Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

Chronic Lymphocytic Leukemia

Friday, December 4, 2020 12:00 PM – 1:30 PM Pacific Time

Faculty

Paul M Barr, MD Matthew S Davids, MD, MMSc Kerry Rogers, MD

Tanya Siddiqi, MD Stephan Stilgenbauer, MD

Moderator

Neil Love, MD

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Genentech, a member of the Roche Group, Pharmacyclics LLC, an AbbVie Company, and Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following commercial interests: AbbVie Inc, Acerta Pharma — A member of the AstraZeneca Group, Adaptive Biotechnologies Corporation, Agendia Inc, Agios Pharmaceuticals Inc, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Biodesix Inc, bioTheranostics Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Daiichi Sankyo Inc, Dendreon Pharmaceuticals Inc, Eisai Inc, EMD Serono Inc, Epizyme Inc, Exelixis Inc, Foundation Medicine, Genentech, a member of the Roche Group, Genmab, Genomic Health Inc, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Guardant Health, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Infinity Pharmaceuticals Inc, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lexicon Pharmaceuticals Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Merrimack Pharmaceuticals Inc, Myriad Genetic Laboratories Inc, Natera Inc, Novartis, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Prometheus Laboratories Inc, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sandoz Inc, a Novartis Division, Sanofi Genzyme, Seagen Inc, Sirtex Medical Ltd, Spectrum Pharmaceuticals Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Oncology, Tesaro, A GSK Company, Teva Oncology, Tokai Pharmaceuticals Inc and Verastem Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Barr — Disclosures

Consulting Agreements	AbbVie Inc, AstraZeneca Pharmaceuticals LP, Celgene Corporation, Genentech, a member of the Roche Group, Gilead Sciences Inc, Janssen Biotech Inc, Merck, MorphoSys, Pharmacyclics LLC, an AbbVie Company, Seagen Inc, TG Therapeutics Inc
Contracted Research	AstraZeneca Pharmaceuticals LP
Data and Safety Monitoring Board/Committee:	TG Therapeutics Inc

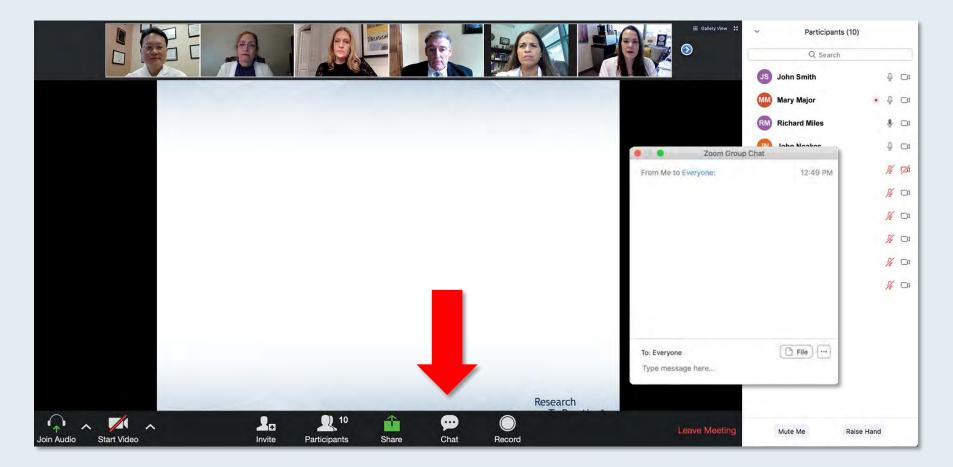
Dr Davids — Disclosures

Advisory Committee	AbbVie Inc, Ascentage Pharma, AstraZeneca Pharmaceuticals LP, Celgene Corporation, Genentech, a member of the Roche Group, Janssen Biotech Inc, Lilly, Pharmacyclics LLC, an AbbVie Company, TG Therapeutics Inc
Consulting Agreements	AbbVie Inc, Adaptive Biotechnologies Corporation, AstraZeneca Pharmaceuticals LP, BeiGene, Genentech, a member of the Roche Group, Janssen Biotech Inc, Lilly, MEI Pharma Inc, Merck, Novartis, Pharmacyclics LLC, an AbbVie Company, Verastem Inc, Zentalis Pharmaceuticals
Contracted Research	AbbVie Inc, Ascentage Pharma, AstraZeneca Pharmaceuticals LP, Genentech, a member of the Roche Group, MEI Pharma Inc, Novartis, Pharmacyclics LLC, an AbbVie Company, Surface Oncology, TG Therapeutics Inc, Verastem Inc

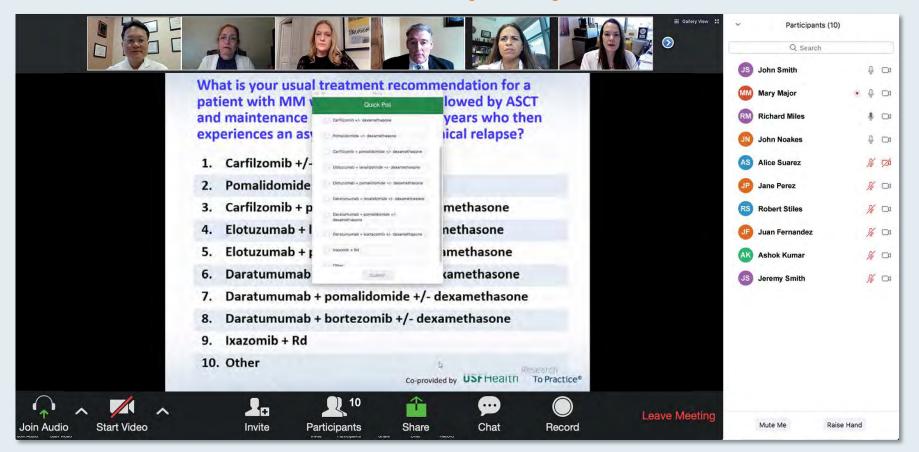
Dr Rogers — Disclosures

Consulting Agreements	AbbVie Inc, Acerta Pharma — A member of the AstraZeneca Group, AstraZeneca Pharmaceuticals LP, Pharmacyclics LLC, an AbbVie Company
Contracted Research	AbbVie Inc, Genentech, a member of the Roche Group, Janssen Biotech Inc
Travel	AstraZeneca Pharmaceuticals LP

Dr Siddiqi — Disclosures


Advisory Committee	Celgene Corporation, Juno Therapeutics, a Celgene Company, Kite, A Gilead Company, Pharmacyclics LLC, an AbbVie Company
Data and Safety Monitoring Board/Committee	BeiGene
Speakers Bureau	AstraZeneca Pharmaceuticals LP, Janssen Biotech Inc, Pharmacyclics LLC, an AbbVie Company

Dr Stilgenbauer — Disclosures


We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface How to answer poll questions

When a poll question pops up, click your answer choice from the available options. Results will be shown after everyone has answered.

Upcoming Webinars

Tuesday, December 8, 2020 5:00 PM – 6:00 PM ET

Year in Review: Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology **Colorectal and Gastroesophageal Cancers**

Faculty Peter C Enzinger, MD Zev Wainberg, MD, MSc

Moderator Neil Love, MD Wednesday, December 9, 2020 12:30 PM – 1:30 PM ET

Meet The Professor: Immunotherapy and Novel Agents in Gynecologic Cancers

Faculty Gottfried E Konecny, MD

Moderator Neil Love, MD

Upcoming Webinars

Thursday, December 10, 2020 8:30 PM – 10:00 PM ET

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of HER2-Positive Breast Cancer

Faculty

Carey K Anders, MD Erika Hamilton, MD Sara Hurvitz, MD Mark D Pegram, MD Sara M Tolaney, MD, MPH

Moderator Neil Love, MD Friday, December 11, 2020 8:30 PM – 10:00 PM ET

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Triple-Negative Breast Cancer

Faculty P Kelly Marcom, MD Joyce O'Shaughnessy, MD Hope S Rugo, MD Professor Peter Schmid, MD, PhD

Moderator Neil Love, MD

Thank you for joining us!

CME credit information will be emailed to each participant within 3 business days.

ONCOLOGY TODAY WITH DR NEIL LOVE

FRONT-LINE TREATMENT OF CHRONIC LYMPHOCYTIC LEUKEMIA

DR JOHN PAGEL SWEDISH CANCER INSTITUTE

SEATTLE, WASHINGTON

Dr John Pagel Front-Line Treatment of Oncology Today with Dr Neil Love —

(15) (30)

Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

Acute Myeloid Leukemia

Friday, December 4, 2020 3:00 PM – 4:30 PM Pacific Time

Faculty

Mark Levis, MD, PhD Alexander Perl, MD Daniel A Pollyea, MD, MS Eytan M Stein, MD Professor Andrew H Wei, MBBS, PhD

Moderator

Neil Love, MD

Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

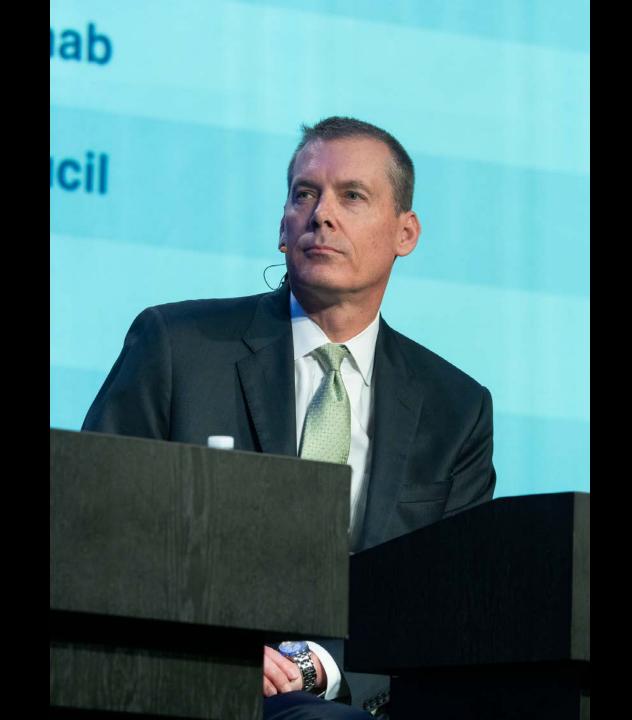
Hodgkin and Non-Hodgkin Lymphoma

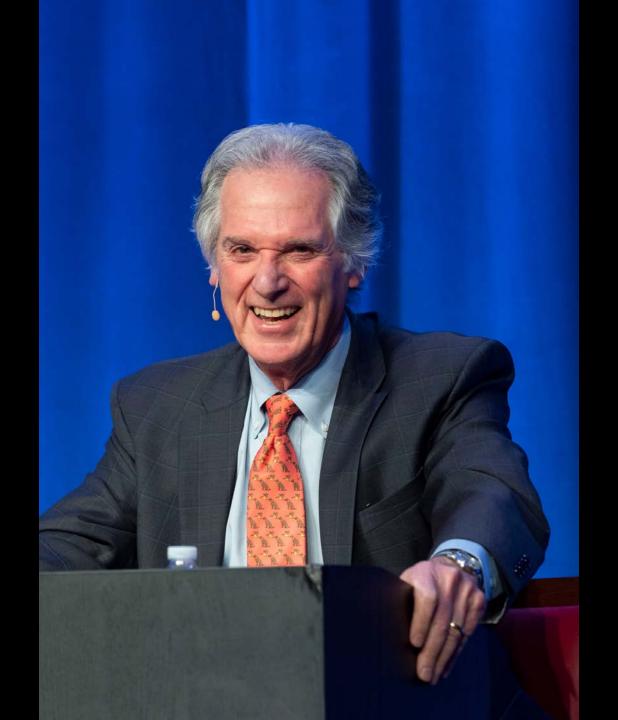
Friday, December 4, 2020 7:00 PM – 8:30 PM Pacific Time

FacultyJonathan W Friedberg, MD, MMScJohn P Leonard, MDJohn Kuruvilla, MDMichael E Williams, MD, ScMAnn S LaCasce, MD, MMScImage: State of the second se

Moderator

Neil Love, MD





Acalabru obinutuzuma Obinutue + chlorambuc Izumab

Jeremy Abram MD Bruce D Ches DD Prof John

D٥

Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

Chronic Lymphocytic Leukemia

Friday, December 4, 2020 12:00 PM – 1:30 PM Pacific Time

Faculty

Paul M Barr, MD Matthew S Davids, MD, MMSc Kerry Rogers, MD

Tanya Siddiqi, MD Stephan Stilgenbauer, MD

Moderator

Neil Love, MD

Faculty

Paul M Barr, MD

Medical Director, Clinical Trials Office Professor of Medicine James P Wilmot Cancer Institute University of Rochester Medical Center Rochester, New York

Kerry Rogers, MD Assistant Professor in the Division of Hematology The Ohio State University Columbus, Ohio

Matthew S Davids, MD, MMSc Associate Professor of Medicine Harvard Medical School Director, DFCI Lymphoma BioBank Associate Director, CLL Center Dana-Farber Cancer Institute Boston, Massachusetts

Tanya Siddiqi, MD Associate Professor Director, Chronic Lymphocytic Leukemia Program Department of Hematology and Hematopoietic Cell Transplantation City of Hope National Medical Center

Duarte, California

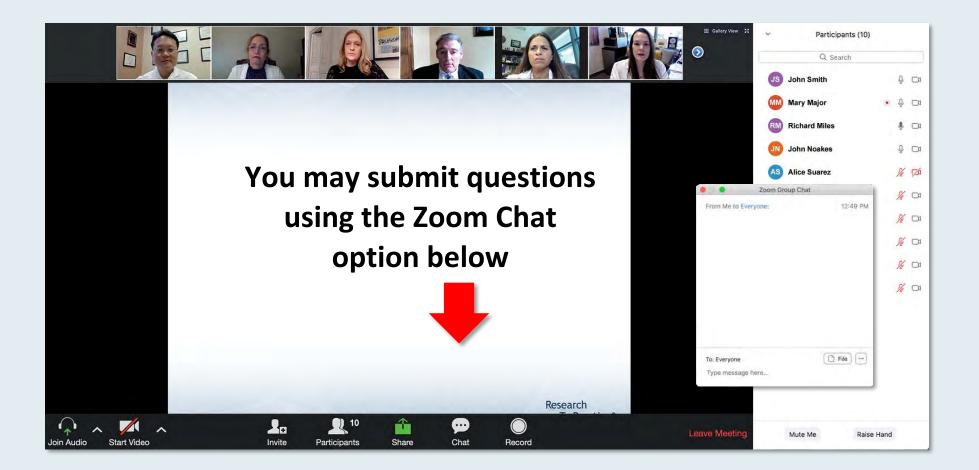
Faculty

Stephan Stilgenbauer, MD Department of Internal Medicine I Saarland University Department of Internal Medicine III Ulm University Homburg, Germany

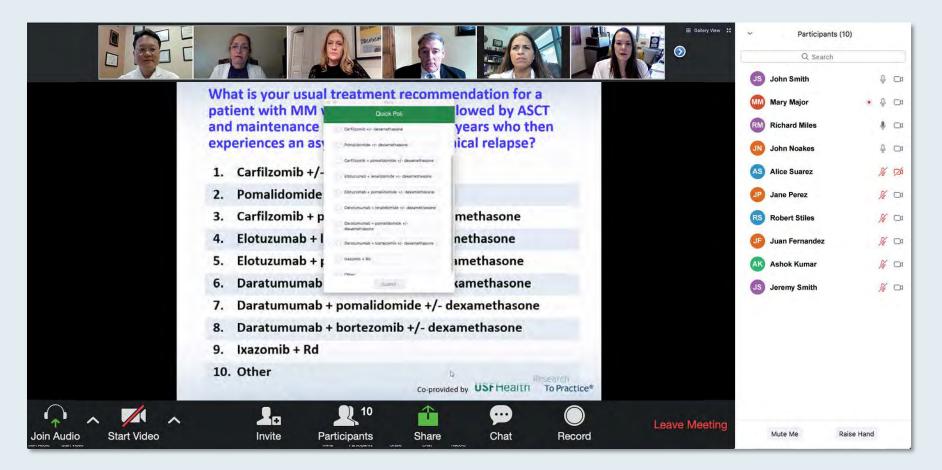
Moderator Neil Love, MD Research To Practice Miami, Florida

Consensus or Controversy Survey Participants (in Addition to Our Faculty)

Brad S Kahl, MD Siteman Cancer Center St Louis, Missouri


Jeff Sharman, MD Willamette Valley Cancer Institute and Research Center Eugene, Oregon

John M Pagel, MD, PhD Swedish Cancer Institute Seattle, Washington


We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface How to answer poll questions

When a poll question pops up, click your answer choice from the available options. Results will be shown after everyone has answered.

