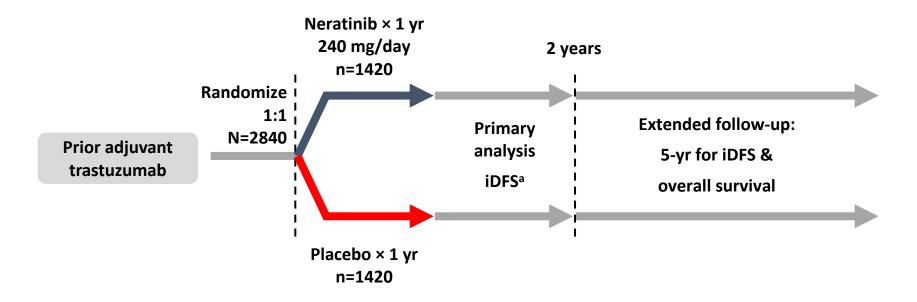
Stratification factors:

- Age (<55, ≥55)
- Planned radiation (Yes/No)
- Planned hormonal therapy (Yes/No)

^{*}Radiation and endocrine therapy could be initiated after 12 weeks on study therapy

PLANNED STUDY: A SINGLE ARM PHASE II STUDY OF <u>AD</u>JUVANT <u>E</u>NDOCRINE THERAPY, SUBCUTANEOUS <u>P</u>ERTUZUMAB, AND <u>T</u>RASTUZUMAB FIXED-DOSE COMBINATION FOR PATIENTS WITH ANATOMIC STAGE I HORMONE RECEPTOR-POSITIVE, HER2-POSITIVE BREAST CANCER (<u>ADEPT</u>)

CAN WE SHORTEN THE DURATION OF TRASTUZUMAB?

