Contemporary Treatment Approaches for Patients with Pancreatic Cancer

Philip A Philip, MD, PhD, FRCP
Kathryn Cramer Endowed Chair in Cancer Research
Professor of Oncology and Pharmacology
Leader, GI and Neuroendocrine Oncology
Karmanos Cancer Institute
Wayne State University
Detroit, Michigan
Sequencing therapy in metastatic disease

First-line treatment

• “Younger older” patients
• Patients who have received prior neoadjuvant therapy

Later-line treatment (Nal-IRI)
What is your usual first-line therapy recommendation for a 75-yr patient with newly diagnosed metastatic pancreatic cancer who is ambulatory but unable to work (PS 2)?

- Gemcitabine/nab paclitaxel: 13
- Gemcitabine: 7
- Modified FOLFIRINOX: 1
- Palliative care: 2

A 77-yr patient who is not considered a candidate for FOLFIRINOX receives gemcitabine/nab paclitaxel for metastatic pancreatic cancer and experiences disease progression after 5 months. What second-line therapy would you recommend?

- Nal-IRI + 5-FU/LV: 14
- FOLFOX: 7
- FOLFIRI: 2

In general, which treatment would you recommend for a 65-yr patient (PS 0) who receives first-line FOLFIRINOX followed by second-line gemcitabine/nab paclitaxel for metastatic pancreatic cancer and experiences disease progression?

- Nal-IRI + 5-FU/LV: 9
- Capecitabine: 2
- FOLFIRI: 1
- Palliative care: 2

Sequencing therapy in metastatic disease

First-line treatment
- “Younger older” patients
- Patients who have received prior neoadjuvant therapy

Later-line treatment (Nal-IRI)
Contemporary Treatment Approaches for Patients with Pancreatic Cancer

Philip A Philip, MD, PhD, FRCP
Kathryn Cramer Endowed Chair in Cancer Research
Professor of Oncology and Pharmacology
Leader, GI and Neuroendocrine Oncology
Karmanos Cancer Institute
Wayne State University
Detroit, Michigan
Disclosures

<table>
<thead>
<tr>
<th>Advisory Committee</th>
<th>ASLAN Pharmaceuticals, BioLineRx, Caris Life Sciences, Celgene Corporation, Eisai Inc, Erytech Pharma, Halozyme Inc, Ipsen Biopharmaceuticals Inc, Merck, TriSalus Life Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consulting Agreements</td>
<td>AbbVie Inc, Merck, Rafael Pharmaceuticals Inc, TriSalus Life Sciences</td>
</tr>
<tr>
<td>Contracted Research</td>
<td>Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, BeiGene, BioLineRx, Boston Biomedical Inc, Bristol-Myers Squibb Company, Caris Life Sciences, Celgene Corporation, Halozyme Inc, Incyte Corporation, Lilly, Novartis, Novocure, QED Therapeutics, Rafael Pharmaceuticals Inc, Roche Laboratories Inc, Taiho Oncology Inc</td>
</tr>
<tr>
<td>Data and Safety Monitoring Board/Committee</td>
<td>ASLAN Pharmaceuticals, Blueprint Medicines, Erytech Pharma, Lexicon Pharmaceuticals Inc</td>
</tr>
<tr>
<td>Speakers Bureau</td>
<td>Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb Company, Celgene Corporation, Ipsen Biopharmaceuticals Inc, Merck</td>
</tr>
</tbody>
</table>
Incremental improvement in systemic therapies that are largely based on cytotoxic drugs

Metastatic Pancreatic Cancer: ASCO Clinical Practice Guideline Update

Initial Assessment

• The goals of care
 • Include discussion of an advance directive

• Patient preferences

• Support systems should be discussed with every patient with metastatic pancreatic cancer and his or her caregivers

Metastatic Pancreatic Cancer: ASCO Clinical Practice Guideline Update

Treatment recommendations

- ECOG PS 0-1
- Favorable comorbidity profile
- Patient preference
- Support system for aggressive medical therapy → FOLFIRINOX

