Optimal Integration of Immune Checkpoint Inhibitors into the Management of Metastatic Triple-Negative Breast Cancer

PROFESSOR PETER SCHMID, MD PHD FRCP

LEAD, CENTRE FOR EXPERIMENTAL CANCER MEDICINE BARTS CANCER INSTITUTE, ST BARTHOLOMEW'S HOSPITAL QUEEN MARY UNIVERSITY OF LONDON

Triple Negative Breast Cancer – Management in 2017

Median OS for met. TNBC 12-18 months!

Courtesy of Professor Peter Schmid, MD, PhD

Antitumor Immunity is a Dynamic Process

Courtesy of Professor Peter Schmid, MD, PhD

1. Chen and Mellman 2013; 2. Liakou et al. 2008; 3. Herr and Morales 2008; 4. Bajorin et al. 2014

Cancer and Immunity

Courtesy of Professor Peter Schmid, MD, PhD

Schmid P, et al. Personal Communication

Single agent activity of anti-PD-1/PD-L1 in Triple-negative breast cancer

Response to single agent anti-PD-L1/PD-1

Courtesy of Professor Peter Schmid, MD, PhD

Schmid P, et al. AACR 2017; Adams S, et al ASCO 2017

Pembrolizumab versus chemotherapy in 2L/3L TNBC

KEYNOTE-119 study design

Co-primary endpoints were OS in the CPS ≥10, in the CPS ≥1, and in the ITT populations

Courtesy of Professor Peter Schmid, MD, PhD

Cortes, et al. ESMO 2019

Pembrolizumab vs chemo in 2L/3L TNBC: OS by PD-L1 CPS (KN119)

OS in the ITT, CPS ≥1 and CPS ≥10 populations were primary endpoints; OS in the CPS ≥20 population was an exploratory endpoint.

Courtesy of Professor Peter Schmid, MD, PhD

Cortes, et al. ESMO 2019

Combination therapy of anti-PD-1/PD-L1 in Triple-negative breast cancer

CIT can target several steps in the immunity cycle

Combinations to widen the target population and increase efficacy

- 1. Chemotherapy + CIT
- 2. CIT + novel targeted agents (eg PARP, MEK)?
- 3. CIT combination

Atezolizumab (anti-PD-L1) plus chemotherapy in TNBC

IMpassion130 study design

• Co-primary endpoints were PFS and OS in the ITT and PD-L1+ populations

Courtesy of Professor Peter Schmid, MD, PhD

Schmid P, et al. ESMO 2018 (LBA1); Schmid P, et al NEJM 2018

Progression-free survival: PD-L1 predicts benefit with atezolizumab

Overall survival: PD-L1 status predicts benefit with atezolizumab

Courtesy of Professor Peter Schmid, MD, PhD

Data cutoff, 14 April 2020. NE, not estimable. ^a *P* value not formally tested per hierarchical study design.

Emens LA. ESMO 2020

Overall survival: PD-L1 status predicts benefit with atezolizumab

Courtesy of Professor Peter Schmid, MD, PhD rmission to reprint and/or distribute Emens LA. ESMO 2020

Pembrolizumab (anti-PD-1) plus chemotherapy in TNBC

KEYNOTE-355 study design

- Taxane, 45%; Gem/carboplatin, 55%
- Prior treatment with same class chemo, 22%
- De novo MBC, 30%; DFI 6-12, 21%; DFI >12, 49%

Nab-paclitaxel, 100 mg/m² IV on days 1, 8, and 15 every 28 days Paclitaxel, 90 mg/m² IV on days 1, 8, and 15 every 28 days Gemcitabine, 1000 mg/m²/carboplatin AUC 2 on days 1 and 8 every 21 days

. Co-primary endpoints were PFS and OS in the CPS ≥10, CPS ≥1, and ITT populations