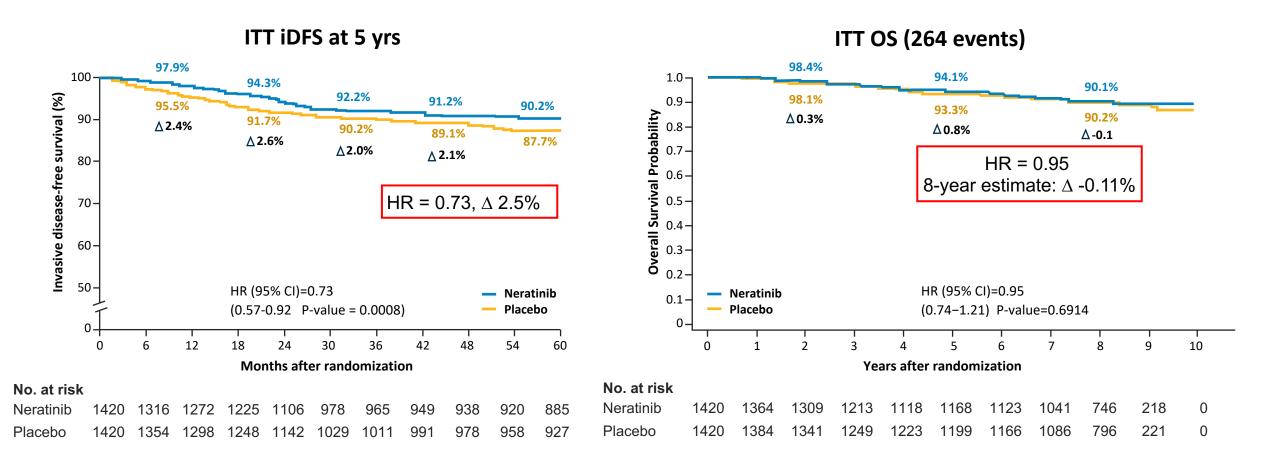

Trial	Tmab Duration	Chemotherapy	N	DFS, %	Status/Results
SOLD ^[1]	9 wks vs 1 yr	DTX x 3 + FEC x 3	2174	5 yrs: 88 vs 90.5	Noninferiority not reached, cardiac tox better with shorter
Short-HER ^[2]	9 wks vs 1 yr	DTX x 3 \rightarrow FEC x 3 vs AC x 4 \rightarrow TX x 4	1254	5 yrs: 85.4 vs 87.5	Noninferiority not reached, cardiac tox better with shorter
PHARE ^[3]	6 vs 12 mos	Investigator choice (~90% anthracycline based)	3384	7.5 yrs: 78.8 vs 79.6 (<i>P</i> = .39)	Noninferiority not reached, cardiac tox better with shorter
Hellenic Oncology ^[4]	6 vs 12 mos	ddFEC/D	481	3 yrs: 93.3 vs 95.7 (P = .137)	Noninferiority not reached
PERSEPHONE	6 vs 12 mos	Investigator choice	4089	4 yrs: 89.4 vs 89.8 (P = .01)	Cardiac outcomes published 2016 ^[5] ; noninferiority demonstrated (ASCO 2018 ^[6])

^{1.} Joensuu. JAMA Oncol. 2018;4:1199. 2. Conte. Ann Oncol. 2018;29:2328. 3. Pivot. Lancet Oncol 2013;14:74. 4. Mavroudis. Ann Oncol 2015;26:1333 5. Earl. Br J Cancer. 2016;115:1462. 6. Earl. ASCO 2018. Abstr. 506.

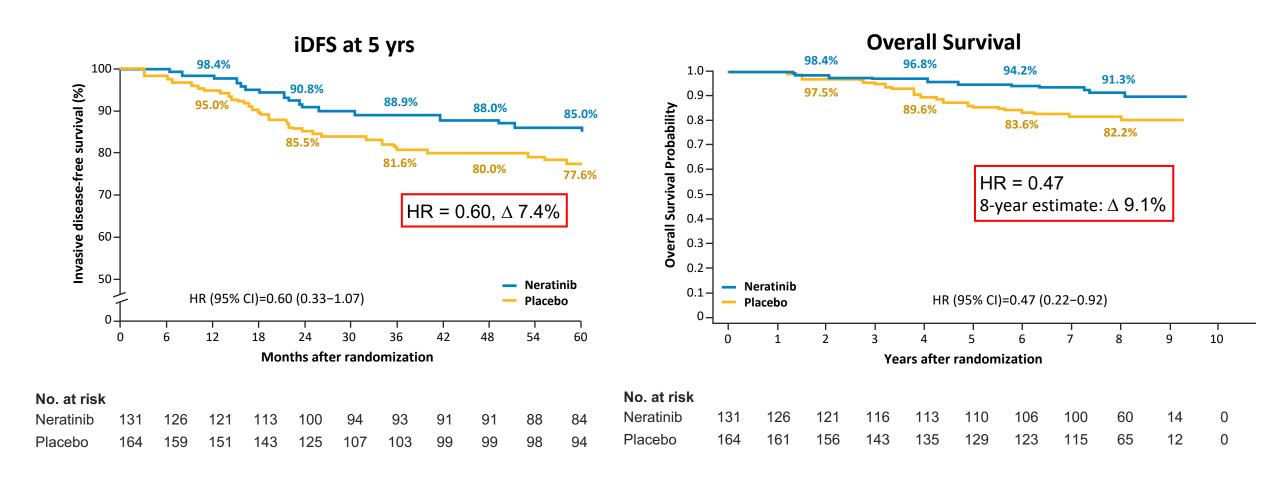
ONE YEAR OF TRASTUZUMAB REMAINS THE STANDARD

(stopping early for toxicity in patients with lower risk disease unlikely to have significant impact on outcomes)

ADDING NERATINIB: ExteNET STUDY


Primary endpoint: invasive disease-free survival (iDFS)^a

Secondary endpoints: overall survival, DFS-DCIS, distant DFS, time to distant recurrence, CNS metastases, safety,


Stratification: nodes 0, 1-3 vs 4+, ER/PR status, concurrent vs sequential trastuzumab