ONCOLOGY TODAY WITH DR NEIL LOVE

FRONT-LINE TREATMENT OF CHRONIC LYMPHOCYTIC LEUKEMIA

DR JOHN PAGEL SWEDISH CANCER INSTITUTE

SEATTLE, WASHINGTON

Dr John Pagel Front-Line Treatment of Oncology Today with Dr Neil Love —

(15) (30)

Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

Acute Myeloid Leukemia

Friday, December 4, 2020 3:00 PM – 4:30 PM Pacific Time

Faculty

Mark Levis, MD, PhD Alexander Perl, MD Daniel A Pollyea, MD, MS Eytan M Stein, MD Professor Andrew H Wei, MBBS, PhD

Moderator

Neil Love, MD

Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

Hodgkin and Non-Hodgkin Lymphoma

Friday, December 4, 2020 7:00 PM – 8:30 PM Pacific Time

FacultyJonathan W Friedberg, MD, MMScJohn P Leonard, MDJohn Kuruvilla, MDMichael E Williams, MD, ScMAnn S LaCasce, MD, MMScImage: State of the second se

Moderator

Neil Love, MD

Year in Review: Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology

Colorectal and Gastroesophageal Cancers

Tuesday, December 8, 2020 5:00 PM – 6:00 PM ET

Faculty Peter C Enzinger, MD Zev Wainberg, MD, MSc

Meet The Professor Immunotherapy and Novel Agents in Gynecologic Cancers

> Wednesday, December 9, 2020 12:30 PM – 1:30 PM ET

> > Faculty Gottfried E Konecny, MD

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of HER2-Positive Breast Cancer

Thursday, December 10, 2020 8:30 PM – 10:00 PM ET

Faculty

Carey K Anders, MD Erika Hamilton, MD Sara Hurvitz, MD Mark D Pegram, MD Sara M Tolaney, MD, MPH

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Triple-Negative Breast Cancer

Friday, December 11, 2020 8:30 PM – 10:00 PM ET

Faculty

P Kelly Marcom, MD Joyce O'Shaughnessy, MD Hope S Rugo, MD Professor Peter Schmid, MD, PhD

Recent Advances in Hematologic Oncology: A 4-Part Live Webinar Series Reviewing Key Data and Presentations from the 62nd ASH Annual Meeting

Acute Myeloid Leukemia Wednesday, January 20, 2021 5:00 – 6:00 PM ET

Faculty

Daniel A Pollyea, MD, MS Professor Andrew H Wei, MBBS, PhD Additional faculty to be announced

Multiple Myeloma Wednesday, February 10, 2021 5:00 – 6:00 PM ET

Faculty Robert Z Orlowski, MD, PhD Edward A Stadtmauer, MD *Additional faculty to be announced* Hodgkin and Non-Hodgkin Lymphoma Wednesday, February 3, 2021 5:00 – 6:00 PM ET

Faculty John Kuruvilla, MD John P Leonard, MD Michael E Williams, MD, ScM

Chronic Lymphocytic Leukemia Wednesday, February 24, 2021 5:00 – 6:00 PM ET

Faculty Matthew S Davids, MD, MMSc *Additional faculty to be announced*

Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

Chronic Lymphocytic Leukemia

Friday, December 4, 2020 12:00 PM – 1:30 PM Pacific Time

Faculty

Paul M Barr, MD Matthew S Davids, MD, MMSc Kerry Rogers, MD

Tanya Siddiqi, MD Stephan Stilgenbauer, MD

Moderator

Neil Love, MD

ASH CLL 2020 Presentation Library

First-line treatment options for younger, fit patients Paul M Barr, MD

Up-front management of chronic lymphocytic leukemia in older patients or those with comorbidities Stephan Stilgenbauer, MD

Optimal management of adverse events with BTK and Bcl-2 inhibitors Matthew S Davids, MD, MMSc

Selection and sequencing of therapies for relapsed/refractory disease Kerry Rogers, MD

Novel strategies under investigation Tanya Siddiqi, MD

Download Slides

Download Slides

Download Slides

Agenda

Module 1: First-line treatment options for younger, fit patients — Dr Barr

Module 2: Up-front management of chronic lymphocytic leukemia in older patients or those with comorbidities — Dr Stilgenbauer

Module 3: Optimal management of adverse events with BTK and Bcl-2 inhibitors — Dr Davids

Module 4: Selection and sequencing of therapies for relapsed/refractory disease — Dr Rogers

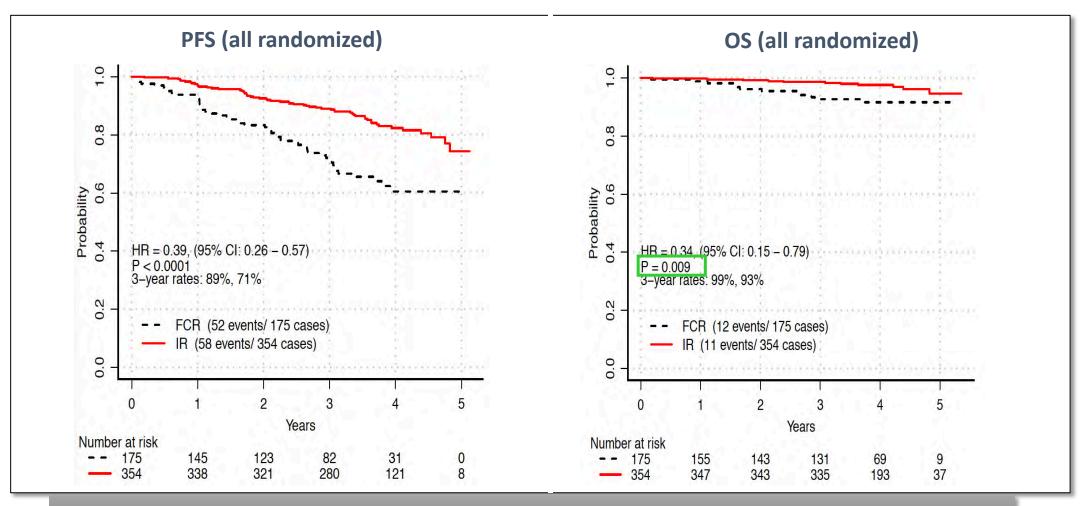
Module 5: Novel strategies under investigation — Dr Siddiqi

Treatment Indications

- Anemia and/or thrombocytopenia (hemoglobin <10 g/dL or platelets <100 x10⁹/L)
- Symptomatic splenomegaly (≥6 cm below the left costal margin)
- Symptomatic lymphadenopathy (≥10 cm in longest diameter)
- Lymphocytosis increase of more than 50% over a 2-month period or lymphocyte doubling time (LDT) of less than 6 months
- Autoimmune anemia and/or thrombocytopenia that is poorly responsive to corticosteroids or other standard therapy
- Symptomatic or functional extranodal involvement (e.g. skin, kidney, lung, spine)
- Constitutional symptoms:
 - Unintentional weight loss of $\geq 10\%$ within the previous 6 months;
 - Significant fatigue (i.e. inability to work or perform usual activities);
 - Fevers higher than 100.5°F or 38.0°C for 2 or more weeks; or
 - Night sweats for ≥1 month without evidence of infection

iwCLL Recommended Testing Before Treatment

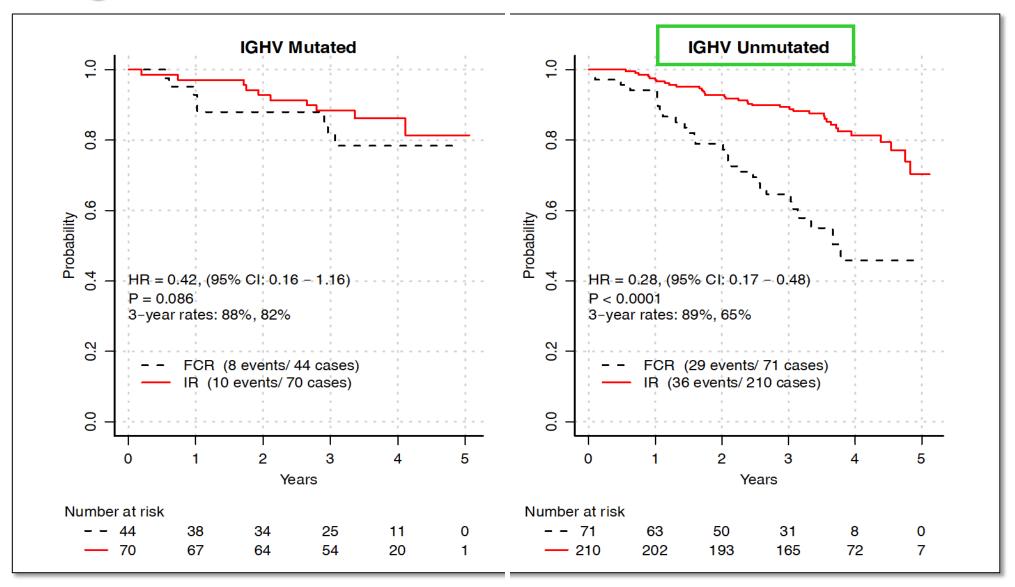
Diagnostic Test	Practice Recommendation
History, physical, infection status	Always
CBC, chemistry, Igs, DAT	Always
Serum β2 microglobulin	Desirable
Marrow aspirate and biopsy	When needed (unclear cytopenia)
CT scan of chest, abdomen, pelvis	If possible
IGHV mutational status	Always*
FISH for add(12), del(13q), del(11q), del(17p) in peripheral blood	Always
TP53 mutation	Always
Conventional karyotyping	Not generally indicated**


*Does not need to be repeated before subsequent therapy

**Conventional karyotyping (with specific stimulation) may be useful before therapy, if established methodology is available

CBC = complete blood count; IGHV = immunoglobin heavy chain variable region; iwCLL = International Workshop on Chronic Lymphocytic Leukemia.

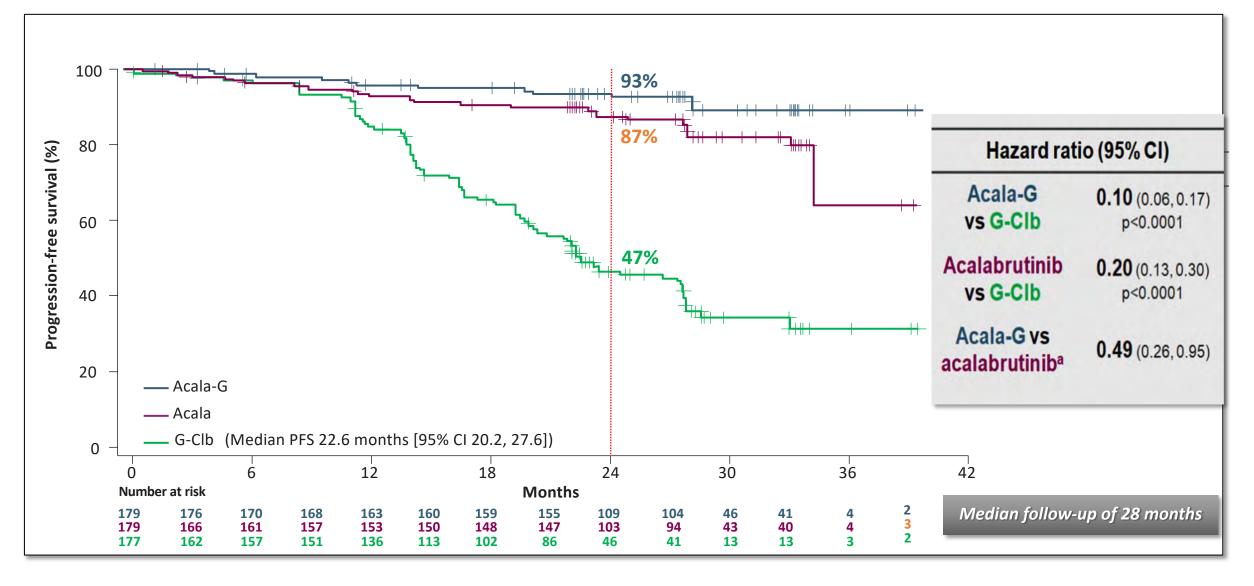
Ibrutinib vs FCR


In Untreated Younger Patients with CLL (E1912)

With a median follow-up of <u>48 months</u>, 73% of IR patients remain on treatment; Only 7% of ibrutinib treated patients progressed while on therapy

Shanafelt TD et al. Blood. 2019; (suppl 1): Abstract 33.

Progression Free Survival: IGHV Status



E1912: Grade 3-5 Treatment-related Adverse Events

Adverse Event	IR (n=352, %)	FCR (n=158, %)	<i>P</i> -value
Anemia	4.3	15.8	<0.001
Arthralgia	5.1	0.6	0.011
Diarrhea	2.6	0.6	0.185
Hemolysis	0	2.5	0.009
Hypertension	8.5	1.9	0.003
Neutrophil count decreased	27	43	<0.001
Platelet count decreased	3.1	15.8	<0.001
Febrile neutropenia	2.3	15.8	<0.001
Infection	7.1	8.9	0.477
Sepsis	0.6	3.2	0.032
Other infections	7.1	6.3	0.851
Cardiac	5.4	0	0.001
Atrial fibrillation	2.8	0	0.036
Other cardiac	3.4	0	0.022
Any Grade 3 or higher AE	69.6	80.4	0.013

Shanafelt TD et al. *Blood*. 2019;(suppl 1):Abstract 33.

ELEVATE-TN: PFS Benefit of Acalabrutinib

Sharman JP et al. Blood. 2019; (suppl 1): Abstract 31.

ELEVATE-TN

Events of Clinical Interest for Acalabrutinib

AEs, n (%)		la-G 178		rutinib 179	-	Clb 169
	Any	Grade ≥3	Any	Grade ≥3	Any	Grade ≥3
Atrial fibrillation	6 (3.4)	1 (0.6)	7 (3.9)	0	1 (0.6)	0
Hypertension	13 (7.3)	5 (2.8)	8 (4.5)	4 (2.2)	6 (3.6)	5 (3.0)
Bleeding	76 (42.7)	3 (1.7)	70 (39.1)	3 (1.7)	20 (11.8)	0
Major bleeding ^a	5 (2.8)	3 (1.7)	3 (1.7)	3 (1.7)	2 (1.2)	0
Infections	123 (69.1)	37 (20.8)	117 (65.4)	25 (14.0)	74 (43.8)	14 (8.3)
Second primary malignancies, excluding NMSC	10 (5.6)	6 (3.4)	5 (2.8)	2 (1.1)	3 (1.8)	2 (1.2)

On November 21, 2019, the FDA approved acalabrutinib for adults with CLL or small lymphocytic lymphoma.

Sharman JP et al. *Blood.* 2019;134(Suppl 1):31. ^aDefined as any serious or grade ≥3 hemorrhagic event, or any grade hemorrhagic event in the central nervous system

Grade 3-5 Treatment-related Adverse Events

BTKi + anti-CD20 arms

Comparing BTKi + anti-CD20 Treated Patients

Adverse Event	IR Arm ³ E1912 n=352	IR Arm⁴ Alliance n=181	AG Arm ¹ ELEVATE-TN n=179
Median Age	57 yrs	71 yrs	70 yrs
Age range	31-70	65-86	41-88
Median follow up (months)	33	38	28
Infection	5%	19%	21%
Atrial fibrillation (all grades)	3% (7%)	6% (14%)	1% (6%)
Bleeding	1%	4%	2%
Hypertension	18%	34%	3%
% of pts remaining on ibrutinib	79%	64%	79%

1. Sharman et al. Lancet 2020;395:1278-91. 2. Moreno et al. Lancet Onc 2019;20-43-56. 3. Shanafelt TD et al. *Blood.* 2019;(suppl 1):Abstract 33; 4. Woyach JA et al. *N Engl J Med*. 2018;379:2517-2528.