- ECOG PS of 2, or
- A comorbidity profile that precludes more aggressive regimens and who wish to pursue cancer-directed therapy → Gem

- ECOG PS 0-1
- Favorable comorbidity profile
- Patient preference
- Support system for *a relatively aggressive* medical therapy → Gem Nab-paclitaxel

- ECOG PS >3, or
- with poorly controlled comorbid conditions despite ongoing active medical care → Supportive care

Second-Line Oxaliplatin-Based Regimens: Conflicting Results From Phase III Trials

<table>
<thead>
<tr>
<th>Patients (N = 268)</th>
<th>CONKO-003 PD on Gem Therapy (n = 160)</th>
<th>PANCREOX Previous Gem Therapy (n = 108)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>OFF (n = 76)</td>
<td>mFOLFOX6 (n = 54)</td>
</tr>
<tr>
<td></td>
<td>5-FU/LV (n = 84)</td>
<td>5-FU/LV (n = 54)</td>
</tr>
<tr>
<td>OS, median</td>
<td>5.9 months</td>
<td>6.1 months</td>
</tr>
<tr>
<td></td>
<td>HR 0.66 (95% CI, 0.48–0.91)</td>
<td>HR 1.78 (95% CI, 1.08–2.93)</td>
</tr>
<tr>
<td></td>
<td>P = .01</td>
<td>P = .02</td>
</tr>
<tr>
<td>PFS, median</td>
<td>2.9 months</td>
<td>3.1 months</td>
</tr>
<tr>
<td></td>
<td>HR 0.68 (95% CI, 0.50–0.94)</td>
<td>HR 1.00 (95% CI, 0.66–1.53)</td>
</tr>
<tr>
<td></td>
<td>P = .02</td>
<td>P = .99</td>
</tr>
</tbody>
</table>

Phase 3 trial of Nano-liposomal irinotecan + 5-FU/LV as 2nd-line therapy for metastatic pancreatic cancer (NAPOLI-1)

- Metastatic pancreatic cancer
- Received prior gemcitabine-based therapy
- N=417

Primary endpoint: OS
Secondary endpoints: PFS, ORR, CA19-9 response, safety

- **Nal-IRI**
 - (120 mg/m2 Q3W)
 - n=151

- **5-FU/LV**
 - (2000 mg/m2 over 24 h / 200 mg/m2 weekly Q6W)
 - n=149

- **Nal-IRI + 5-FU/LV**
 - (80 mg/m2 + 2400 mg/m2 over 46 h / 400 mg/m2 Q2W)
 - n=117

Stratification: Albumin, KPS, ethnicity

NAPOLI-1: Study outcome

<table>
<thead>
<tr>
<th>Grade 3 or 4 Toxicity</th>
<th>Nano-liri-5FU/LCV</th>
<th>5FU/LCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>13 %</td>
<td>4%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>11%</td>
<td>3%</td>
</tr>
<tr>
<td>Appetite</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>14%</td>
<td>4%</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>27%</td>
<td>1%</td>
</tr>
</tbody>
</table>

NAPOX: moving Nal-Iri to the front line

Nal-Iri/5FU/LV/Oxaliplatin

Cohort A
70/2400/400/60

Cohort B
50/2400/400/60

Cohort C
50/2400/400/85

Cohort D
55/2400/400/70

No grade 3 or higher fatigue or neuropathy

Wainberg et al, ESMO GI, 2019

Phase III

N = 750, Overall Survival

Nal-Iri 50 mg/m²
5FU 2,400 mg/m²
Oxaliplatin 60 mg/m²
Q 2 weeks

Gemcitabine/
Nab-paclitaxel
standard

Phase III

No grade 3 or higher fatigue or neuropathy

Wainberg et al, ESMO GI, 2019

NCT04083235
PRODIGE 24/CCTG PA.6:
Phase III adjuvant trial in resected pancreatic cancer