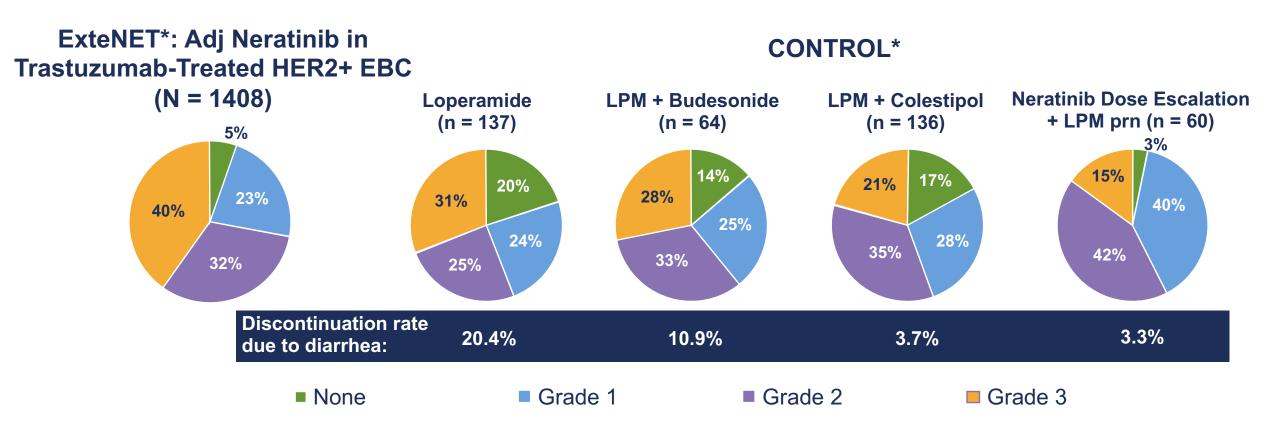
Study blinded: Until primary analysis; OS remains blinded

ExteNET iDFS and OS Intent-To-Treat Population (N=2,840)

ExteNET: No pCR Post Neoadjuvant Therapy HR+, ≤1 Year from Trastuzumab (N=295)

Descriptive Analysis: Cumulative Incidence of CNS recurrences at <u>first</u> site of mets at 5 years HR+/≤1-year population (*n*=1334)

Subgroup	Cumulative Incidence of CNS recurrences at 5 years, %		
	Neratinib	Placebo	
	%	%	
All patients (<i>n</i> =1334)	0.7	2.1	
Prior neoadjuvant therapy			
No (<i>n</i> =980)	0.7	1.5	
Yes (<i>n</i> =354)	0.7	3.7	
pCR status ¹			
No (<i>n</i> =295)	0.8	3.6	
Yes (<i>n</i> =38)*	0	5	

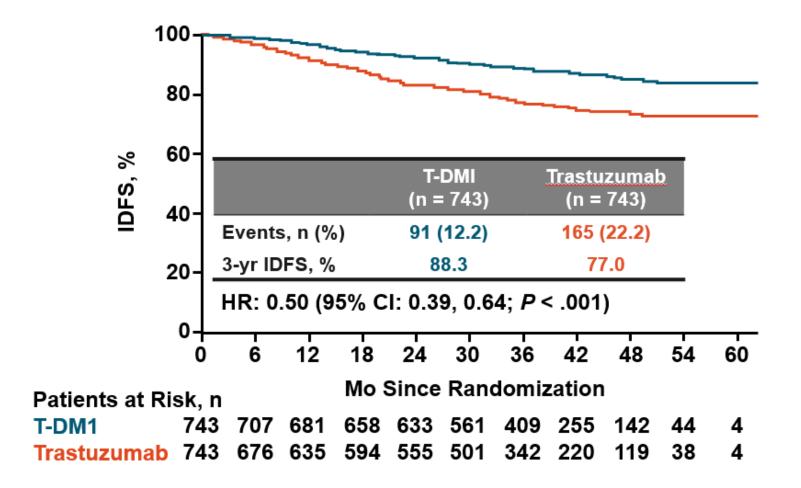

^{*}Small Ns

To date no agent has shown a difference in CNS Recurrences as first site of metastasis

Trial Population	CNS Recurrenc	ces, %	CNS Recurrenc	es, %
ALLTO (3 years) ITT, L+T , T->L, L, T* (N=5190)	Trastuzumab:	2	Trastuzumab +Lapatinib:	2
APHINITY (3 years) ITT (N=4,805)	Placebo:	2	Pertuzumab:	2
KATHERINE (3 years) ITT (high risk, No pCR) (N=1,486)	Trastuzumab:	5.4	T-DM1:	6.1