Young Fit Patients: Factors to Consider

Indefinite therapy

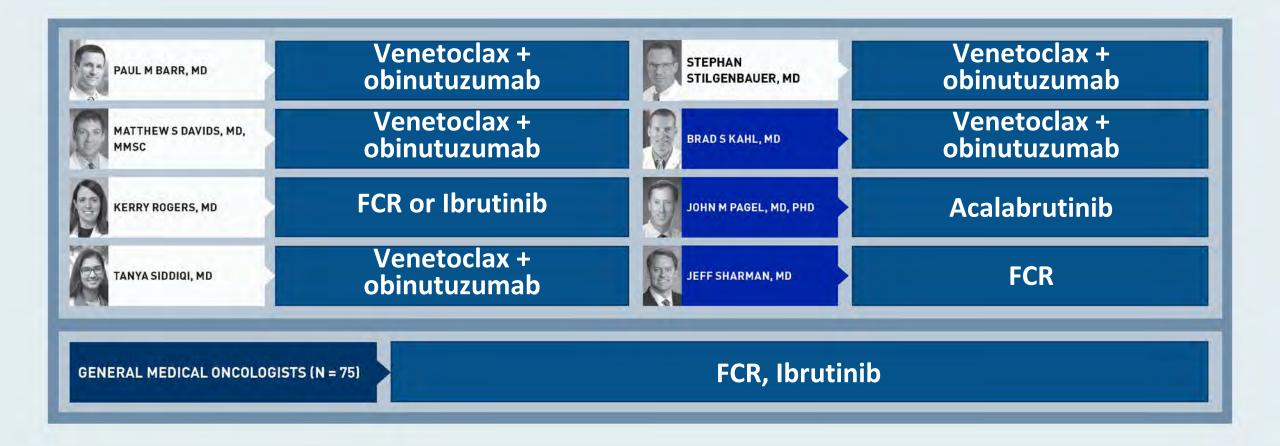
- Favors acalabrutinib
 - Convenience (avoids early monitoring with venetoclax)
 - PFS benefit with anti-CD20 addition
 - Less side effects (arrhythmias, hypertension, arthralgias, rash)
- Favors ibrutinib
 - Longer follow-up and more phase III data
 - More data supporting efficacy of venetoclax after ibrutinib vs little data on the reverse
 - Convenience (once daily)
 - Compatible with PPI/H2 inhibitors

Time limited therapy

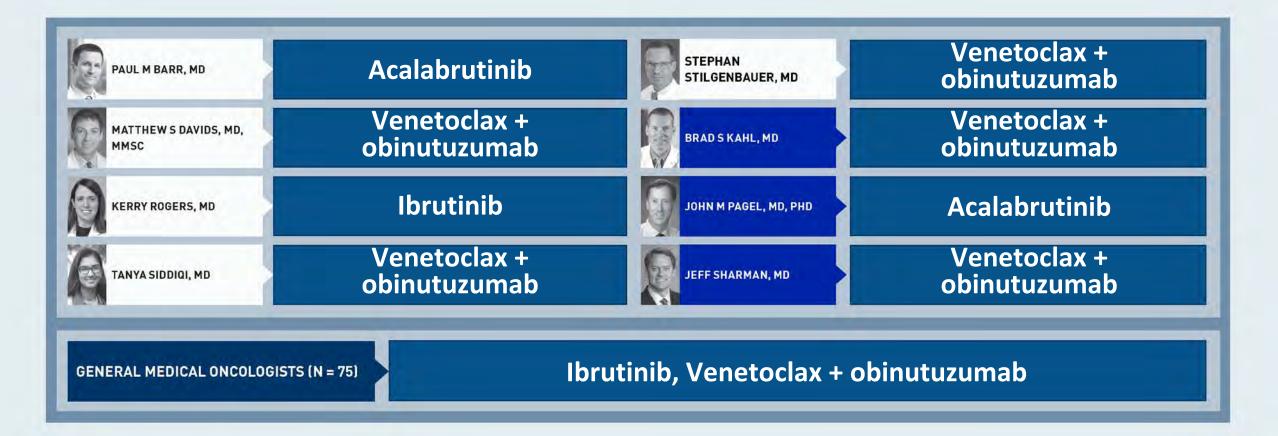
- Favors venetoclax + anti-CD20
 - High CR and undetectable MRD
 - Avoid selection pressure for resistance
 - Fewer long-term side effects
- Favors FCR
 - 60% of mutated IGHV patients plateau on PFS curve
 - Less cost

Randomized Front Line Studies for Fit Patients *Future upfront therapy for CLL*

- EA9161: Ibrutinib/Venetoclax/Obinu vs. Ibrutinib/Obinu (<70 yrs)
- CLL13 (GAIA): FCR/BR vs. Venetoclax/Obinu vs. Venetoclax/Ritux vs. Ibrutinib/Venetoclax/Obinu (Fit pts)
- CLL17: Venetoclax/Obinu vs. Ibrutinib/Venetoclax vs. Ibrutinib (Fit pts)
- ACE-CL-311: FCR/BR vs. Acalabrutinib/Venetoclax vs. Acalabrutinib/Venetoclax/Obinu vs. FCR (Fit pts)

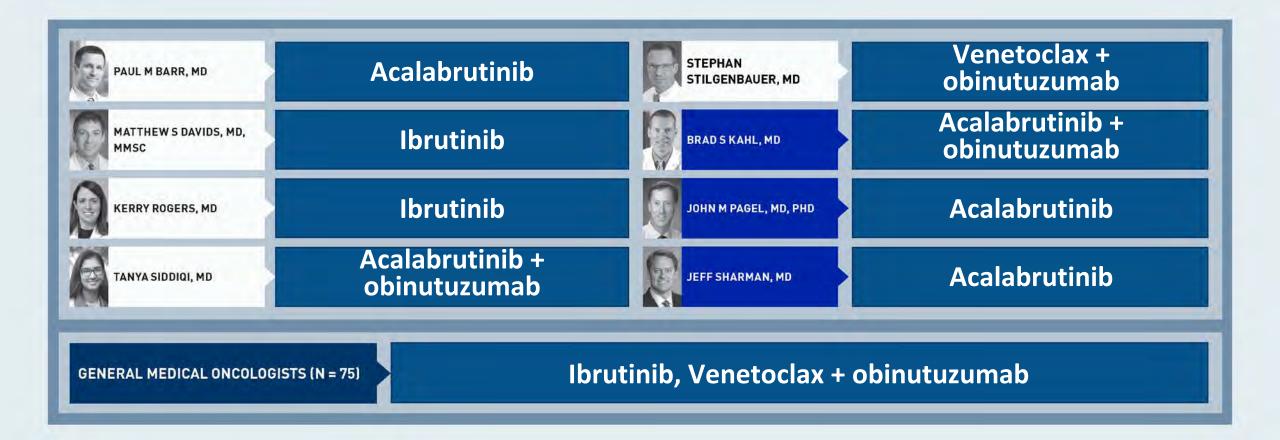

Jain et al. ASCO 2017 #7522, Davids et al. Lancet Haem 2019;6:E419-E428, Tam et al. *Blood* (2019) 134 (Supplement_1): 35, ClinicalTrials.gov: NCT03701282, ClinicalTrials.gov: NCT03836261

What is your usual preferred initial regimen for a <u>60-year-old</u> patient with <u>IGHV-mutated</u> CLL without del(17p) or TP53 mutation who requires treatment?

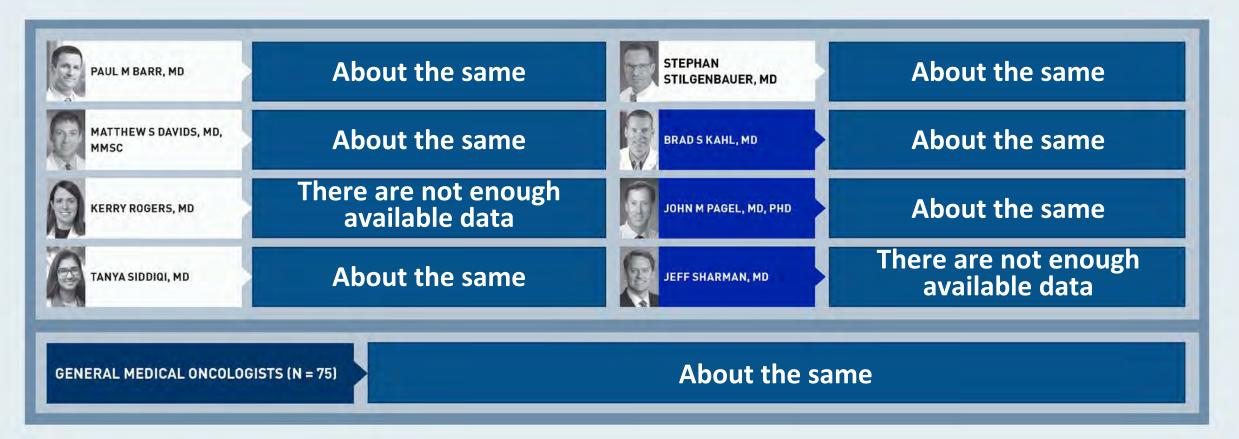

- 1. FCR
- 2. BR
- 3. Ibrutinib
- 4. Ibrutinib + rituximab
- 5. Acalabrutinib
- 6. Acalabrutinib + obinutuzumab
- 7. Venetoclax + obinutuzumab
- 8. Other

What is your usual preferred initial regimen for a <u>60-year-old</u> patient with <u>IGHV-mutated</u> CLL without del(17p) or TP53 mutation who requires treatment?

What is your usual preferred initial regimen for a <u>60-year-old</u> patient with <u>IGHV-unmutated</u> CLL without del(17p) or TP53 mutation who requires treatment?



What is your usual preferred initial regimen for a <u>60-year-old</u> patient with <u>del(17p)</u> CLL who requires treatment?


- 1. FCR
- 2. BR
- 3. Ibrutinib
- 4. Ibrutinib + rituximab
- 5. Acalabrutinib
- 6. Acalabrutinib + obinutuzumab
- 7. Venetoclax + obinutuzumab
- 8. Other

What is your usual preferred initial regimen for a <u>60-year-old</u> patient with <u>del(17p)</u> CLL who requires treatment?

Based on current clinical trial data and your personal experience, how would you compare the global efficacy of a single-agent Bruton tyrosine kinase (BTK) inhibitor to that of venetoclax/obinutuzumab in CLL?

Case Presentation – Dr Barr: A 65-year-old man with CLL - IGHV mutation, del(13q)

- 55-year-old male c/o fatigue for 1.5 years
 - Police officer, exercises daily
- Low testosterone identified in 2016, referred to urology for replacement. CBC performed.
- CBC
 - ALC 74,000/uL, confirmed CLL
 - Hgb 16 g/dL
 - Platelets 164,000/uL
- Risk factor testing at diagnosis demonstrated mutated IGHV genes and del(13q).
- Diffuse lymphadenopathy on exam

•	Enrolled on	ECOG-E1912
---	-------------	------------

- CTs with diffuse ~2-3cm lymphadenopathy
- Bone marrow 60% involvement by CLL
- Randomized to Ibrutinib/Rituximab
- Oral sensitivity, diarrhea, GI upset/reflux, muscle cramping, HTN
 - Probiotics, tonic water, dose hold
 - Loperamide daily, PPI, antihypertensive
- 11/2017
 - CTs: near resolution of lymphadenopathy
 - Marrow: 2% involvement by CLL
- Ibrutinib dose reduction 280mg 2/2019, 140mg 6/2020
 - Improved muscle cramping and diarrhea

	WBC	ALC	Hgb	PLT
11/2016	9К	4K	15.1	123K
11/2017	7K	2К	15.7	134K
9/2020	5K	2К	16.4	163K

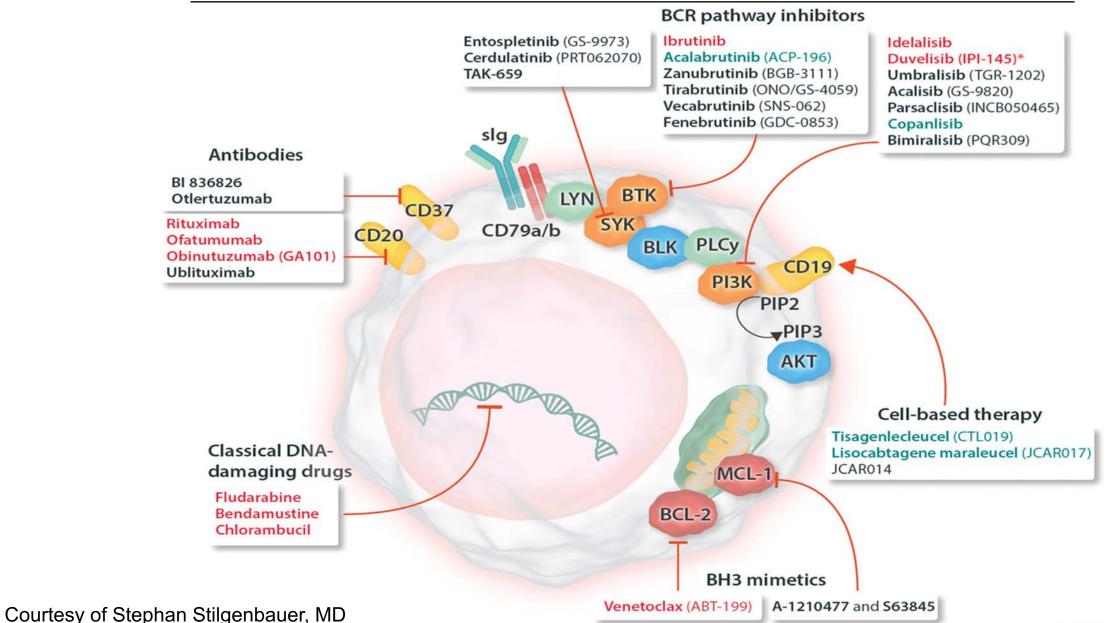
	WBC	ALC	Hgb	PLT
2/2016	79K	74K	16.2	164K
4/2016	72K	68K	15.6	128K
7/2016	84K	77K	14.3	147K

Agenda

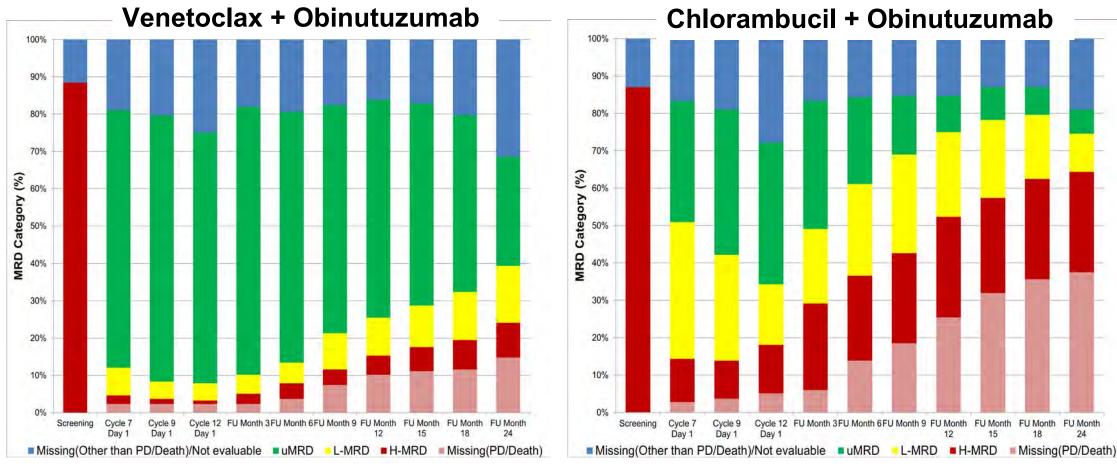
Module 1: First-line treatment options for younger, fit patients — Dr Barr

Module 2: Up-front management of chronic lymphocytic leukemia in older patients or those with comorbidities — Dr Stilgenbauer

Module 3: Optimal management of adverse events with BTK and Bcl-2 inhibitors — Dr Davids


Module 4: Selection and sequencing of therapies for relapsed/refractory disease — Dr Rogers

Module 5: Novel strategies under investigation — Dr Siddiqi

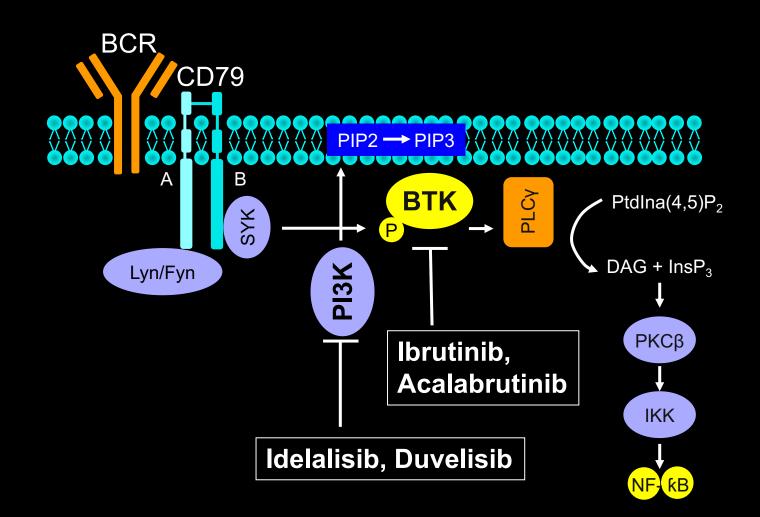

From Biology to Therapy: New Treatment Options in CLL

Yosifov, Wolf, Stilgenbauer, Mertens. Hemashere (review) 2019

CLL14: untreated elderly/unfit CLL: MRD Response and Time Course

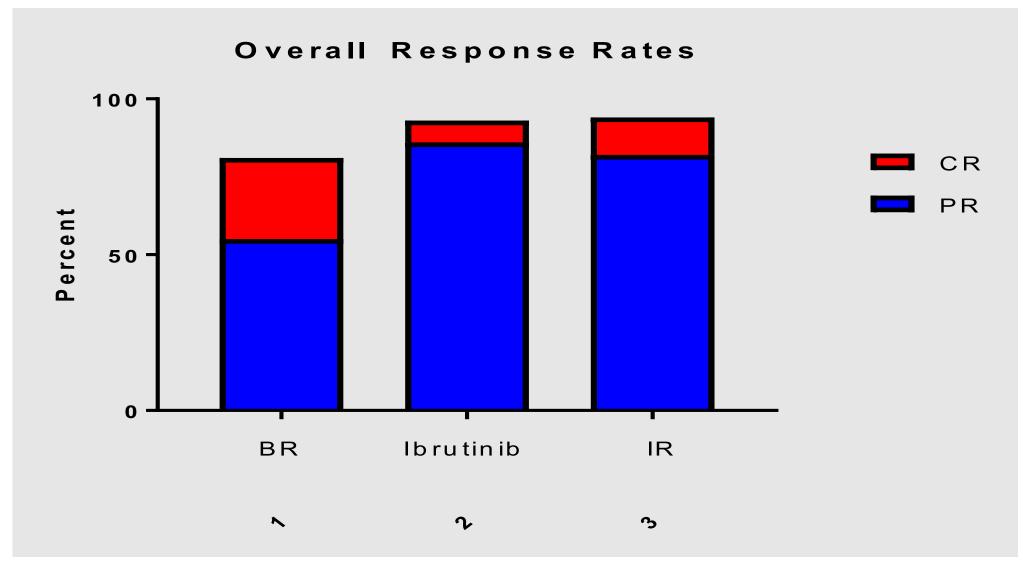
Fischer et al. NEJM 2019; Al-Sawaf et al. Lancet Onc 2020

uMRD rate at 18month FU Ven-Obi: 47.2% Clb-Obi: 7.4%


uMRD <10⁻⁴ L-MRD 10⁻⁴ < 10⁻² H-MRD ≥10⁻²

CLL14: untreated elderly/unfit CLL Adverse Events

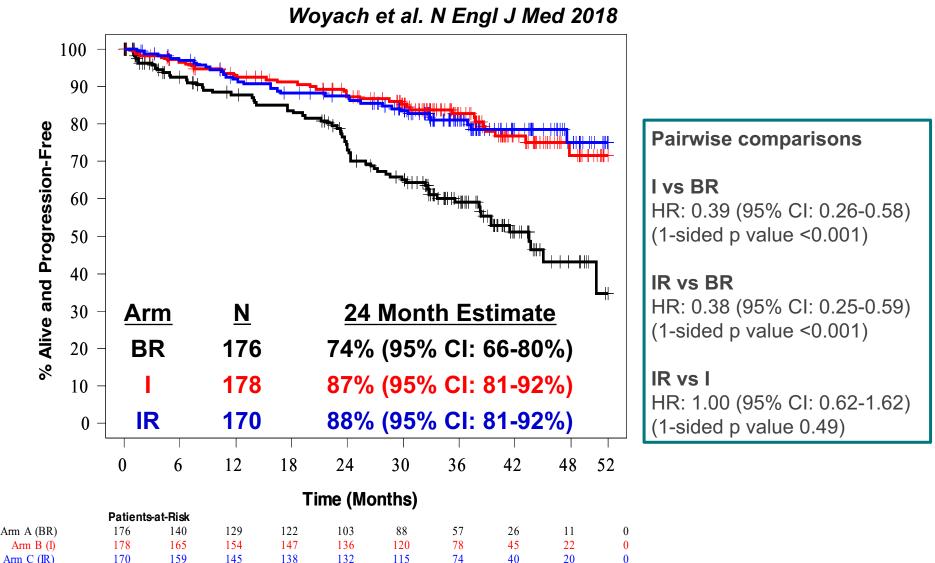
Fischer et al. NEJM 2019; Al-Sawaf et al. Lancet Onc 2020


