

A Cancer Center Designated by the National Cancer Institute

The Emergence of Targeted Therapy for Patients with Metastatic Colorectal Cancer (mCRC) and BRAF V600E Tumor Mutations; HER2 and Other Potential Biomarkers

Howard S Hochster, MD

Distinguished Professor of Medicine Rutgers Robert Wood Johnson Medical School Rutgers-CINJ Associate Director Clinical Research Director, Clinical Oncology Research RWJBarnabas Health New Brunswick, New Jersey What is your usual first-line treatment for a 65-yo patient with <u>left-sided</u>, MSS, pan-RAS WT mCRC with a BRAF V600E mutation?

What is your usual first-line treatment for a 65-yo patient with <u>right-sided</u>, MSS, pan-RAS WT mCRC with a BRAF V600E mutation?

Reimbursement and regulatory issues aside, what would be your most likely treatment for a 65-yo patient with left-sided, MSS, pan-RAS WT mCRC and BRAF V600E mutation who received FOLFOXIRI/bev with progression 8 months later on bev/5-FU (PS 0)?

mCRC with BRAF V600E tumor mutations

- Sequencing of treatment
- Impact of tumor sidedness
- Optimal integration of targeted therapy: Efficacy/toxicity, selection of regimen

Reimbursement and regulatory issues aside, for a patient with pan-RAS WT mCRC and a HER2 mutation or amplification, when would you generally administer anti-HER2 therapy?

First line 📒 1

Second line

Third line or beyond

For a patient with HER2 mutated/amplified mCRC, regulatory and reimbursement issues aside, what would be your preferred HER2-targeted agent(s)?

mCRC with HER2 mutations/amplifications

- Testing
- Use and sequencing of anti-HER2 therapy

Pertuzumab (1), Lapatinib (1)

A Cancer Center Designated by the National Cancer Institute

The Emergence of Targeted Therapy for Patients with Metastatic Colorectal Cancer (mCRC) and BRAF V600E Tumor Mutations; HER2 and Other Potential Biomarkers

Howard S Hochster, MD

Distinguished Professor of Medicine Rutgers Robert Wood Johnson Medical School Rutgers-CINJ Associate Director Clinical Research Director, Clinical Oncology Research RWJBarnabas Health New Brunswick, New Jersey

Disclosures

RUTGERS Cancer Institute of New Jersey RUTGERS HEALTH

Salient Facts

- BRAF MT
 - V600E accounts for 90% of mutations
 - Found in <10% of all mCRC patients
 - It is associated with a poor prognosis in non-MSI High patients.
 - Associated with right sided tumors, females and are more likely to have peritoneal disease.
 - Single agent BRAF inhibitors in mCRC have had negligible benefit of 5%.

Final Study Design: BEACON

Results of Safety Lead-In led to the introduction of an additional primary endpoint of ORR and an interim OS analysis to allow for early assessment

Secondary Endpoints: Doublet vs Control OS & ORR, PFS, Safety

Randomization was stratified by ECOG PS (0 vs. 1), prior use of irinotecan (yes vs. no), and cetuximab source (US-licensed vs. EU-approved).

RUTGERS

Cancer Institute of New Jersey RUTGERS HEALTH

Kopetz S et al. N Engl J Med 2019;381:1632-43.

A Cancer Center Designated by the National Cancer Institute

Primary Endpoint BEACON - Overall Survival: Triplet vs Control (all randomized patients)

Cancer Center Designated by the National Cancer Institute 8

Kopetz S et al. *N Engl J Med* 2019;381:1632-43.

RUTGERS HEALTH

Overall Survival: Doublet vs Control (all randomized patients)

RUTGERS

Cancer Institute of New Jersey

Kopetz S et al. N Engl J Med 2019;381:1632-43.