Caveat: Cross Trial Comparisons
Patients in KATHERINE are at higher risk of recurrence

ANTIDIARRHEAL PROPHYLAXIS REDUCES DIARRHEA WITH NERATINIB: CONTROL TRIAL


PREVENTIVE STRATEGIES REDUCED GRADE ≥3 DIARRHEA COMPARED TO EXTENET

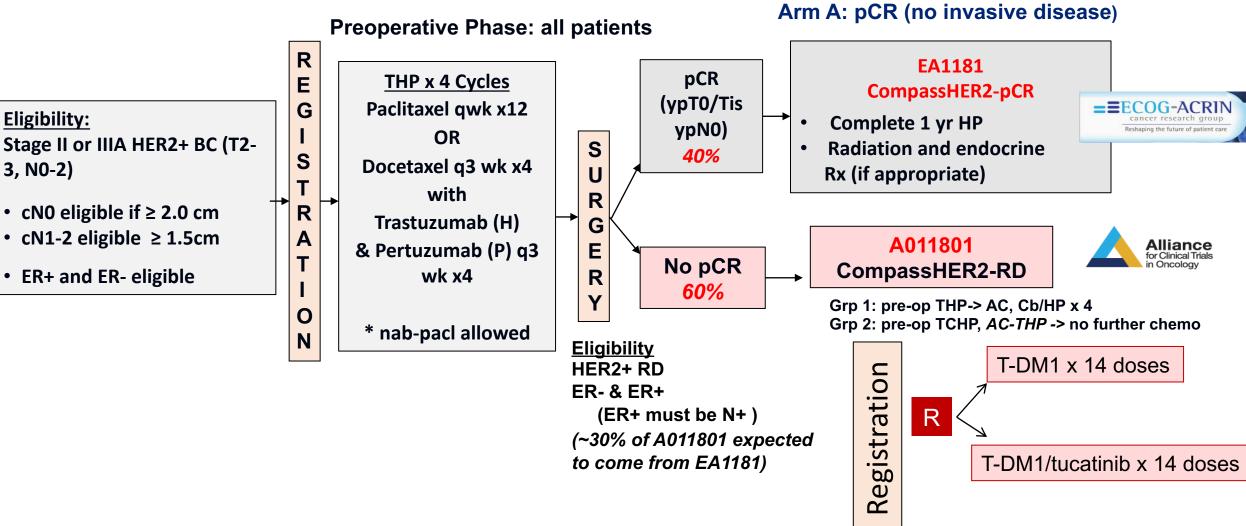
Chan et al, SABCS 2019 Chan at al, Lancet Oncol 2016 Hurvitz S, SABCS 2017

WHEN SHOULD WE GIVE NERATINIB?

- Benefit seen in patients with high risk HR+ HER2+ disease (larger benefit in patients with residual disease after preoperative therapy)
- Challenge is lack of data in patients who have previously received pertuzumab and/or T-DM1
- Must also weigh potential benefit with toxicity (~40% grade 3/4 diarrhea)
 - All patients should receive prophylactic anti-diarrheals (OR can consider a dose escalation approach)

RESPONSE TO NEOADJUVANT TREATMENT CLEARLY IDENTIFIES HIGH RISK PATIENTS FOR TREATMENT WITH T-DM1 (KATHERINE)

First IDFS Event, %	T-DM1	т
Any	12.2	22.2
Distant recurrence	10.5*	15.9 [†]
Locoregional recurrence	1.1	4.6
Contralateral breast cancer	0.4	1.3
Death without prior event	0.3	0.4


CNS events: *5.9% vs †4.3%.

CAN WE IMPROVE UPON THE KATHERINE TRIAL OF T-DM1?