Statistical design: Overall alpha controlled at one-sided 0.025, split among PFS (0.005), OS (0.018), and ORR (0.002); hierarchical testing PFS (CSP10>CP1>ITT)

Courtesy of Professor Peter Schmid, MD, PhD

Cortes, et al. ASCO 2020

Pembrolizumab (anti-PD-1) plus chemo: Progression-free Survival

Progression-Free Survival in Subgroups: PD-L1 CPS ≥1

			Median PFS (mo)		Hazard Ratio for	
Subgroup		Ν	Pembro + Chemo	Placebo + Chemo	Progression or Death (95% Cl)	
Overall		636	7.6	5.6	0.74 (0.61 to 0.90)	
Age (years)					· · · ·	
<65 [′]		505	7.5	5.6	0.75 (0.61 to 0.93)	
≥65		• 131	8.2	6.6	0.69 (0.45 to 1.07)	
Geographic region						
N America/EU/ANZ		411	7.6	5.7	0.77 (0.61 to 0.98)	
Asia 🛏		117	7.7	5.6	0.56 (0.36 to 0.89)	
Rest of world		1 08	6.6	5.4	0.84 (0.52 to 1.36)	
ECOG PS		0.07	7 7			
0		387	1.1	6.7	0.78 (0.61 to 1.00)	
1		248	6.6	5.4	0.63 (0.46 to 0.87)	
On-study chemotherapy						
		288	7.6	5.1	0.60 (0.45 to 0.81)	
Gemcitabine/Carboplatin		- 348	7.5	7.5	0.86 (0.66 to 1.11)	
Prior same class chemotherapy	_	106	7 5	E /	0.57(0.27 to 0.96)	
res -		130	7.5	5.4	0.57 (0.37 to 0.86)	
NO Drier peediuwent/ediuwent ehem	athorony (500	0.1	0.0	0.79(0.64 to 0.99)	
		- 302	6.8	57	0.85 (0.67 to 1.09)	
No		244	8.0	5.5	0.57 (0.07 to 1.03)	
Disease free interval		277	0.0	0.0	0.37 (0.41 (0.0.70)	
do novo motostosis		200	76	56	0.66 (0.46 to 0.94)	
<12 months			5.8	5.4	0.00(0.49 to 0.04)	
>12 months		304	77	6.6	0.75(0.57 to 0.99)	
Number of metastatic sites			1.1	0.0	0.70 (0.07 to 0.00)	
<3		362	9.2	6.7	0.71 (0.54 to 0.92)	
≥3		271	6.2	5.3	0.70 (0.52 to 0.94)	
	1 1			0.0		
0.0	0.5 1.0	1.5				
H	Hazard Ratio (95% C	CI)		Counts		De le sector M
←	Eavors	Eavors		Courte	sy of Professor Peter S	schmia, M
Pé	embro + Chemo	Placebo + Chemo			Co	rtes, et al. A

Atezolizumab (anti-PD-L1) plus Paclitaxel in TNBC

IMpassion131 study design

• Co-primary endpoints were PFS (investigator assessed) in the PD-L1+ and ITT populations

Courtesy of Professor Peter Schmid, MD, PhD

Atezolizumab plus Paclitaxel: Progression-free Survival in PD-L1+

Courtesy of Professor Peter Schmid, MD, PhD

Median duration of follow-up: 8.6 months (placebo + PAC) vs 9.0 months (atezolizumab + PAC). CI = confidence interval **Prof. P. Schmid, Barts Cancer Institute**

Atezolizumab plus Paclitaxel: Interim Survival Analysis

Updated interim OS analysis (data cut-off: 19 Aug 2020), events in 47% of the ITT population Deaths in PD-L1+ 38 (38%) vs 82 (43%)

Median duration of follow-up: 14.5 months (placebo + PAC) vs 14.1 months (atezolizumab + PAC) in the ITT population **Prof. P. Schmid, Barts Cancer Institute**