Stratification, by:
- Center
- CA 19-9
- pN status
- Resection margin

Primary endpoint = DFS
CT scans Q 3 months

Modified FOLFIRINOX
Oxaliplatin 85 mg/m²
Irinotecan 180 (150) mg/m²
5FU 2,400 mg/m²
X 12 cycles

Gemcitabine
Standard dose
X 6 cycles

Disease-free survival and overall survival were significantly improved with modified FOLFIRINOX

APACT: Phase III, Open-Label, Randomized Trial of Adjuvant nab-Paclitaxel plus Gemcitabine vs Gemcitabine for Resected Pancreatic Adenocarcinoma

Resected PDAC
R0/R1; ECOG PS 0 or 1; CA19-9 < 100

Randomized 1:1

Arm A
nab-Paclitaxel 125 mg/m² qw 3/4 +
Gemcitabine 1000 mg/m² qw 3/4
× 6 cycles

Arm B
Gemcitabine 1000 mg/m² qw 3/4
× 6 cycles

866 patients; 179 sites; 21 countries

- Patients were randomized no later than 12 weeks post surgery
- Stratification factors: R0 vs R1; LN+ vs LN−; North America, Europe and Australia vs Asia Pacific

Tempero et al, Abstract #4000, ASCO, 2019
APACT did not meet the primary endpoint but demonstrated significant improvement in OS.

Temperature et al., Abstract #4000, ASCO, 2019.
Evolution of adjuvant therapies in pancreatic cancer: median overall survival times in months

- Observe: 19 months
- RTOG: 20.5 months
- ESPAC1: 21.6 months
- CONKO1: 22.8 months
- ESPAC3: 23.6 months
- EORTC: 24.5 months
- ESPAC4: 28.0 months
- IMPRESS: 30.4 months
- CONKO5: 28.0 months
- JASPAC1: 46.5 months
- APACT: 40.5 months
- PRODIGE: 54.4 months

Treatments: S1, Nab-paclitaxel/gemcitabine, FOLFIRINOX
It Is a Challenge to Give Enough Combination Chemo After Surgery!

<table>
<thead>
<tr>
<th></th>
<th>PRODIGE[a]</th>
<th>ESPAC-4[b]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FOLFIRINOX</td>
<td>Gemcitabine</td>
</tr>
<tr>
<td>Completed all cycles</td>
<td>66.4</td>
<td>79.0</td>
</tr>
<tr>
<td>Relative dose intensity of > 0.70</td>
<td>48.7%</td>
<td>91.4%</td>
</tr>
</tbody>
</table>

More Patients Will Receive Effective Systemic Therapy With the Neoadjuvant Approach

100 Newly diagnosed resectable

100% receive chemo.

80 R0/R1

15% spared futile surgery

85 Surgery

50 Adjuvant chemo

50 Complete adjuvant

≤ 50% receive chemo.

50 Adjuvant chemo

15 Relapsed

> 15% futile surgery

15 Progression

15% spared futile surgery
S-1505: picking a winner neoadjuvant regimen for resectable disease

- RESECTABLE
 - mFOLFIRINOX 12 weeks
 - Gemcitabine Nab-paclitaxel 12 weeks
- RESTAGING
- SURGERY
 - mFOLFIRINOX 12 weeks
 - Gemcitabine Nab-paclitaxel 12 weeks

Primary endpoint is survival at 20 months

N = 150

Off study if,
Toxicity
Unresectability
Role of Multimodality Therapy: The Literature Helps, But Also Confusing!