- 3 yr iDFS for N+ pts: 83%.
- No improvement in rates of CNS recurrence
- May want to consider further treatment escalation with future studies:
 - Add on strategies: T-DM1 + tucatinib (being explored in COMPASS-RD)
 - Substitution strategies: Trastuzumab deruxtecan (DS-8201a)

COMPASSHER2 TRIALS

DESTINY-Breast05 (DS8201-A-U305) Study Design

DESTINY

T-DXd vs. T-DM1 in high-risk HER2-positive early breast cancer patients with residual invasive disease following neoadjuvant therapy

Key Eligibility:

- eBC with residual disease following neoadjuvant therapy
- Completion of neoadjuvant therapy* including trastuzumab followed by surgery
- High-risk** of recurrence (inoperable at presentation or node-positive)
- · Centrally confirmed HER2+ status
- ECOG PS: 0-1

Stratification:

- Operative status at presentation (operable vs inoperable)
- Post-neoadjuvant pathologic nodal status (positive vs negative)
- Tumor hormone receptor (HR) status (positive vs negative)
- HER2-targeted neoadjuvant therapy (single vs dual)

Investigational Arm:
Trastuzumab deruxtecan
(T-DXd; DS-8201)
Day 1 every 3 weeks for

Day 1 every 3 weeks for 14 cycles (N=800)

Control Arm:
Trastuzumab emtansine
(T-DM1)

Day 1 every 3 weeks for 14 cycles (N=800)

- *Neoadjuvant therapy to include at least 16 weeks of total systemic treatment in the preoperative setting, including:
- At least 9 weeks of HER2-targeted therapy including **trastuzumab** (with or without pertuzumab) and,
- At least 9 weeks of taxane therapy

**High-risk definitions:

- **Inoperable:** Inoperable breast cancer at presentation with residual invasive cancer in the breast or axillary nodes following neoadjuvant therapy.
- Node-positive: Metastatic disease in axillary node(s) following neoadjuvant therapy irrespective of presence or absence of residual invasive cancer in the breast.

Additional Notes: Randomization within 12 weeks of surgery; adjuvant radiotherapy and/or endocrine therapy per protocol and local guidelines.

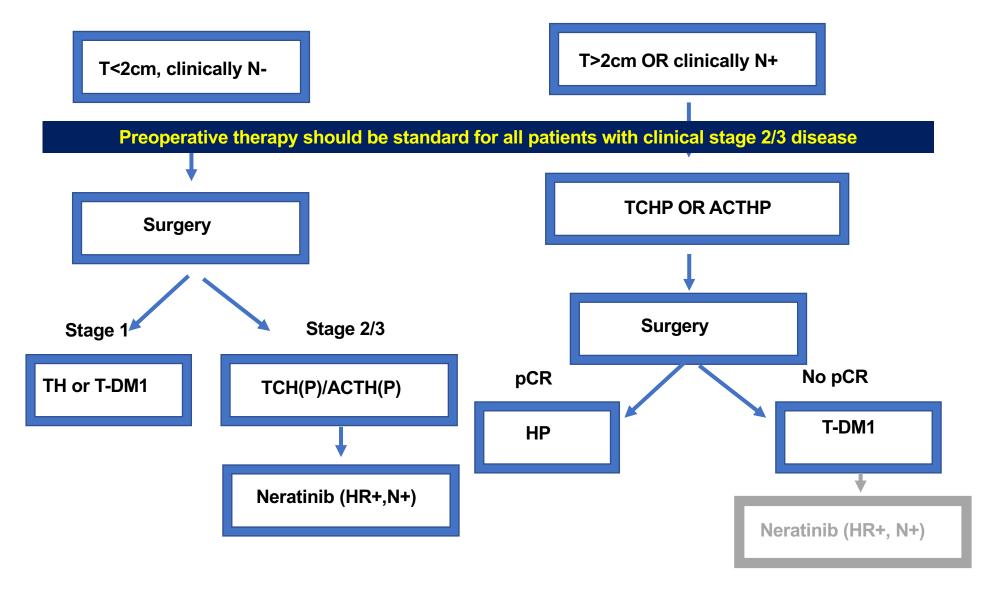
Endpoints:

- Primary:
 - IDFS (Invasive disease-free survival)
- Secondary:
- DFS (Disease-free survival)
- DRFI (Distant recurrence-free interval)
- BMFI (Brain metastases-free interval)
- OS (Overall survival)