NCI Comprehensive Cancer Center A Cancer Center Designated by the National Cancer Institute

Efficacy	Triplet Regimen	Doublet Regimen	Control
Median OS (n = 224, 220, 221)	9.0 mo	8.4 mo	5.4 mo
	HR = 0.52, p<0.001	HR = 0.60,p <0.001	Reference
Median PFS (n = 224, 220, 221)	4.3 mo	4.2 mo	1.5 mo
	HR = 0.38, p<0.001	HR = 0.40, p<0.001	Reference
ORR (n = 111, 113, 107)	29%	23%	2%
	p<0.001	p<0.001	Reference

Cancer Institute of New Jersey

Kopetz S et al. *N Engl J Med* 2019;381:1632-43.

BEACON: Safety Summary

Safety	Triplet Regimen (N = 222)	Doublet Regimen (N = 216	Control (N = 193)
Grade ≥3 AEs	58%	50%	61%
Diarrhea (Grade ≥3)	10%	2%	10%
Acneiform dermatitis (Grade ≥3)	2%	<1%	3%
Nausea (Grade ≥3)	5%	<1%	1%
Fatigue (Grade ≥3)	2%	4%	4%
Treatment discontinuation	7%	8%	11%
Median duration of exposure to trial treatment	21 weeks	19 weeks	7 weeks

- Relative dose intensities were similar in the triplet-therapy group and the doublet-therapy group.
- Adverse events were as anticipated based on prior trials with each combination.

RUTGERS

Cancer Institute of New Jersey RUTGERS HEALTH

Kopetz S et al. *N Engl J Med* 2019;381:1632-43.

S1406: VIC (Vemurafenib, Cetuximab and Irinotecan) Primary Endpoint: Progression-free survival

Presented By Scott Kopetz at 2017 Gastrointestinal Cancers Symposium

RITIGERS

Cancer Institute

of New Jersey

RUTGERS HEALTH

S1406: VIC (Vemurafenib, Cetuximab and Irinotecan) Response Rate

	Cetuximab + Irinotecan (n=45)ª	Vemurafenib + Cetuximab + Irinotecan (n=43)ª	P-value ^c
Partial response	4%	16%	
Stable disease	17%	48%	- P=0.001
Progression⁵	56%	12%	

Disease Control Rate

RITIGERS

Cancer Institute

of New Jersey

RUTGERS HEALTH

22%

^a93 patients had measurable disease; 5 patients did not have restaging results at time of data cutoff (10/11/16); ^b Including symptomatic deterioration; ^c Chi-squared

PRESENTED AT: 2017 Gastrointestinal Cancers Symposium #GI17 Presented by: Scott Kopetz, MD, PhD Slides are the property of the author. Permission required for reuse.

67%

Duration of Response

Acting State Program of the State St

Presented By Scott Kopetz at 2017 Gastrointestinal Cancers Symposium

Comparison of RR and PFS for BRAF-V600E Mutated CRC

Regimen	Response Rate	PFS	Citation
Single/doublet BRAF/MEK			
Vemurafenib	5%	2.1 months	Kopetz, ASCO '10
Dabrafenib	11%	NR	Falchook, Lancet '08
Encorafenib	16%	NR	Gomez-Roca, ESMO '14
Dabrafenib + trametinib	12%	3.5 months	Corcoran, ASCO '14
Doublet with EGFR			
Vemurafenib + panitumumab	13%	3.2 months	Yeager et al, CCR '14
Vemurafenib + cetuximab	20%	3.2 months	Tabernero et al, ASCO '14
Encorafenib + cetuximab [R]	23%	4.2 months	Tabernero et al, ESMO '19
Dabrafenib + panitumumab	10%	3.4 months	Atreya, ASCO '15
Triplet with EGFR			
Vemurafenib + cetuximab + irinotecan [R]	35%	4.2 months	Kopetz, ASCO '17
Encorafenib + binimetinib + cetuximab [R]	26%	4.3 months	Tabernero, ESMO '19
Dabrafenib + trametinib + panitumumab	26%	4.1 months	Atreya, ASCO '15
Encorafenib + cetuximab + alpelisib	32%	4.4 months	Tabernero et al, ESMO '14