	Venetoclax-obinutuzumab (N=212)		Chlorambucil- (N=2	
	During Treatment	After Treatment	During Treatment	After Treatment
Neutropenia	51.9%	4.0%	47.2%	1.9%
Thrombocytopenia	13.7%	0.5%	15.0%	0.0%
Anemia	7.5%	1.5%	6.1%	0.5%
Febrile neutropenia	4.2%	1.0%	3.3%	0.5%
Infusion-related reaction	9.0%	0.0%	9.8%	0.5%
Tumour lysis syndrome	1.4%	0.0%	3.3%	0.0%
Neoplasms	1.4%	6.4%	1.4%	1.9%

B-Cell Receptor Signaling Inhibition as Therapeutic Principle

ALLIANCE A041202: untreated older CLL Patients Response

Woyach et al. N Engl J Med 2018

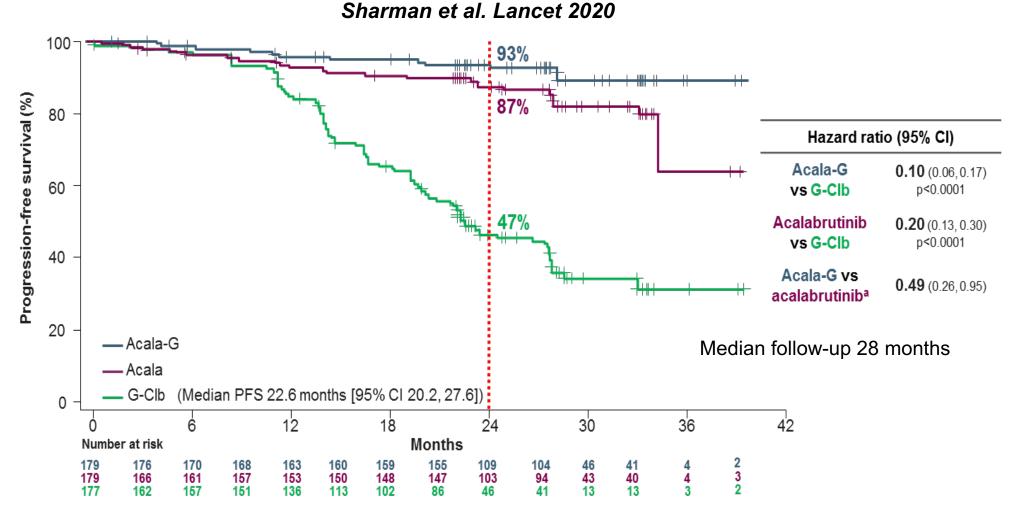

ALLIANCE A041202: untreated older CLL Patients Adverse Events

Woyach et al. N Engl J Med 2018

Grade 3- 5 adverse events during treatment + 30 days, excl. crossover (Median time on treatment: BR 6 months, I and IR: 32 months)

Adverse event	BR (n=176)	lbrutinib (n=180)	IR (n=181)	P-value
Hematologic, no (%)	107 (61)	74 (41)	70 (38)	<0.001
Anemia	22 (13)	21 (12)	11 (6)	0.09
Neutropenia	71 (40)	27 (15)	39 (22)	<0.001
Thrombocytopenia	26 (15)	12 (7)	9 (5)	0.08
Non-hematol., no (%)	111 (63)	133 (74)	134 (74)	0.04
Bleeding	0	3 (2)	5 (3)	0.46
Infections	26 (15)	37 (21)	37 (20)	0.62
Febrile neutropenia	13 (7)	3 (2)	1 (1)	<0.001
Atrial fibrillation	5 (3)	17 (9)	10 (6)	0.05
Hypertension	25 (14)	53 (29)	61 (34)	<0.001

ALLIANCE A041202: untreated older CLL Patients Primary Endpoint: PFS

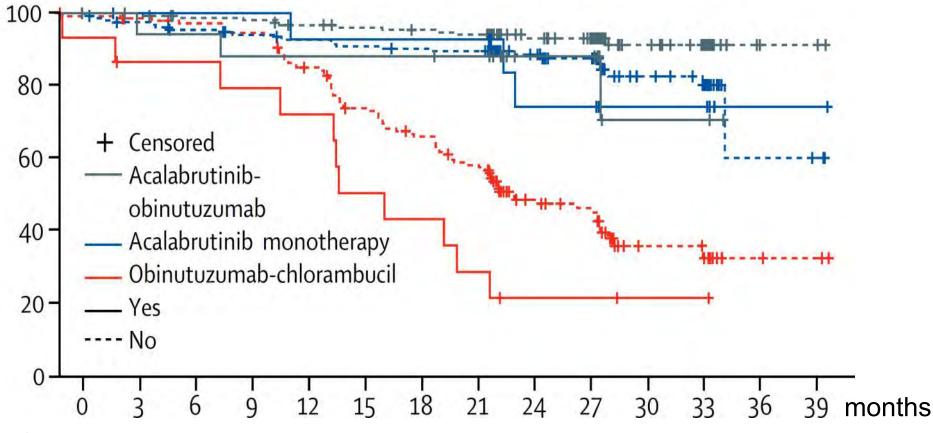


ELEVATE-TN: untreated older CLL Patients Acalabrutinib +/- Obinutuzumab compared with Obinutuzumab+Chlorambucil

AEs, n (%)		la-G 178	Acalabrutinb N=179		G-Clb N=169	
	Any	Grade ≥3	Any	Grade ≥3	Any	Grade ≥3
Headache	71 (39.9)	2 (1.1)	66 (36.9)	2 (1.1)	20 (11.8)	0
Diarrhea	69 (38.8)	8 (4.5)	62 (34.6)	1 (0.6)	36 (21.3)	3 (1.8)
Neutropenia	56 (31.5)	53 (29.8)	19 (10.6)	17 (9.5)	76 (45.0)	70 (41.4)
Fatigue	50 (28.1)	3 (1.7)	33 (18.4)	2 (1.1)	29 (17.2)	1 (0.6)
Contusion	42 (23.6)	0	27 (15.1)	0	7 (4.1)	7 (4.1)
Arthralgia	39 (21.9)	2 (1.1)	28 (15.6)	1 (0.6)	8 (4.7)	2 (1.2)
Cough	39 (21.9)	0	33 (18.4)	1 (0.6)	15 (8.9)	0
URTI	38 (21.3)	4 (2.2)	33 (18.4)	0	14 (8.3)	1 (0.6)
Nausea	36 (20.2)	0	40 (22.3)	0	53 (31.4)	0
Dizziness	32 (18.0)	0	21 (11.7)	0	10 (5.9)	0
IRR	24 (13.5)	4 (2.2)	0	0	67 (39.6)	9 (5.3)
Pyrexia	23 (12.9)	0	12 (6.7)	1 (0.6)	35 (20.7)	1 (0.6)

Sharman et al. Lancet 2020

ELEVATE-TN: untreated older CLL Patients Acalabrutinib +/- Obinutuzumab compared with Obinutuzumab+Chlorambucil



Courtesy of Stephan Stilgenbauer, MD

ELEVATE-TN: untreated older CLL Patients Acalabrutinib +/- Obinutuzumab compared with Obinutuzumab+Chlorambucil

Sharman et al. Lancet 2020

PFS: 17p- Subgroup

Courtesy of Stephan Stilgenbauer, MD

Upfront Management of CLL in Patients Who Are Older or Have Comorbidities

- PFS improvement with targeted therapy, i.e. venetoclax + obinutuzumab, ibrutinib and acalabrutinib (+/- CD20 antibody) over chemoimmunotherapy
- PFS appears similar for all targeted approaches in cross trial comparison
- Benefit most pronounced in CLL with unmutated IGHV
- Outcome of 17p-/TP53^{mut} CLL still inferior with all targeted therapy approaches but much improved over chemoimmunotherapy
- Choice of BCL2 or BTK targeting agent largely based on tolerability:
 - Patient preference (treatment duration and monitoring)
 - Coexisting conditions (hypertension, cardiovascular and renal disease)
 - Concomitant medication (anticoagulants, antiplatelets, CYP3A interaction)

Venetoclax (ABT-199) First in Human Trial

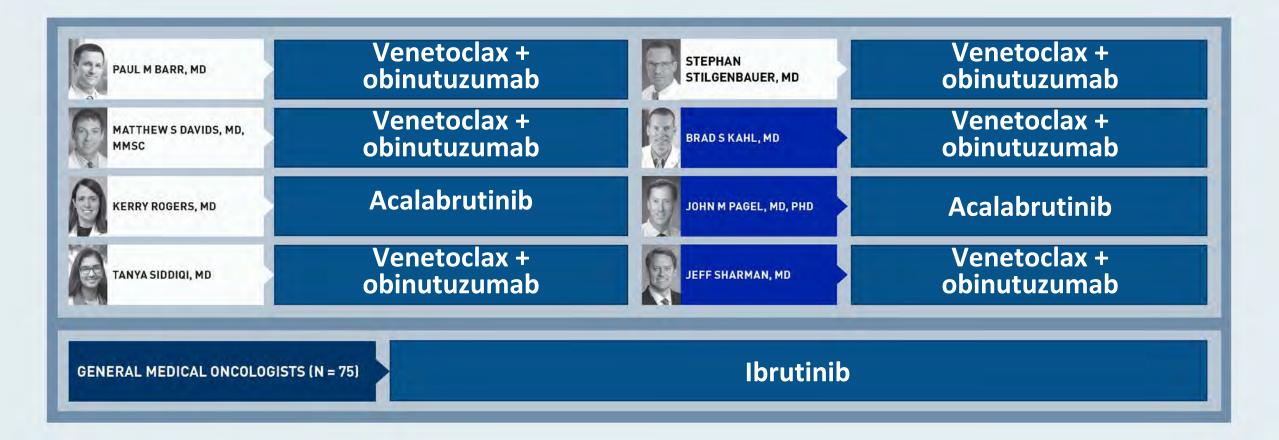
Roberts et al., NEJM 2016; Anderson et al., Blood 2017

Factors associated with failure (n=67): F-refract., complex karyotype

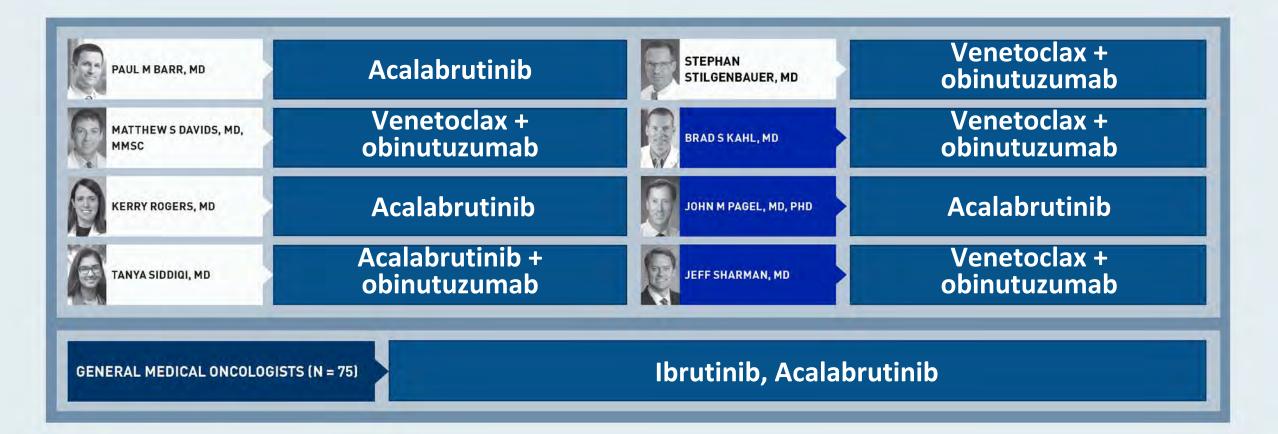
CLL14: untreated elderly/unfit CLL: MRD Response

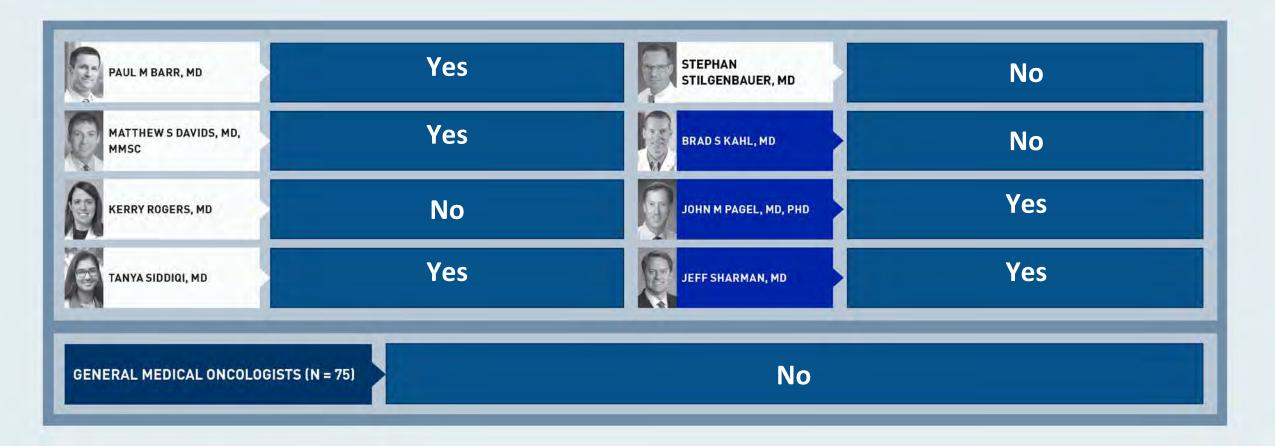
Fischer et al. NEJM 2019

			Р
	Obi-Ven	Obi-Clb	value
Number of patients, N	216	216	
Peripheral blood			
Negative (<10 ⁻⁴)	76 %	35 %	< 0.001
Negative (<10 ⁻⁴) in CR	42 %	14 %	< 0.001
Bone marrow			
Negative (<10 ⁻⁴)	57 %	17 %	< 0.001
Negative (<10 ⁻⁴) in CR	34 %	11 %	< 0.001


Courtesy of Stephan Stilgenbauer, MD

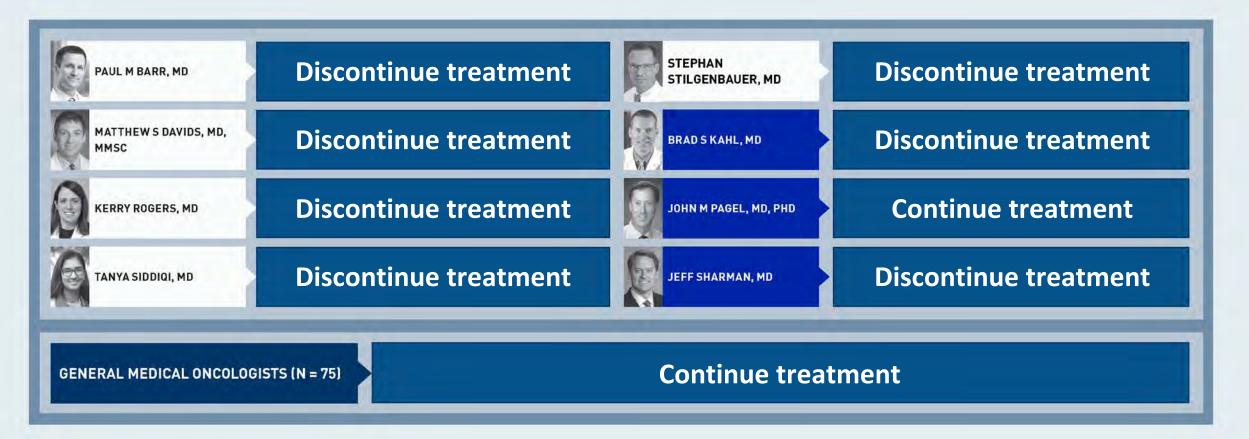
What is your usual preferred initial regimen for a <u>75-year-old</u> patient with <u>IGHV-mutated</u> CLL without del(17p) or TP53 mutation who requires treatment?