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients [n]</th>
<th>Regimen</th>
<th>Resection rate [%]</th>
<th>R0 rate [% of resected]</th>
<th>Median OS [months]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neoadjuvant trials of upfront chemoradiotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoffman et al. (1998)</td>
<td>62</td>
<td>FU + Mitomycin + 50.4 Gy</td>
<td>45.3</td>
<td>70.8</td>
<td>16</td>
</tr>
<tr>
<td>Mornex et al. (2006)</td>
<td>41</td>
<td>PF + 50 Gy</td>
<td>63.4</td>
<td>80.7</td>
<td>12</td>
</tr>
<tr>
<td>Turrini et al. (2009)</td>
<td>102</td>
<td>PF + 45 Gy</td>
<td>60.8</td>
<td>91.8</td>
<td>23</td>
</tr>
<tr>
<td>Evans et al. (2008)</td>
<td>86</td>
<td>Gem + 30 Gy</td>
<td>64.4</td>
<td>86.4</td>
<td>34</td>
</tr>
<tr>
<td>Pisters et al. (2002)</td>
<td>37</td>
<td>PXL + 30 Gy (IORT)</td>
<td>54.1</td>
<td>70</td>
<td>19</td>
</tr>
<tr>
<td>Golcher et al. (2015)</td>
<td>29</td>
<td>PG + 55.8 Gy</td>
<td>65.5</td>
<td>89.5</td>
<td>25</td>
</tr>
<tr>
<td>Pisters et al. (1998)</td>
<td>35</td>
<td>FU + 30 Gy (IORT)</td>
<td>57</td>
<td>51</td>
<td>37</td>
</tr>
<tr>
<td>Sho et al. (2013)</td>
<td>61</td>
<td>Gem + 50.4-54Gy</td>
<td>97</td>
<td>92</td>
<td>NR</td>
</tr>
<tr>
<td>Van Buren et al. (2013)</td>
<td>59</td>
<td>Gem + Bev + 30 Gy</td>
<td>73</td>
<td>88</td>
<td>17</td>
</tr>
<tr>
<td>Neoadjuvant trials of chemotherapy alone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmer et al. (2007)</td>
<td>50</td>
<td>Gem vs. PG</td>
<td>37.5 (Gem) 69.2 (PG)</td>
<td>75</td>
<td>28</td>
</tr>
<tr>
<td>Heinrich et al. (2008)</td>
<td>28</td>
<td>PG</td>
<td>89.3</td>
<td>80</td>
<td>27</td>
</tr>
<tr>
<td>O’Reilly et al. (2014)</td>
<td>38</td>
<td>GemOx</td>
<td>71</td>
<td>74</td>
<td>27</td>
</tr>
<tr>
<td>Tajima et al. (2012)</td>
<td>34</td>
<td>Gem + S1</td>
<td>100</td>
<td>85</td>
<td>56% at 24</td>
</tr>
<tr>
<td>Neoadjuvant trials of chemotherapy followed by chemoradiation therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varadhachary et al. (2008)</td>
<td>90</td>
<td>PG - > 30 Gy + Gem</td>
<td>57.8</td>
<td>96.2</td>
<td>31</td>
</tr>
<tr>
<td>Talamonti et al. (2006)</td>
<td>20</td>
<td>Gem - > 36Gy</td>
<td>85</td>
<td>80</td>
<td>26 (resected)</td>
</tr>
<tr>
<td>Faris et al. (2013)</td>
<td>22</td>
<td>FOLFIRINOX +/- CRT</td>
<td>55</td>
<td>42</td>
<td>NR</td>
</tr>
</tbody>
</table>
Conclusions

- FOLFIRINOX and gemcitabine/nab-paclitaxel are appropriate regimens for first line therapy with comparable efficacy
- Careful patient assessment and discussion is very important
- Nal-Iri/5FU/LCV improves survival in patients after gemcitabine based therapy
 - Current development of Nal-Iri in frontline therapy
- mFOLFIRINOX is preferred adjuvant treatment, other options include gemcitabine/capecitabine, gemcitabine/nab-paclitaxel, or gemcitabine
- Neoadjuvant therapy is preferred in patients with potentially resectable pancreatic cancer