Courtesy of Professor Peter Schmid, MD, PhD

Immunotherapy plus chemo in 1L TNBC: Progression-free Survival

;k

How to select patients for CIT combination therapy in metastatic TNBC

PD-L1 assessment: key variables to take into account

Type of cell to be considered

- Only tumor cells (TC)
- Only immune cells (IC)
- Both (e.g. CPS)

Modality of the scoring calculation

- Enumeration of positive cells (CPS)
- Area occupied by positive ICs (SP142)

Cut-off value

- ≥1, ≥10, ≥20, >50

Primary antibody clones

- SP142, SP263 and 22C3

Courtesy of Professor Peter Schmid, MD, PhD

This presentation is the intellectual property of the presenter. Contact bianchini.giampaolo@hsr.it for permission to reprint and/or distribute

PD-L1-positive TNBC subpopulations

PD-L1 expression in TNBC (SP142 Assay)

Courtesy of Professor Peter Schmid, MD, PhD

Schmid P, et al. Personal Communication

PD-L1 status in primary vs metastatic tissues

OS

Efficacy in PD-L1 IC+

PFS

20%

PD-L1 IC+

40%

60%

0%

PD-L1 IC+

^a Evaluable population (n = 901). PD-L1 IC+: PD-L1 in ≥ 1% of IC as percentage of tumour area assessed with the SP142 assay. HRs adjusted for prior taxanes, presence of liver metastases, age and ECOG PS. Median time of sample collection to randomization: 61 days. No major differences were

observed for clinical benefit in samples collected within 61 days of randomization or beyond that period (Emens, et al, manuscript in preparation).

Courtesy of Professor Peter Schmid, MD, PhD

PFS and OS by different PD-L1 Assay: SP142 (IC 1%) and 22C3 (CPS 1)

Double positive: SP142 IC \geq 1%, 22C3 CPS \geq 1; single positive: SP142 IC < 1%, 22C3 CPS \geq 1; double negative: SP142 IC < 1%, 22C3 CPS < 1. HR adjusted for prior taxanes, presence of liver metastases, age and ECOG PS.

Courtesy of Professor Peter Schmid, MD, PhD

PD-L1-positive TNBC subpopulations

Pembrolizumab vs chemo in 2L/3L TNBC: OR and OS by PD-L1 CPS

Safety of CPI in metastatic TNBC

Toxicities with Immune checkpoint Inhibitors

Courtesy of Professor Peter Schmid, MD, PhD

Schmid P, et al. Personal Communication

Toxicities with Immune checkpoint Inhibitors

Courtesy of Professor Peter Schmid, MD, PhD

Schmid P, et al. Personal Communication

Kinetic of anti-tumour and auto-immune response

Courtesy of Professor Peter Schmid, MD, PhD

Adapted from Michot, JM. Cancer world 2019

Toxicities with Immune checkpoint Inhibitors

- Timing can be highly variable
- irAE can occur even months after the end of treatment
- Time course might be even more variable with novel combinations

Courtesy of Professor Peter Schmid, MD, PhD

IMpassion130: Most common AEs regardless of attribution

IMpassion130: Immune-Related Adverse Events

Most Clinically Relevant AESI by Grade

4.1% 2.2%

6.8%

Immune-Mediated AESI Requiring Systemic Corticosteroids

Schneeweiss, Rugo et al, ASCO 2019; Schmid et al, Lancet Oncol 2019

4%

3%

0%

1%

Atezolizumab + nab-paclitaxel Placebo + nab-paclitaxel

5%

6%

7%

Courtesy of Professor Peter Schmid, MD, PhD

KEYNOTE-355: Most common AEs regardless of attribution

KEYNOTE-355: Immune-Related Adverse Events

Courtesy of Professor Peter Schmid, MD, PhD

IMpassion130 PRO Analysis

Courtesy of Professor Peter Schmid, MD, PhD

Managing Side Effects from Immune checkpoint Inhibitors

Courtesy of Professor Peter Schmid, MD, PhD

Adapted from Champiat S. ESMO Patient Guide Series

Management of immune-related adverse events (irAE)