- 1. FCR
- 2. BR
- 3. Ibrutinib
- 4. Ibrutinib + rituximab
- 5. Acalabrutinib
- 6. Acalabrutinib + obinutuzumab
- 7. Venetoclax + obinutuzumab
- 8. Other


What is your usual preferred initial regimen for a <u>75-year-old</u> patient with <u>IGHV-mutated</u> CLL without del(17p) or TP53 mutation who requires treatment?

What is your usual preferred initial regimen for a <u>75-year-old</u> patient with <u>IGHV-unmutated</u> CLL without del(17p) or TP53 mutation who requires treatment?

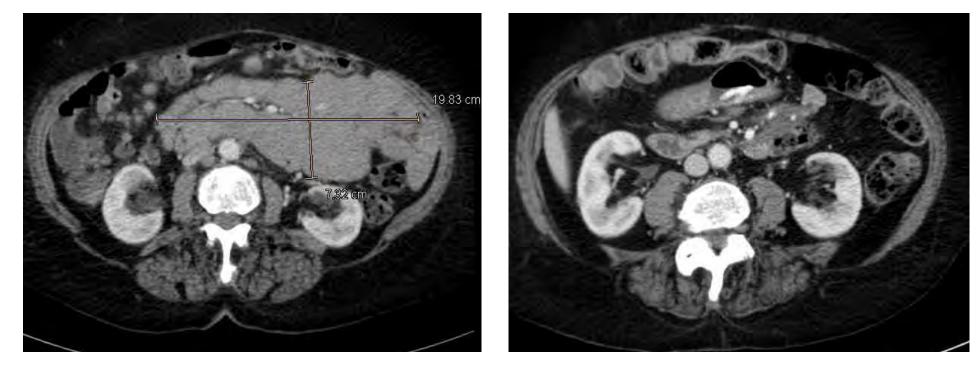
Have you ordered a minimal residual disease (MRD) assay for a patient with CLL to guide treatment decisions outside of a clinical trial setting?



What would be your most likely approach for a patient with newly diagnosed CLL to whom you decide to administer up-front venetoclax/obinutuzumab and who has detectable MRD after completing 1 year of treatment?

- 1. Continue treatment
- 2. Discontinue treatment

What would be your most likely approach for a patient with newly diagnosed CLL to whom you decide to administer up-front venetoclax/obinutuzumab who has <u>detectable</u> MRD after completing 1 year of treatment?



Case Presentation – Dr Stilgenbauer: A 76 year-old woman with relapsed/refractory CLL - 17p

Novel Therapy: Selective BCL2 Targeting Small Molecule Inhibitor Venetoclax (ABT-199)

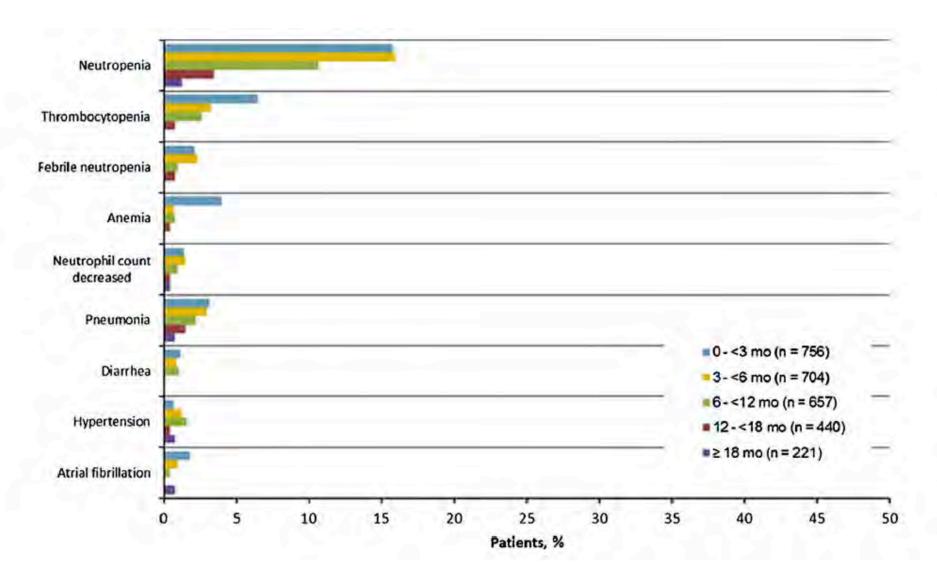
Baseline CT staging:

Month 3 on therapy:

Agenda

Module 1: First-line treatment options for younger, fit patients — Dr Barr

Module 2: Up-front management of chronic lymphocytic leukemia in older patients or those with comorbidities — Dr Stilgenbauer


Module 3: Optimal management of adverse events with BTK and Bcl-2 inhibitors — Dr Davids

Module 4: Selection and sequencing of therapies for relapsed/refractory disease — Dr Rogers

Module 5: Novel strategies under investigation — Dr Siddiqi

Prevalence of Most Common Grade 3/4 Adverse Events With Ibrutinib Over Time

Courtesy of Matthew S Davids, MD, MMSc

O'Brien et al., Clin Lymphoma Myeloma Leuk. 2018 Oct;18(10):648-657.e15

BTK inhibitors

Bleeding Events: Cumulative and Exposure-adjusted Incidence Rates

	lbr (n	= 756)	Comp (n = 749)	-	1
Event	%	EAIR	%	EAIR	Δ, % ^a	Δ , EAIR ^a
Any bleeding eventb	38	0.486	17	0.2628	21.3	0.2232
Grade 3/4 bleeding event	3	0.0252	2	0.0276	0.8	-0.0024
Major hemorrhage	4	0.0348	3	0.0348	1.3	0
Grade 3/4 major hemorrhage	3	0.0252	2	0.0276	0.8	-0.0024

Abbreviations: Comp = comparator; EAIR = exposure-adjusted incidence rate per patient-years; lbr = ibrutinib. ^aNegative numbers indicate higher rates with comparator.

^bBased on the number of patients with any bleeding event by preferred term.

BTK inhibitors

We recently reported that pneumocystis jiroveci pneumonia (PJP) incidence on BTKi was low, even in patients not on prophylaxis

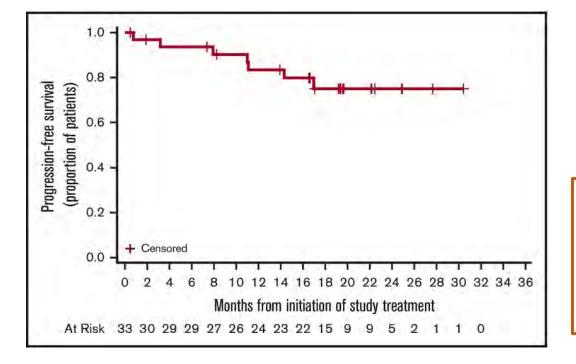
- Overall prevalence of PJP in patients NOT on prophylaxis: **3.4%** (3/87)
- Prevalence of PJP in patients ON prophylaxis: 0% (0/125)
- Incidence rate in patients not on prophylaxis: 1.9 per 100 person-years
- Number needed to treat to prevent 1 case of PJP: 42 patients

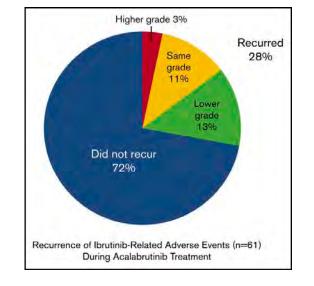
Acalabrutinib: a safer BTKi?

Compared to ibrutinib:

- Overlapping toxicities: mild diarrhea, mild bleeding, infections
- New toxicities: headache, weight gain
- Less commonly seen with acalabrutinib: afib, major hemorrhage, significant skin toxicity, pneumonitis
- No ventricular arrhythmias reported

Adverse Event	All Grades	Grades 1–2	Grades 3–4
Ν	lumber of pat	ients (%)	
Headache	26 (43)	26 (43)	0
Diarrhea	24 (39)	23 (38)	1 (2)
Increased weight	16 (26)	15 (25)	1 (2)
Pyrexia	14 (23)	12 (20)	2 (3)
Upper respiratory tract infection	14 (23)	14 (23)	0
Fatigue	13 (21)	11 (18)	2 (3)
Peripheral edema	13 (21)	13 (21)	0
Hypertension	12 (20)	8 (13)	4 (7)
Nausea	12 (20)	12 (20)	0
Contusion	11 (18)	11 (18)	0
Arthralgia	10 (16)	9 (15)	1 (2)
Petechiae	10 (16)	10 (16)	0
Decreased weight	10 (16)	10 (16)	0


Acalabrutinib in Ibrutinib-Intolerant Patients


Subset analysis of patients with ibrutinib intolerance enrolled in phase 1/2 ACE-CL-001 (n = 33)

•Median duration of prior ibrutinib, 11.6 months

•~70% of patients remained on acalabrutinib after a median of 19 months

•3 patients had discontinued acalabrutinib due to AEs; 4 patients discontinued due to progressive disease

•Median duration of response was not reached

Median PFS was not reached

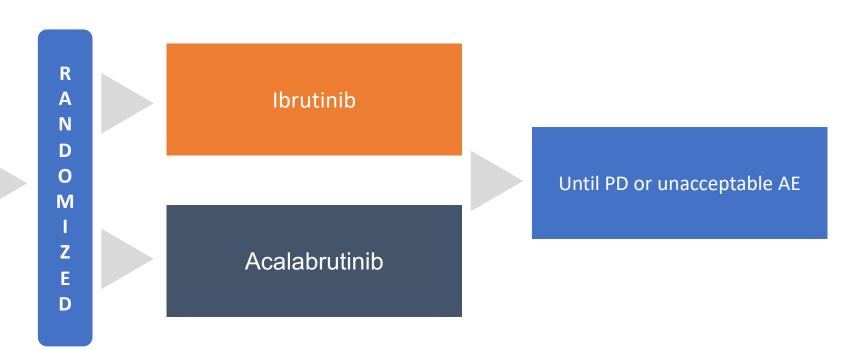
•1-year PFS was 83.4% (95% CI, 64.5%-92.7%)

BTK inhibitors

ASPEN Trial (Waldenström Macroglobulinemia): BTKi Class Adverse Events of Interest

	All	Grades	Grade ≥ 3		
AE Categories, %	Zanubrutinib (n = 101)	lbrutinib (n = 98)	Zanubrutinib (n = 101)	lbrutinib (n = 98)	
Atrial fibrillation/flutter*	3.0	18.4	0.0	7.1	
Diarrhea (PT)	21.8	32.7	3.0	2.0	
Hemorrhage	50.5	60.2	5.9	9.2	
 Major hemorrhage[‡] 	5.9	10.2	5.9	9.2	
Hypertension	12.9	20.4	7.9	15.3	
Neutropenia* [†]	31.7	15.3	22.8	8.2	
Infection	69.3	71.4	18.8	23.5	
Second malignancy	12.9	12.2	3.0	1.0	
Discontinuation rate	4.0	9.0			

*Descriptive 2-sided P < .05.


[†]PT terms of neutropenia, neutrophil count decreased, febrile neutropenia, agranulocytosis, neutropenic infection and neutropenic sepsis.

[†]Major hemorrhage defined as grade \geq 3 hemorrhage or any grade CNS hemorrhage.

ELEVATE-R/R Trial: Ibrutinib vs Acalabrutinib in Patients With High-Risk R/R CLL

- Ongoing phase 3, randomized, multicenter, open-label, noninferiority trial
- Patients with del(17p) or del(11q) CLL with active disease (N=533)
- ≥1 previous line of treatment
- ECOG 0-2

Status: Active, fully accrued

Primary endpoint: PFS

Secondary endpoints: OS, incidence of treatment-emergent AEs, atrial fibrillation, Richter's transformation

Courtesy of Matthew S Davids, MD, MMSc

BTK inhibitors

MAIC: Acalabrutinib ± G Demonstrated Lower Rates of Several Clinically Important AEs vs Ibrutinib ± G in TN CLL

AEs With Statistically Significant Differences After Matching

AE rate, %	Acala ESS=79	lbr n=136	Rate difference % (95% CI)	P-value
Grade 3/4 AEs				
Infections	12.4	24.0	-11.6 (-21.9,-1.0)	<0.05
Atrial fibrillation	0	4.0	-4.0 (-7.3 ,0.0)	<0.05
Grade 1-4 AEs				
Peripheral edema	7.5	21.0	-13.5 (-21.7,-5.0)	<0.001
Pyrexia	6.2	20.0	-13.8 (-21.6,-6.0)	< 0.001
Hypertension	6.4	18.0	-11.6 (-19.9,-3.0)	<0.01
Major hemorrhage	1.8	7.0	-5.2 (-10.2,0.0)	< 0.05

Acalabrutinib vs Ibrutinib

Acalabrutinib + G vs lbrutinib + G

AE rate, %	Acala + G ESS=97	lbr + G n=113	Rate difference % (95% CI)	P-value
Grade 3/4 AEs			-	
Peripheral edema	0.6	12.0	-11.4 (-17.5,-5.3)	< 0.001
Febrile neutropenia	0.5	5.0	-4.5 (-8.6,-0.4)	<0.05
Grade 1-4 AEs				
Headache	32.1	8.0	+24.1 (+14.6,+33.6)	<0.001
Thrombocytopenia	20.7	36.0	-15.3 (-26.8,-3.9)	<0.01
Atrial fibrillation	3.4	12.0	-8.6 (-15.6,-1.7)	<0.05

G = Obinutuzumab

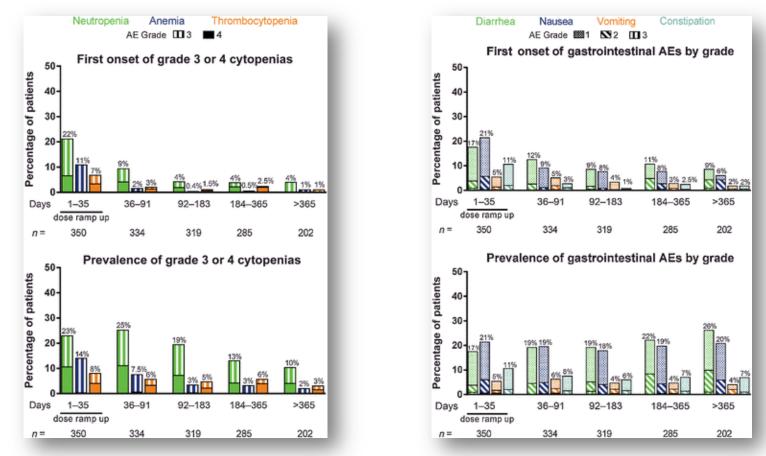
Phase I FIH: venetoclax was generally well tolerated, although specific toxicities were noted

Adverse events, serious adverse	e events and toxi	city in the 116	study patients		
Adverse event*	Any Grade [n (%)]	Grade 3 or 4 [n (%)]	Serious adverse event [†]	Any Grade [n (%)]	Grade 3 or 4 [n (%)]
Any	115 (99)	96 (83)	Any	52 (45)	
Diarrhea	60 (52)	2 (2)	Febrile neutropenia	7 (6)	
Upper respiratory tract infection	56 (48)	1 (1)	Pneumonia	5 (4)	
Nausea	55 (47)	2 (2)	Upper respiratory tract infection	4 (3)	
Neutropenia	52 (45)	48 (41)	Immune thrombocytopenia	3 (3)	
Fatigue	46 (40)	4 (3)	Tumor lysis syndrome	3 (3)	
Cough	35 (30)	0	Diarrhoea	2 (2)	
Pyrexia	30 (26)	1 (1)	Fluid overload	2 (2)	
Anaemia	29 (25)	14 (12)	Hyperglycemia	2 (2)	
Headache	28 (24)	1 (1)	Prostate cancer	2 (2)	
Constipation	24 (21)	1 (1)	Pyrexia	2 (2)	
Thrombocytopenia	21 (18)	14 (12)	Toxicity	Any Grade (%)	Grade 3 or 4 (%)
Arthralgia	21 (18)	1 (1)	Neutropenia	45	41
Vomiting	21 (18)	2 (2)	GI	52	2
Peripheral edema	18 (16)	0	TLS	3	3
Pyrexia	17 (15)	10 (9)			

*Listed are adverse events that were reported in at least 15% patients. Preexisting grade 1/2 abnormalities not reported, unless grade increased during the study.