HER2 Amplification: 4% of CRC Tumors

- Mutually exclusive with RAS/BRAF mutations
- Prevalence of 7-8% of RAS/BRAF wild type tumors eligible for EGFR inhibitors

HER2 Amplification and Mutations

- 8887 CRC (colonic 85.5% and rectal 14.5%) evaluated by comprehensive genomic profiling for genomic alterations in 315 cancer-related genes,
- 569 mCRCs were positive for ERBB2 (429 cases; 4.8%) and/or ERBB3 (148 cases; 1.7%) and featured ERBB amplification, short variant alterations, or a combination of the 2.
- In the HERACLES-A study, 48/914
 (5%) patients with KRAS ex2 WT harbored ampl/overexpression

RUTGERS

Cancer Institute of New Jersey RUTGERS HEALTH

HERACLES: Trastuzumab + Lapatinib in HER2 2+/3+

*3 patients are not shown: 122026 (IHC 2+), not assessed yet; 121011 (IHC 3+) and 121013 (IHC 3+) early clinical PD.

RUTGERS

Cancer Institute of New Jersey RUTGERS HEALTH Siena

Siena S, et al. J Clin Oncol. 2015;33(suppl):Abstract 3508.

MyPathway: Trastuzumab + Pertuzumab in HER2 Amp

• RR 38% ; PFS: 4.6 m

RUTGERS

Cancer Institute of New Jersey RUTGERS HEALTH 5.7 months vs 1.4 months for concurrent KRAS WT vs MUT

Hurwitz H, et al. Presented at ASCO GI 2017: Abstract 676.

Dual Inhibition: SWOG 1613 Study Schema

Mechanisms of Action of Novel HER2-Targeted Agents

Agent	Mechanism of action	Defining features
Tucatinib ¹	Selective small molecular tyrosine kinase inhibitor	Potent selective inhibitor of HER2 but not EGFR, resulting in decreased potential for EGFR-related toxicities
Margetuximab ²	Chimeric monoclonal antibody	Binds Fab region of HER2 but also Fc- engineered to activate and enhance immune responses compared to trastuzumab (binds Fab only)
Trastuzumab deruxtecan ³	Antibody-drug conjugate	Humanized HER2 antibody with cleavable peptide-based linker and potent topoisomerase I inhibitor (exatecan derivative) payload

RUTGERS Cancer Institute of New Jersey RUTGERS HEALTH

¹Tolaney S. ASCO 2018. Metastatic Breast Cancer Poster Discussion Session Discussant; ²Rugo H et al. ASCO 2019;Abstract 1000; ³Modi S et al. ASCO 2019;Abstract TPS1102.

DS-8201a: Trastuzumab deruxtecan

RUTGERS

Cancer Institute of New Jersey RUTGERS HEALTH

Yoshino T et al. ESMO GI 2018; Abstract P-295.

A Cancer Center Designated by the National Cancer Institute

MOUNTAINEER: Trastuzumab and Tucatinib for HER2-Amplified mCRC

RUTGERS

RUTGERS HEALTH

Comprehensive NCI **Cancer Cente**

Conclusions:

- BRAF V600E is a poor prognostic indicator for OS = BAD
 - Reduced median OS with standard chemotherapy (FOLFOX/FOLFIRI) = 12-14 mos, but improved to 17-19 mos with FOLFOXIRI-bev as 1L therapy
- TARGETED THERAPY EFFECTIVE = **GOOD**
 - BEACON = triplet and doublet NON-CHEMO were superior for OS vs. control (irinotecan/FOLFIRI + cetuximab) in 2L/3L
 - Superiority of triplet regimen vs. doublet regimen cannot be determined and was not so powered
 - VIC regimen (Vemurafenib, irinotecan, Cetux) appears equally effective
 - S1406 and BEACON demonstrate poor PFS with standard chemo of < 2M in the refractory setting
 - It is **premature** to adopt the BEACON triplet regimen for treatment-naïve patients
- HER2 amplification is a negative predictive factor = BAD
 - HER2 directed therapy appears promising and effective; S1613 enrolling

RUTGERS

Cancer Institute of New Jersey