R

1:1

N = 1.600


- Adverse events
- Exploratory:
 - PROs (Patient reported outcomes; QoL)
- Biomarkers associated with efficacy/safety
- PK associated with efficacy/safety

eBC=early breast cancer; ECOG PS=Eastern Cooperative Oncology Group performance status; HER2=Human epidermal growth factor receptor 2; PK=pharmacokinetics; QoL=quality of life R=randomization

FUTURE DIRECTIONS: SELECT ONGOING CLINICAL TRIALS

Trial Name	Phase	Setting	Treatment Arms	Primary Endpoint
IMpassion050	III	Neoadjuvant; T2-4, N1-3, M0 with known HER2, HR, PD-L1 status	AC + Atezolizumab → THP + Atezolizumab vs AC + Pbo → THP + Pbo	pCR
APTneo	III	Neoadjuvant; Early high-risk (T1c-2N1 or T3N0) or LA disease suitable for neoaj tx	TCHP vs TCHP + Atezolizumab vs AC + Atezolizumab → TCHP + Atezolizumab	EFS
PALTAN	II	Neoadjuvant; Stage II-III ER+ HER2+ (tumor ≥ 2 cm)	Palbociclib + letrozole + Tmab +/- goserelin	pCR
NA-PHER2	Ш	Neoadjuvant; early ER+ HER2+ (tumor > 1.5 cm)	Tmab + Pmab + Palbociclib +/- fulvestrant	Ki67
MARGOT	II	Neoadjuvant; Stage II-III (tumor > 1.5 cm); CD 16A FF or FV	Taxane + Tmab/Pmab vs Taxane+ Margetuximab +Pmab (TMP)	pCR

Current Approach for Treatment of HER2+ breast cancer: 2020

SUMMARY

- Understanding that we can change long term outcomes by adapting adjuvant therapy based on response to preoperative therapy is a paradigm shift for HER2+ breast cancer
 - End of an era of purely adjuvant trials for developing novel strategies to improve outcomes
 - Important for all patients with HER2+ tumors >2 cm or clinically node positive disease to receive preoperative trastuzumab and pertuzumab based chemotherapy
 - All patients who fail to achieve a pCR should receive adjuvant T-DM1
- Extending adjuvant therapy with 1 yr of neratinib can benefit some patients, particularly those with HR+ disease at high risk of recurrence
 - No data in patients with prior pertuzumab and T-DM1
- Patients with stage I HER2+ breast cancer can receive adjuvant TH or T-DM1
- Future studies are looking at both escalation and de-escalation strategies

CASES

CASE 1

- 36 yo premenopausal woman presented with a right-sided palpable 3.5 cm L breast mass. Imaging confirmed finding, and biopsy demonstrated grade 3 invasive ductal carcinoma, ER-, PR-, HER2 3+.
- No palpable right-sided axillary adenopathy, and no abnormal nodes on ultrasound

Recommended preop TCHP x 6 cycles

Had difficulties with diarrhea and fatigue, requiring loperamide

Surgery revealed pCR

Now on adjuvant HP with intermittent diarrhea

CASE 2

- 72 yo woman found to have a 1.1 cm mammographic abnormality on screening
- Biopsy reveals ER-, PR-, HER2 3+ IDC
- Undergoes lumpectomy and SN biopsy: 1.2 cm IDC, 0/1 SN

Started therapy with adjuvant T-DM1

Has had mild elevation in LFTs, but tolerating therapy well now 6 months in

CASE 3

- 43 yo premenopausal woman presented with a palpable 4.5cm L
 breast mass with a palpable axillary lymph node
- Biopsy revealed grade 2 IDC, ER+, PR+, HER2 2+, FISH 3.5
- Received preop TCHP
- Underwent lumpectomy and SN biopsy: residual 2.5 cm of disease, with 2/4 SN involved; underwent completion axillary dissection with no additional positive nodes
- Received adjuvant T-DM1 x 14 cycles, and adjuvant radiation
 Started recently on neratinib with dose-escalation strategy