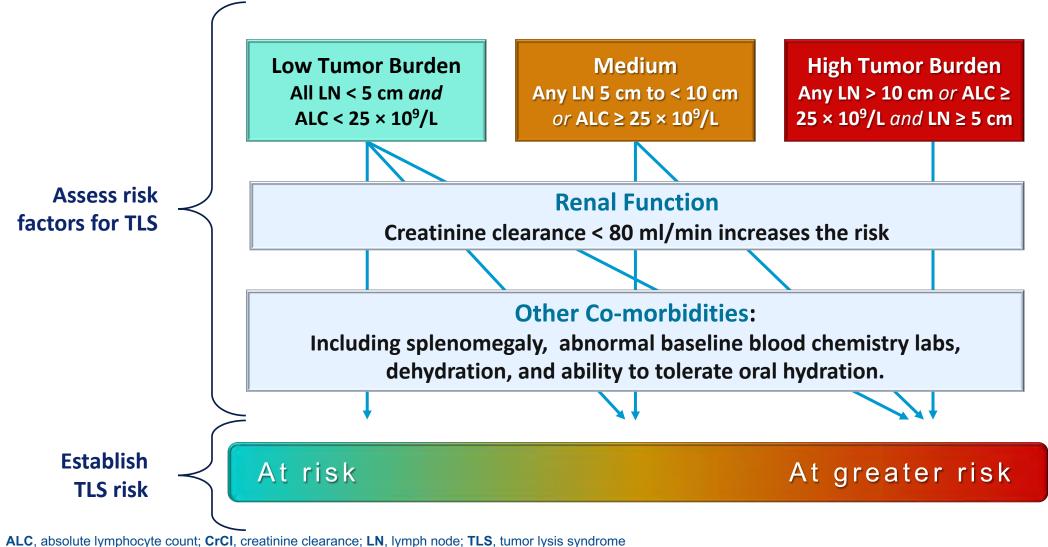
†Listed are serious adverse events that were reported in at least two patients. Excluded are serious adverse events that were related to disease progression in two patients.

GI, gastrointestinal; TLS, tumor lysis syndrome


Roberts AW, et al. N Engl J Med 2016;374:311-322.

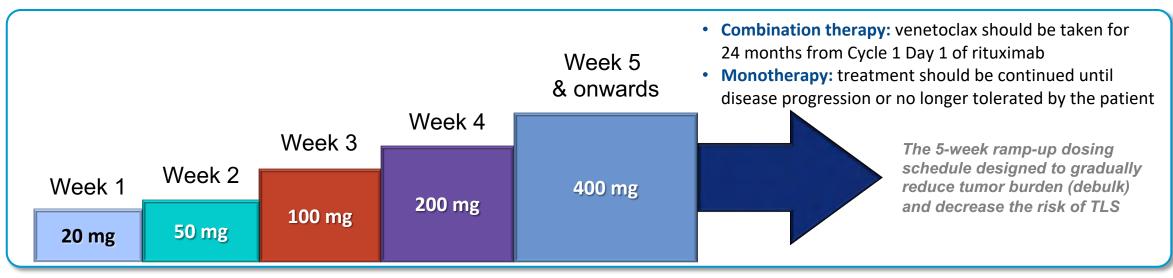
Courtesy of Matthew S Davids, MD, MMSc

Venetoclax


Venetoclax

Venetoclax risks include neutropenia, GI toxicities, and TLS

- 2/166 (1.4%) treated with current dosing had lab TLS, but none had clinical TLS
- TLS in phase 3 trials:
 - MURANO (ven + rituximab) 3.1% (1 clinical, 5 lab)
 - CLL14 (ven + obinutuzumab) 3 patients all <u>before</u> starting venetoclax


TLS risk with venetoclax is a continuum based on multiple factors

1. Venetoclax SmPC: https://www.medicines.org.uk/emc/product/2267/smpc (accessed October 2019); 2. Stilgenbauer S, et al. *Lancet Oncol* 2016;17:768–778.

Venetoclax

Venetoclax dose initiation

The 5-week dose-titration schedule is designed to gradually reduce tumour burden and decrease the risk of TLS

Combination therapy: recommended dose of venetoclax in combination with rituximab is 400 mg once daily; rituximab should be administered after the patient has completed the dose-titration schedule and has received the recommended daily dose of 400 mg venetoclax for 7 days.

Monotherapy: the recommended dose of venetoclax is 400 mg once daily.

Venetoclax SmPC: https://www.medicines.org.uk/emc/product/2267/smpc (accessed October 2019).

Venetoclax: TLS prophylaxis and monitoring

^a HYDRATION	Oral (1.5 – 2 L); start 2 days prior to treatment start.	IV if needed due to higher TLS risk
ANTI-HYPER- URICAEMIC	Patients with high uric acid or TLS risk should be admin 2 to 3 days prior to treatment start	nistered with anti-hyperuricaemic agents

LABORATORY (at MONITORING co	dose, 6–8, 24 hours st dose of 20 mg and 50 mg, and for patients who nue to be at risk dose at subsequent ramp-up doses
---------------------------------	---

OHOSPITALIZATION Based on physician assessment, some patients consider hospitalisation on first dose of venetoclax for more intensive prophylaxis and monitoring during the first 24 hours.

^aAdminister intravenous hydration for any patient who cannot tolerate oral hydration; ^bEvaluate blood chemistries (potassium, uric acid, phosphorus, calcium, and creatinine); review in real time; ^cFor patients at risk of TLS, monitor blood chemistries at 6–8 hours and at 24 hours at each subsequent ramp-up dose. Changes in blood chemistries consistent with TLS that require prompt management can occur as early as 6-8 hours following the first dose of venetoclax, and at each dose increase. **LN**, lymph node; **ALC**, absolute lymphocyte count; **TLS**, tumour lysis syndrome; **VEN**, venetoclax

1. Venetoclax SPC https://www.medicines.org.uk/emc/product/2267/smpc (accessed October 2019); 2. Stilgenbauer S, et al. Lancet Oncol. 2016; 17:768–778

Courtesy of Matthew S Davids, MD, MMSc

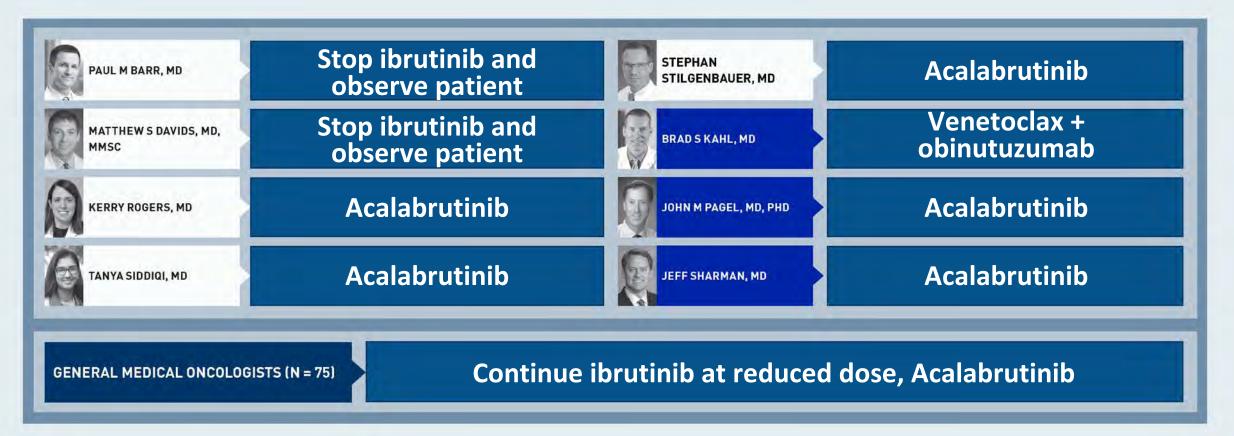
AGENIS

General considerations for toxicity management with novel agents

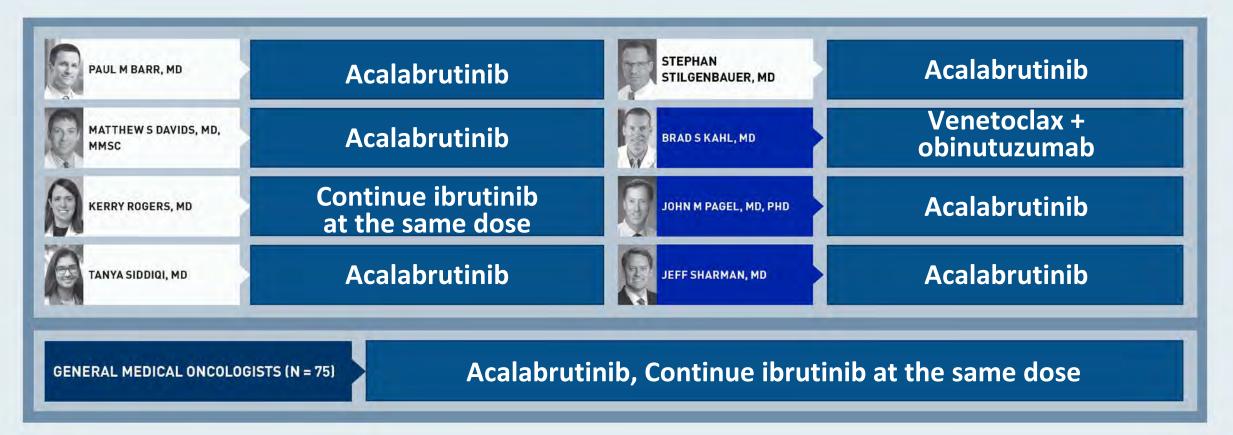
- In the setting of active infection it is generally best to hold drug at least until seeing signs of clinical improvement
- For most toxicities requiring drug hold, it is preferable to either rechallenge with full dose or to start back at dose reduction but then get back to full dose
- In general I am more hesitant to hold drug soon after starting a novel agent or in a patient who is progressing on a novel agent
- I am less concerned about stopping drug in patients who have been on novel agents for at least a few months and are in a good clinical response

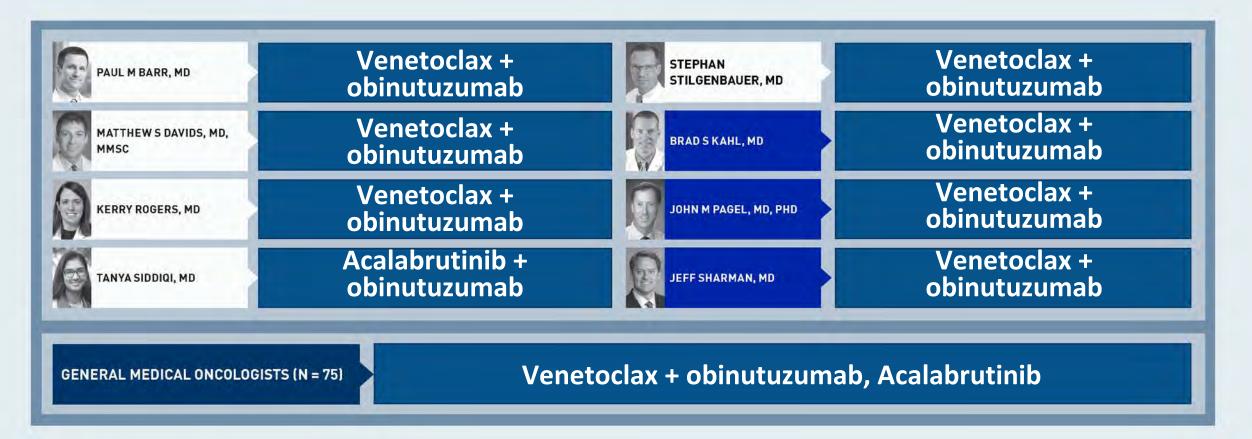
General considerations (continued)

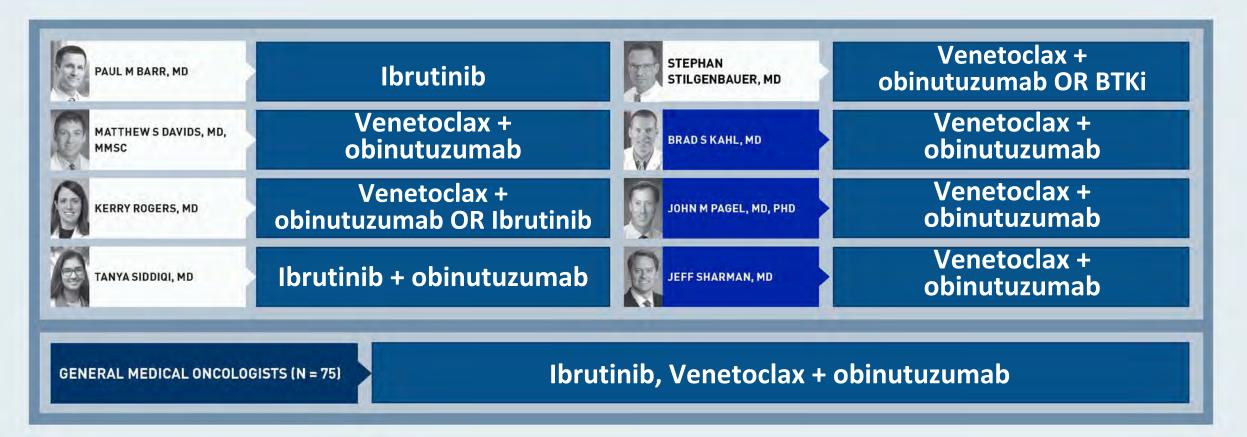
 Novel agents are infrequently the main cause of cytopenias (exception: venetoclax and neutropenia)


 It is generally safe to give growth factor support concomitantly with novel agents

 Patients who have to permanently discontinue a novel agent due to toxicity do not necessarily need to immediately start on a new therapy A 75-year-old patient with IGHV-mutated CLL without del(17p) or TP53 mutation is responding to ibrutinib but develops <u>significant</u> problems with bruising. What would you recommend?


- 1. Continue ibrutinib at the same dose
- 2. Continue ibrutinib at a reduced dose
- 3. FCR
- 4. BR
- 5. Acalabrutinib
- 6. Acalabrutinib + obinutuzumab
- 7. Venetoclax + obinutuzumab
- 8. Other


A 75-year-old patient with IGHV-mutated CLL without del(17p) or TP53 mutation is responding to ibrutinib but develops <u>significant problems with bruising</u>. What would you recommend?


A 75-year-old patient with IGHV-mutated CLL without del(17p) or TP53 mutation is responding to ibrutinib but develops <u>atrial fibrillation requiring anticoagulation</u>. What would you recommend?

What is your usual preferred initial regimen for a 75-year-old patient with IGHV-unmutated CLL without del(17p) or TP53 mutation who requires treatment and <u>is receiving</u> <u>anticoagulation for atrial fibrillation</u>?

What is your usual preferred initial regimen for a 75-year-old patient with IGHV-unmutated CLL without del(17p) or TP53 mutation who requires treatment and <u>is receiving a proton</u> <u>pump inhibitor for GERD</u>?

Case Presentation – Dr Davids: A 73-year-old man with CLL – del(11q), no IGHV mutation

A 73 y/o man with HTN and diet-controlled DM has del(11q), unmutated IGHV, TP53 wildtype, Rai stage 4 CLL and needs initial treatment. He starts on ibrutinib, and about 10 weeks into his course he has marked reduction in lymphadenopathy and improvement in cytopenias, but on routine check is found to be in afib with a rate in the low 100s. Ibrutinib is held, and anticoagulation is started.

How do you proceed at this point?

Case Presentation – Dr Davids: A 67-year-old woman with relapsed/refractory CLL – del(17p)

A fit 67 y/o woman with del(17p) CLL relapsed 2 years after FCR now develops recurrent bulky internal lymphadenopathy and splenomegaly of 22 cm. She is started on venetoclax + rituximab, and on week 2 of rituximab her ANC has trended down from a baseline of 1,600 to 950. She is afebrile and tolerating therapy well.

How do you proceed?

Agenda

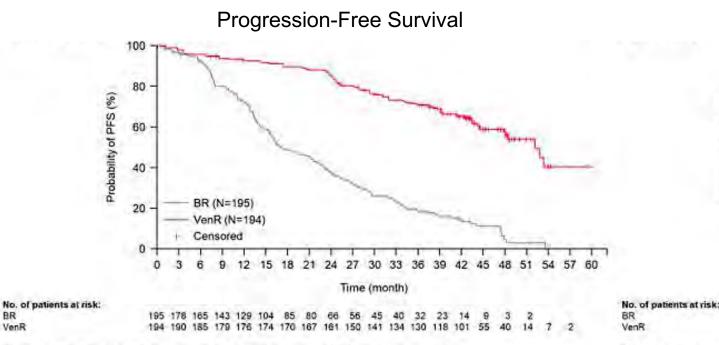
Module 1: First-line treatment options for younger, fit patients — Dr Barr

Module 2: Up-front management of chronic lymphocytic leukemia in older patients or those with comorbidities — Dr Stilgenbauer

Module 3: Optimal management of adverse events with BTK and Bcl-2 inhibitors — Dr Davids

Module 4: Selection and sequencing of therapies for relapsed/refractory disease — Dr Rogers

Module 5: Novel strategies under investigation — Dr Siddiqi



Treatment Selection in R/R CLL

- Targeted agents now preferred over chemoimmunotherapy
- Several classes of approved agents
 - BCL2 inhibitors: venetoclax +/- rituximab
 - BTK inhibitors: ibrutinib, acalabrutinib
 - PI3K inhibitors: idelalisib + rituximab, duvelisib
- Major questions
 - Which is most effective?
 - What side effect profile might be best for my patient?
 - Does the order these drugs are given in matter?