- Variable presentation in terms of system, combinations and timing ("anything can potentially be immune-mediated")
 - Endocrinopathies, Rash, Pneumonitis, Colitis and Hepatitis account for >90% of irAEs
 - But be aware of rare and possibly serious events
- Early recognition and treatment initiation critical
- Oncologist should lead irAE management (but consultation with subspecialty services in cases that are not straight forward)
- Steroids are highly effective therapy and don't affect efficacy of CPI ("rather once too often steroids than not giving if required")
- Long steroid taper (4-6 weeks) and multiple courses may be needed

Courtesy of Professor Peter Schmid, MD, PhD

41 y/o woman, BRCA1 mutation carrier What would you do at this stage?

- Chemo
- Chemo + CIT
- PARP inhibitor
- Further tests

Courtesy of Professor Peter Schmid, MD, PhD

Schmid P, et al. Personal Communication

41 y/o woman, BRCA1 mutation carrier What would you do at this stage?

- Chemo
- Chemo + CIT
- PARP inhibitor
- Further tests

Courtesy of Professor Peter Schmid, MD, PhD

Schmid P, et al. Personal Communication

Stromal TILs & BRCA status and treatment benefit for atezolizumab

Stromal TILs have clinical benefit if co-occurring with PD-L1 IC+

The clinical benefit derived by PD-L1 IC+ patients was independent of their *BRCA1/2* mutation status

BEP (TILs): n = 893. Cutoff of 10% was used to distinguish low vs intermediate/high levels of TILs (Denkert Lancet Oncol 2018). All P values are nominal. ^a Data derived from contingency table with Fisher exact tests.

Emens LA, et al. IMpassion130 biomarkers. SABCS 2018 (program #GS1-04)

Courtesy of Professor Peter Schmid, MD, PhD This presentation is the intellectual property of the presenter. Contact p.Schmid@qmul.ac.uk for permission to reprint and/or distribute

Courtesy of Professor Peter Schmid, MD, PhD

Schmid P, et al. Personal Communication

This presentation is the intellectual property of the presenter. Contact p.Schmid@qmul.ac.uk for permission to reprint and/or distribute

44

32 y/o woman

Courtesy of Professor Peter Schmid, MD, PhD

Schmid P, et al. Personal Communication

Courtesy of Professor Peter Schmid, MD, PhD This presentation is the intellectual

Schmid P, et al. Personal Communication

ac.uk for permission to reprint and/or distribute

2 months later, symptoms resolved

Courtesy of Professor Peter Schmid, MD, PhD

Schmid P, et al. Personal Communication

49 y/o woman

2 months later, symptoms resolved

Courtesy of Professor Peter Schmid, MD, PhD

Schmid P, et al. Personal Communication

Take-home messages

Single-agent anti-PD-L1/anti-PD-1 in metastatic TNBC

- Durable responses and substantial OS in metastatic TNBC
- Better response in earlier lines of therapy; phase 3 in pre-treated patients negative
- Biomarkers unable to reliably predict responders; high CPS identifies inflamed tumours

Combination of chemotherapy and anti-PD-L1/anti-PD-1 in metastatic TNBC

- Atezolizumab plus Nab-Paclitaxel improves PFS and OS in 1st line mTNBC
- Pembrolizumab plus Taxanes or Gem/Carboplatin improves PFS in 1st line mTNBC
- Effect largely limited to PD-L1+ tumours (SP142 Atezo; CPS10 Pembro)
- Combinations well tolerated
- Alternative strategies required for PD-L1-negative tumours (eg triplet with AKT)
- CAVEAT around use of Paclitaxel as Pac+Atezo fails to improve PFS in 1st line mTNBC

Courtesy of Professor Peter Schmid, MD, PhD