MURANO Study 4-year follow-up

BR, bendamustine plus rituximab. ITT, intention to treat. PFS, progression-free survival. VenR, venetoclax plus rituximab

Overall Survival Probability of OS (%) BR (N=195) VenR (N=194) Censored Time (month) 195 181 162 155 152

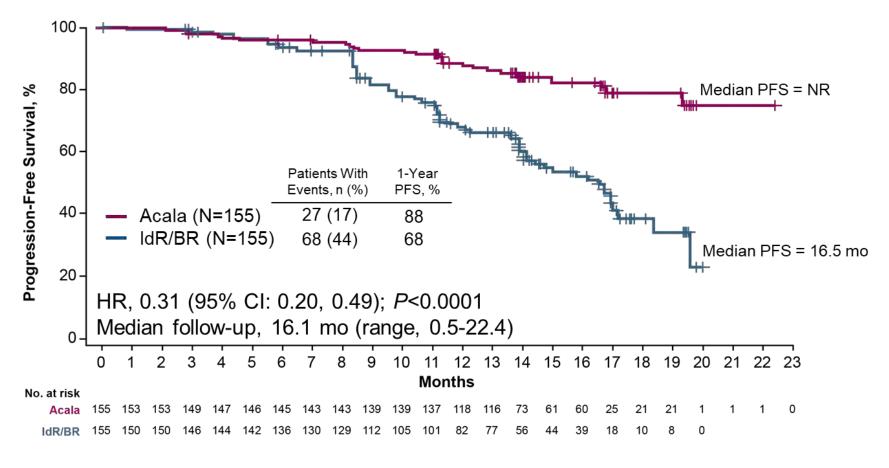
BR, bendamustine plus riturimab; ITT, intention to treat; OS, overall survival. VenR, venetoclax plus riturimab

194 190 185 183 182 179 178 176 173 168

	VenR (n = 194)	BR (n = 195)	HR (95% CI)	P Value
4-yr PFS, %	57.3	4.6	0.19 (0.14-0.25)	< .0001
4-yr OS, %	85.3	66.8	0.41 (0.26-0.65)	< .0001

Seymour JF et al. ASH 2019. Abstract 134.

Courtesy of Kerry Rogers, MD


BR

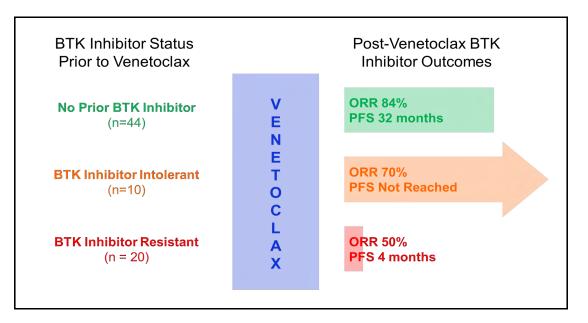
VenR

ASCEND Primary Endpoint

Progression-Free Survival by Treatment Arm

The James

THE OHIO STATE UNIVERSITY


Ghia et al., EHA 2019

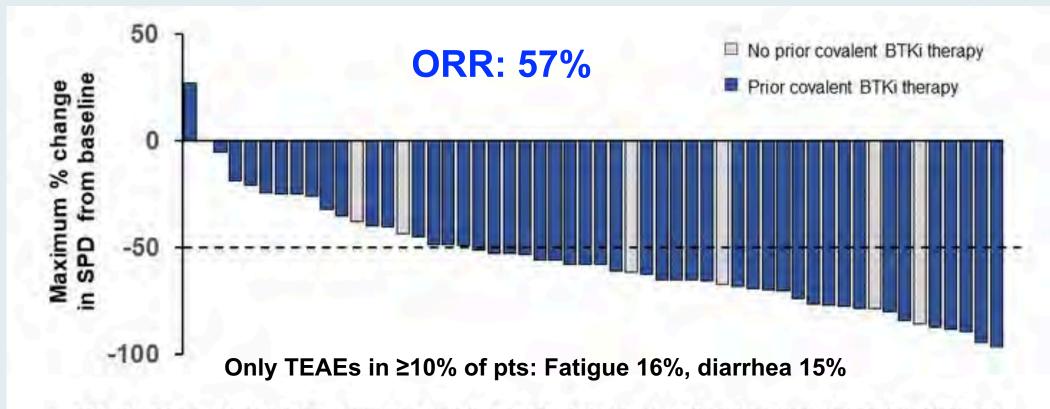
The PI3K Inhibitors

	Idelalisib	Duvelisib	Umbralisib
Isoform Specificity	δ	δ/γ	δ
Approval	 R/R CLL in combination with rituximab R/R SLL CLL after ≥2 prior treatments 	 R/R CLL after ≥2 prior treatments 	
Phase 3 Trial	 Median PFS not Reached R-Placebo 5.5 mo HR 0.15, P<0.001 	 Median PFS 13.3 months Ofatumumab 9.9 mo HR 5 0.52, P<.0001 	<i>Currently being investigated in combination trials</i>
Major Toxicities	 Colitis Pneumonitis Hepatitis Infections 	 Infection Colitis Rash Pneumonitis 	

Furman et al., NEJM 2014; Flinn et al., Blood 2018

- Multi-institution cohort study of venetoclax discontinuation (n=326; BTKi n=74)
 - BTKi were effective if not previously resistant
- MURANO Study Subsequent BTKi Treatment (n=12)
 - BTKi 10/10 (100%) evaluable responded
 - Venetoclax re-treatment 6/11 (55%) evaluable

Mato et al., Clinical Cancer Research 2020; Seymour JF et al. ASH 2019. Abstract 134.

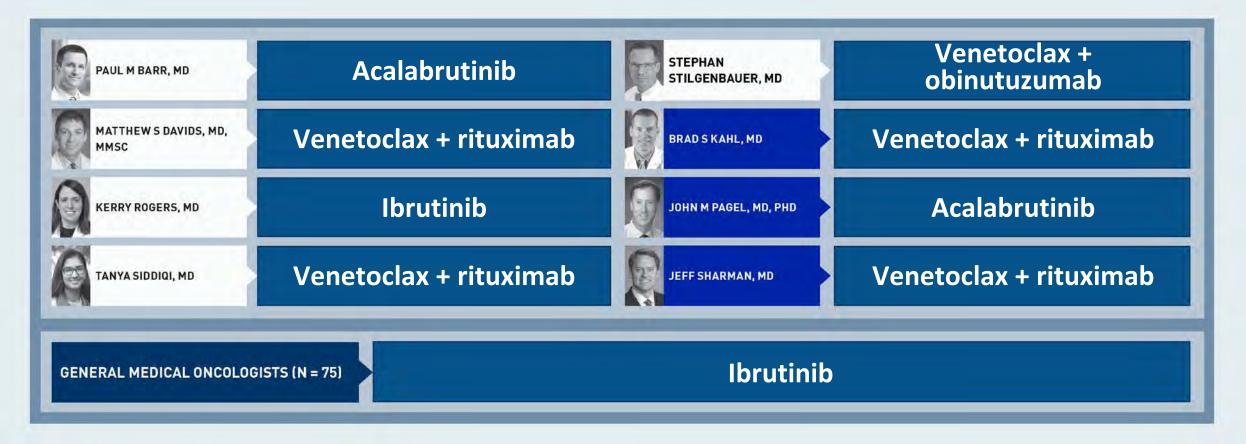


LOXO-305, a Next Generation, Highly Selective, Non-Covalent BTK Inhibitor in Previously Treated CLL/SLL: Results from the Phase 1/2 BRUIN Study

Mato AR et al. ASH 2020;Abstract 542.

BRUIN: LOXO-305 for Previously Treated CLL/SLL (Median prior therapies: 4)

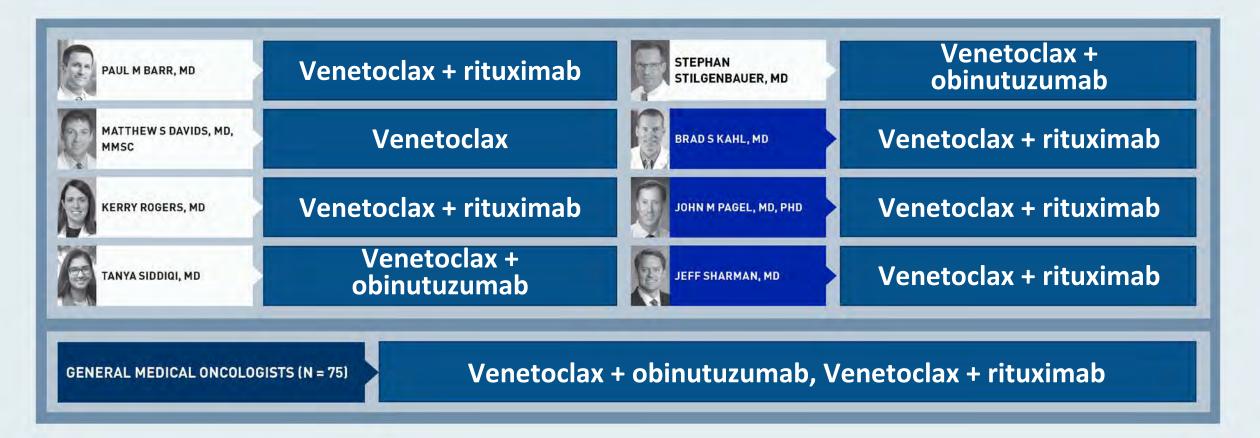
* 11 efficacy-evaluable pts are not included in the waterfall plot, including 1 pt who discontinued prior to first response assessment, and 10 pts (4 pts with PR/PR-L and 6 pts with SD) with incomplete tumor lesion measurement data at the time of data cut



Which second-line systemic therapy would you recommend for a 60year-old patient with IGHV-mutated CLL without del(17p) or TP53 mutation who responds to FCR and then experiences disease progression 3 years later?

- 1. Ibrutinib
- 2. Ibrutinib + rituximab
- 3. Acalabrutinib
- 4. Acalabrutinib + obinutuzumab
- 5. Venetoclax + rituximab
- 6. Venetoclax + obinutuzumab
- 7. Idelalisib
- 8. Duvelisib
- 9. Other

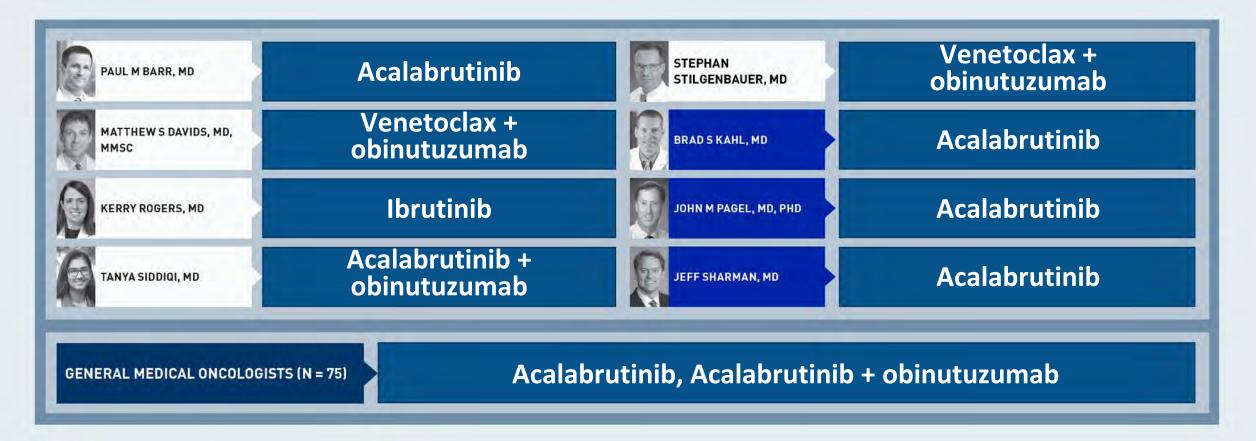
Which second-line systemic therapy would you recommend for a 60-year-old patient with IGHV-mutated CLL without del(17p) or TP53 mutation who responds to <u>FCR</u> and then experiences disease progression 3 years later?



Which second-line systemic therapy would you recommend for a 60year-old patient with IGHV-unmutated CLL without del(17p) or TP53 mutation who responds to <u>ibrutinib</u> and then experiences disease progression 3 years later?

- 1. FCR
- 2. BR
- 3. Acalabrutinib
- 4. Acalabrutinib + obinutuzumab
- 5. Venetoclax + rituximab
- 6. Venetoclax + obinutuzumab
- 7. Idelalisib
- 8. Duvelisib
- 9. Other

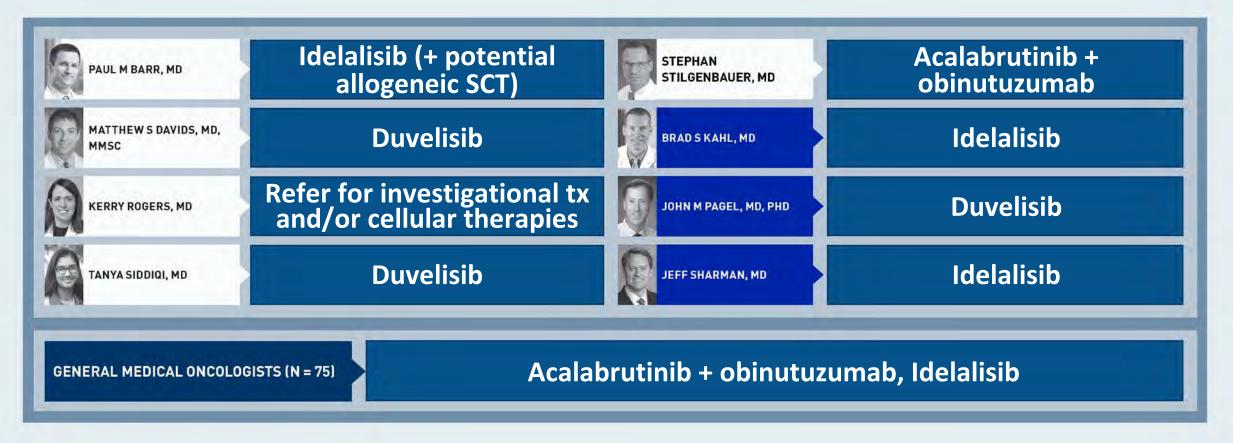
Which second-line systemic therapy would you recommend for a 60year-old patient with IGHV-unmutated CLL without del(17p) or TP53 mutation who responds to <u>ibrutinib</u> and then experiences disease progression 3 years later?



Which second-line systemic therapy would you recommend for a <u>60-year-old</u> patient with IGHV-unmutated CLL without del(17p) or TP53 mutation who responds to <u>venetoclax/obinutuzumab</u> and then experiences disease progression 3 years later?

- 1. FCR
- 2. BR
- 3. Ibrutinib
- 4. Ibrutinib + rituximab
- 5. Acalabrutinib
- 6. Acalabrutinib + obinutuzumab
- 7. Idelalisib
- 8. Duvelisib
- 9. Other

Which second-line systemic therapy would you recommend for a <u>60-year-old</u> patient with IGHV-unmutated CLL without del(17p) or TP53 mutation who responds to <u>venetoclax/obinutuzumab</u> and then experiences disease progression 3 years later?


Which third-line therapy would you generally recommend for a 60-year-old patient with IGHV-unmutated CLL without del(17p) or TP53 mutation who responds to <u>ibrutinib</u> for 3 years, experiences disease relapse, then receives <u>venetoclax</u> for 18 months followed by disease progression?

1. BR

- 2. Acalabrutinib
- 3. Acalabrutinib + obinutuzumab
- 4. Idelalisib
- 5. Duvelisib
- 6. Other

Which third-line therapy would you generally recommend for a 60-year-old patient with IGHV-unmutated CLL without del(17p) or TP53 mutation who responds to <u>ibrutinib</u> for 3 years, experiences disease relapse, then receives <u>venetoclax</u> for 18 months followed by disease progression?

Case Presentation – Dr Rogers: A 53-year-old woman with relapsed/refractory CLL

- 2007 Lymphocytosis noted on routine CBC
 - Diagnosed by peripheral blood flow
 - Observed
- June 2011 FCR x5
 - Treatment started due to LAD
 - IGHV indeterminate, FISH panel negative
 - Stopped after 5 cycles due to prolonged neutropenia
 - Observed after treatment
- January 2015
 - Again noted enlarging lymph nodes
 - Repeat FISH panel +del17p
 - Discussed treatment options

PHM/PSH: Depression *Hypertension* Insomnia Endometriosis s/p tubal ligation s/p cholecystectomy s/pORIF R ankle Meds: Lisinopril Sertraline Valacyclovir Allergies: Trimethoprim-sulfamethoxazole Social: Never smoker No alcohol use Married Social worker Family: Hypertension

Case Presentation – Dr Rogers: A 53-year-old woman with relapsed/refractory CLL (continued)

- March 2015 Started ibrutinib 420mg
 - Lymph nodes improved
 - Some diarrhea and arthritis
- May 2015 Developed painful skin nodules
 - Biopsy proven panniculitis
 - Recurred after several courses of prednisone 20mg
 - Did not improve with dose reduction to 280mg
 - Ibrutinib discontinued
- December 2015
 - Developed debilitating fatigue, night sweats, and enlarging lymph nodes
 - Discussed treatment options

PHM/PSH: Depression Hypertension Insomnia Endometriosis s/p tubal ligation s/p cholecystectomy s/pORIF R ankle Meds: Lisinopril Sertraline Valacyclovir Allergies: Trimethoprim-sulfamethoxazole Social: Never smoker No alcohol use Married Social worker Family: Hypertension

The James

Case Presentation – Dr Rogers: A 53-year-old woman with relapsed/refractory CLL (continued)

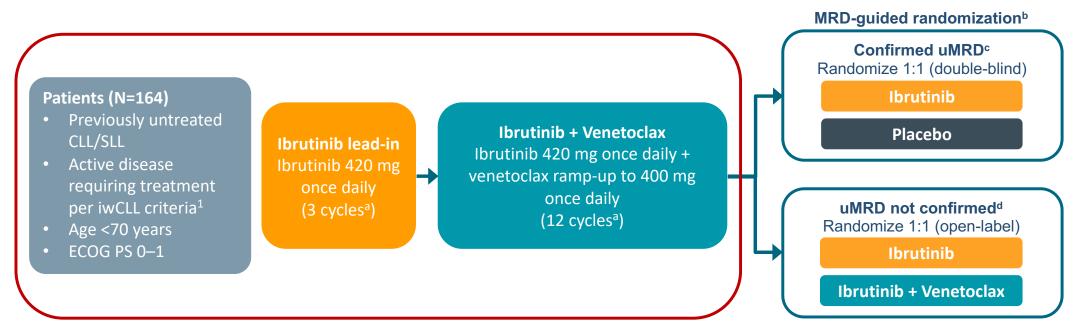
- January 2016 Started acalabrutinib
 - All symptoms improved
 - Developed a few non-painful skin nodules
 - Good disease response
- October 2018 Progressive disease
 - Developed enlarged lymph nodes and night sweats
 - ALC increased
 - Discussed treatment options
- October 2018 Started venetoclax
 - Good response of the CLL
 - Chronic diarrhea impairing her lifestyle
- October 2020 Progressive disease

PHM/PSH: Depression Hypertension Insomnia Endometriosis s/p tubal ligation s/p cholecystectomy s/pORIF R ankle Meds: Lisinopril Sertraline Valacyclovir Allergies: Trimethoprim-sulfamethoxazole Social: Never smoker No alcohol use Married Social worker Family: Hypertension

Agenda

Module 1: First-line treatment options for younger, fit patients — Dr Barr

Module 2: Up-front management of chronic lymphocytic leukemia in older patients or those with comorbidities — Dr Stilgenbauer


Module 3: Optimal management of adverse events with BTK and Bcl-2 inhibitors — Dr Davids

Module 4: Selection and sequencing of therapies for relapsed/refractory disease — Dr Rogers

Module 5: Novel strategies under investigation — Dr Siddiqi

CAPTIVATE MRD Cohort: Study Design

- Results are presented for pre-randomization phase of the CAPTIVATE MRD cohort (N=164) with 12 cycles of ibrutinib + venetoclax prior to MRD-guided randomization
- Time-limited therapy with 12 cycles of ibrutinib + venetoclax to be evaluated in a separate fixed-duration cohort (N=159)

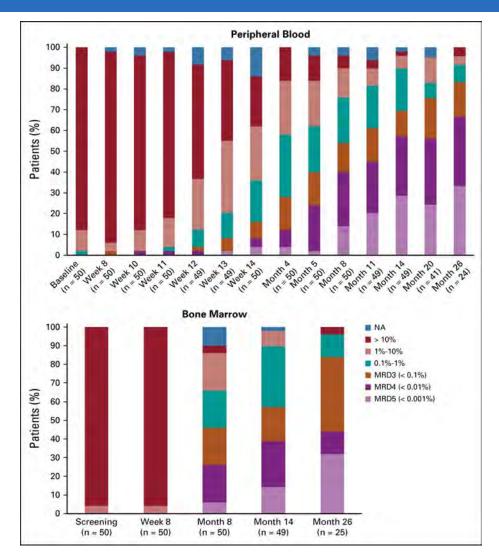
^a1 cycle = 28 days; patients may have received 1 additional cycle while awaiting confirmation of undetectable MRD for randomization. ^bStratified by IGHV mutation status. ^cConfirmed as having undetectable MRD (<10⁻⁴ by 8-color flow cytometry) serially over at least 3 cycles in PB, and undetectable MRD in both PB and BM. ^dDefined as having detectable MRD or undetectable MRD not confirmed serially or not confirmed in both PB and BM. 1. Hallek M et al. *Blood*. 2008;111:5446-5456.

the MIRACLE of SCIENCE with SOUL X Cityof Hope

EHA 2020, CAPTIVATE-MRD; Siddiqi et al.

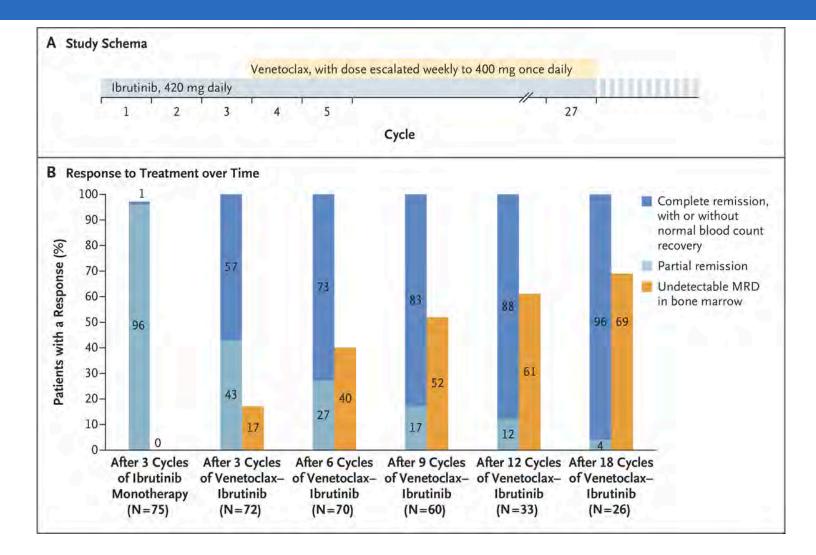
High Rates of Undetectable MRD Achieved in PB and BM With Up to 12 Cycles of I + V Combination

	Peripheral Blood n=163	Bone Marrow ^a n=155
Best response of undetectable MRD in		
evaluable patients ^b	75%	72%
(95% CI)	(68–82)	(64–79)


- Rates of undetectable MRD in peripheral blood and bone marrow were highly concordant at Cycle 16 (91%)
- In the all-treated population (N=164), undetectable MRD was achieved in 75% of patients in peripheral blood and in 68% of patients in bone marrow with up to 12 cycles of combination
- Proportion of patients with undetectable MRD in peripheral blood increased over the 12 cycles of combination therapy
- At 15 months, 98% of patients were progression free with no deaths

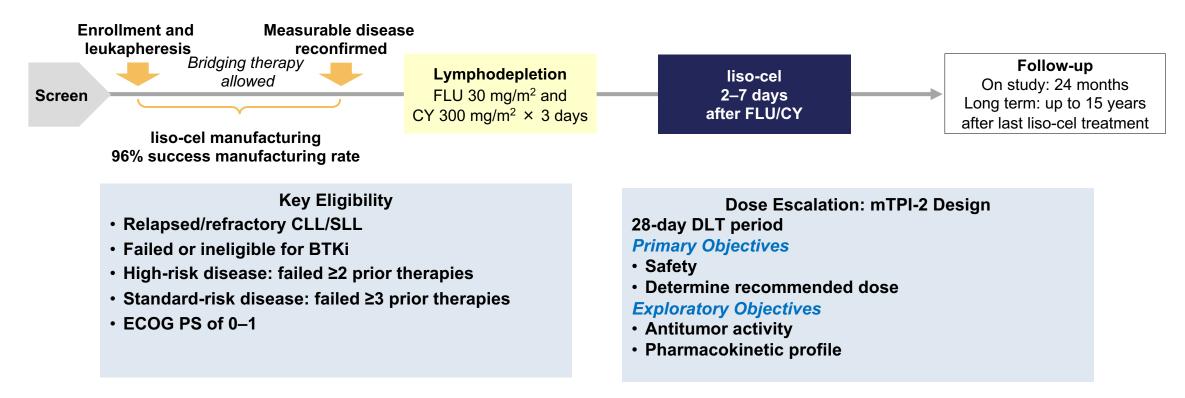
^aBM MRD assessment was scheduled after completion of 12 cycles of combination treatment.

^bPatients with undetectable MRD at any postbaseline assessment; evaluable patients are those who had at least 1 MRD sample taken postbaseline.


EHA 2020, CAPTIVATE-MRD; Siddiqi et al.

CLARITY Ph2 trial (up to 2 yrs of treatment)

Hillmen P, et al. J Clin Oncol 2019; 37:2722-2729


MDACC: IIT, Ph2, frontline high risk and older CLL pts, I+V for 24 cycles

N Jain et al. N Engl J Med 2019;380:2095-2103. Courtesy of Tanya Siddiqi, MD

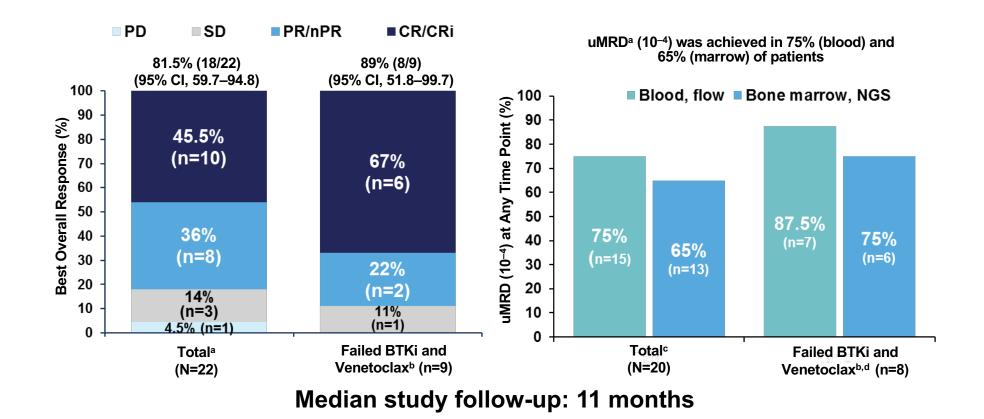
CAR T cell therapy in CLL

TRANSCEND CLL 004 Study Design

Dose Level	Dose	Evaluable (N=23)
1	50 \times 10 ⁶ CAR+ T cells	9
2	100 × 10 ⁶ CAR+ T cells	14

Siddiqi T, et al. ASH annual mtg 2019

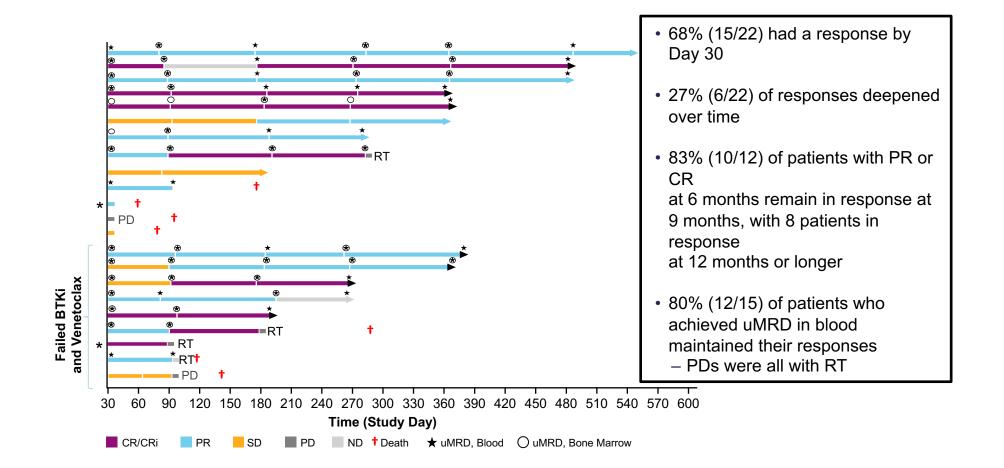
Incidence and Management of CRS and NEs


	All Patients (N=23)	
CRS—any grade, n (%) Median time to first onset, days (range)	17 (74) 4 (1–10)	
Median duration of first event, days (range) Grade 3, n (%)	12 (2–50) 2 (9)	
NE ^a —any grade, n (%) Median time to first onset, days (range) Median duration of first event, days (range) Grade ≥3, ^b n (%)	9 (39) 4 (2–21) 21 (6–56) 5 (22)	
Any CRS or NE, n (%)	18 (78)	
CRS only, n (%)	9 (39)	
NE only, n (%)	1 (4)	
Tocilizumab and/or steroid use		
Tocilizumab only	5 (22)	
Steroids only	3 (13)	
Both tocilizumab and steroids	9 (39)	
Tocilizumab and/or steroid use	17 (74)	

• No grade 5 CRS or NE occurred

^aNEs are liso-cel related neurologic adverse events defined by the investigator; ^bNEs are not mutually exclusive; encephalopathy (n=3); aphasia (n=1); confusional state (n=1); muscular weakness (n=1); somnolence (n=1). BTKi, Bruton tyrosine kinase inhibitor; CRS, cytokine release syndrome; NE, neurological events; TEAEs, treatment-emergent adverse events.

Siddiqi T, et al. ASH annual mtg 2019


Best Overall Response and Undetectable MRD

All percentages are rounded to whole numbers except those ending in .5. ^aEvaluable for response defined as having a pretreatment assessment and \geq 1 postbaseline assessment. One patient was not evaluable for response. ^bFailed venetoclax defined as discontinuation due to PD or <PR after \geq 3 months of therapy. ^cEvaluable for MRD was defined as patients with detectable MRD at baseline. Two patients were not evaluable for MRD. ^dOne patient in this subset was not evaluable for MRD. BTKi, Bruton tyrosine kinase inhibitor; CI, confidence interval; CR, complete response; CRi, complete response with incomplete blood count recovery; MRD, minimal residual disease; NGS, next-generation sequencing; nPR, nodular partial response; PD, progressive disease; PR, partial response; SD, stable disease; uMRD, undetectable minimal residual disease.

the MIRACLE of SCIENCE with SOUL TO City of Hope. Siddigi T, et al. ASH annual mtg 2019

Individual Patient Response Assessments

*MRD non-evaluable. There were 7 on-study deaths: 5 patients died from disease progression; 1 patient had grade 5 respiratory failure (DL1) unrelated to liso-cel treatment; 1 patient had septic shock, acute kidney injury, and pneumonia (DL2), unrelated to liso-cel treatment. No deaths occurred within the first 30 days. BTKi, Bruton tyrosine kinase inhibitor; CR, complete response; CRi, complete response with incomplete blood count recovery; DL, dose level; MRD, minimal residual disease; ND, not done; PD, progressive disease; PR, partial response; RT, Richter transformation; SD, stable disease; uMRD, undetectable MRD.

Siddiqi T, et al. ASH annual mtg 2019

Other ongoing CAR T-cell trials in CLL

- ZUMA-8 (axi-cel)
- JCAR014 + ibrutinib
- CTL019 + ibrutinib
- Novel CAR T targets like ROR1 and CD22
- Off-the-shelf CAR T-cell trials

At what point in the treatment course are you referring patients with multiple regimen-relapsed CLL for consultation regarding CAR T-cell therapy?

- 1. At first relapse
- 2. At second relapse
- 3. At third relapse
- 4. Other
- 5. I am not referring patients for CAR T-cell therapy

At what point in the treatment course are you referring patients with multiple regimen-relapsed CLL for consultation regarding CAR T-cell therapy?

Case Presentation - Dr Siddiqi: A 67-year-old man with relapsed/refractory CLL – del(13q), del(11q), no IGHV mutation

- 67 yo Caucasian man seen in consultation on 9/18/17
- CLL/SLL diagnosed in 10/2006: high WBCs, ZAP70 pos, del13q, del11q, unmutated IGHV
- Rituximab+lenalidomide x7 (through 10/2008)
- At PD, high dose methylpred + ofatumumab x3
- Nodular PR then PD
- Ibrutinib (with rituximab initially) through 10/2015 when he developed blistering rash and stopped this drug
- Venetoclax started 3/2016 PR initially but then PD (drug stopped 8/2017)
- High dose methylpred + obinutuzumab

Case Presentation - Dr Siddiqi: A 67-year-old man with relapsed/refractory CLL – del(13q), del(11q), no IGHV mutation (continued)

- Enrolled on liso-cel CAR T-cell trial
- Idelalisib controlled disease during cell manufacturing
- Received liso-cel cells on 1/31/18 after Flu/Cy lymphodepletion
- Complications included TLS, CRS, encephalopathy requiring ICU stay, CMV reactivation
- MRD positive remission at Day 30 that deepened to uMRD
- Remains in remission almost 3 years later

Case Presentation – Dr Siddiqi: A 40-year-old man with previously untreated CLL – del(13q)

- 36 yo M with previously untreated CLL/SLL and del13q had rapid lymphocyte doubling time and progressing lymphadenopathy soon after diagnosis in 2016
- He consented to participate in the CAPTIVATE Ph2 trial and enrolled on the MRD cohort
- After 16 cycles of combination I+V therapy. He achieved MRD undetectable CR and was randomized to ibrutinib maintenance vs. placebo on 1/25/2018
- He remains on study on maintenance and has no toxicity

Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

Acute Myeloid Leukemia

Friday, December 4, 2020 3:00 PM – 4:30 PM Pacific Time

Faculty

Mark Levis, MD, PhD Alexander Perl, MD Daniel A Pollyea, MD, MS Eytan M Stein, MD Professor Andrew H Wei, MBBS, PhD

Moderator

Neil Love, MD

Thank you for joining us!

CME credit information will be emailed to each participant within 3 business days.

