Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

Acute Myeloid Leukemia

Friday, December 4, 2020 3:00 PM – 4:30 PM Pacific Time

Faculty

Mark Levis, MD, PhD Alexander Perl, MD Daniel A Pollyea, MD, MS Eytan M Stein, MD Andrew H Wei, MBBS, PhD

Moderator

Neil Love, MD

Commercial Support

This activity is supported by educational grants from AbbVie Inc, Astellas, Bristol-Myers Squibb Company, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Helsinn Healthcare SA and Pfizer Inc.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following commercial interests: AbbVie Inc, Acerta Pharma — A member of the AstraZeneca Group, Adaptive Biotechnologies Corporation, Agendia Inc, Agios Pharmaceuticals Inc, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Biodesix Inc, bioTheranostics Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Daiichi Sankyo Inc, Dendreon Pharmaceuticals Inc, Eisai Inc, EMD Serono Inc, Epizyme Inc, Exelixis Inc, Foundation Medicine, Genentech, a member of the Roche Group, Genmab, Genomic Health Inc, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Guardant Health, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Infinity Pharmaceuticals Inc, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lexicon Pharmaceuticals Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Merrimack Pharmaceuticals Inc, Myriad Genetic Laboratories Inc, Natera Inc, Novartis, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Prometheus Laboratories Inc, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sandoz Inc, a Novartis Division, Sanofi Genzyme, Seagen Inc, Sirtex Medical Ltd, Spectrum Pharmaceuticals Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Oncology, Tesaro, A GSK Company, Teva Oncology, Tokai Pharmaceuticals Inc and Verastem Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Levis — Disclosures

Advisory Committee	AbbVie Inc, Agios Pharmaceuticals Inc, Amgen Inc, Astellas, Bristol- Myers Squibb Company, Daiichi Sankyo Inc, FUJIFILM Pharmaceuticals USA Inc, Menarini Group, Takeda Oncology
Contracted Research	Astellas, FUJIFILM Pharmaceuticals USA Inc

Dr Perl — Disclosures

Advisory Committee	AbbVie Inc, Actinium Pharmaceuticals Inc, Astellas, Daiichi Sankyo Inc, FORMA Therapeutics, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, NewLink Genetics
Consulting Agreements	AbbVie Inc, Arog Pharmaceuticals Inc, Astellas, Daiichi Sankyo Inc
Contracted Research	AbbVie Inc, Astellas, Bayer HealthCare Pharmaceuticals, Daiichi Sankyo Inc, FUJIFILM Pharmaceuticals USA Inc
Data and Safety Monitoring Board/Committee	Leukemia & Lymphoma Society

Dr Pollyea — Disclosures

Advisory Committee	AbbVie Inc, Amgen Inc, Bristol-Myers Squibb Company, Celgene Corporation, Genentech, a member of the Roche Group, Karyopharm Therapeutics, Kiadis Pharma, Novartis, Syndax Pharmaceuticals Inc, Syros Pharmaceuticals Inc, Takeda Oncology
Contracted Research	AbbVie Inc
Data and Safety Board/Committee	GlycoMimetics Inc, Takeda Oncology

Dr Stein — Disclosures

Advisory Committee	AbbVie Inc, Agios Pharmaceuticals Inc, Astellas, Bristol-Myers Squibb Company, Celgene Corporation, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Janssen Biotech Inc, Novartis, Ono Pharmaceutical Co Ltd, Syndax Pharmaceuticals Inc, Syros Pharmaceuticals Inc
Contracted Research	Agios Pharmaceuticals Inc, Bayer HealthCare Pharmaceuticals, BioTheryX Inc, Bristol-Myers Squibb Company, Celgene Corporation, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Prelude Therapeutics, Syndax Pharmaceuticals Inc, Syros Pharmaceuticals Inc

Dr Wei — Disclosures

Advisory Committee	AbbVie Inc, Amgen Inc, Astellas, AstraZeneca Pharmaceuticals LP, Celgene Corporation, Genentech, a member of the Roche Group, Janssen Biotech Inc, MacroGenics Inc, Novartis, Pfizer Inc, Servier
Consulting Agreement	Servier
Contracted Research	AbbVie Inc, Amgen Inc, AstraZeneca Pharmaceuticals LP, Celgene Corporation, Novartis, Servier
Royalties	Former employee of the Walter and Eliza Hall Institute of Medical Research receiving a fraction of its royalty stream related to venetoclax
Speakers Bureau	AbbVie Inc, Genentech, a member of the Roche Group

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface How to answer poll questions

When a poll question pops up, click your answer choice from the available options. Results will be shown after everyone has answered.

Upcoming Webinars

Tuesday, December 8, 2020 5:00 PM - 6:00 PM ET

Year in Review: Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology **Colorectal and Gastroesophageal Cancers**

Faculty Peter C Enzinger, MD Zev Wainberg, MD, MSc

Moderator Neil Love, MD Wednesday, December 9, 2020 12:30 PM – 1:30 PM ET

Meet The Professor: Immunotherapy and Novel Agents in Gynecologic Cancers

Faculty Gottfried E Konecny, MD

Moderator Neil Love, MD

Upcoming Webinars

Thursday, December 10, 2020 8:30 PM – 10:00 PM ET

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of HER2-Positive Breast Cancer

Faculty

Carey K Anders, MD Erika Hamilton, MD Sara Hurvitz, MD Mark D Pegram, MD Sara M Tolaney, MD, MPH

Moderator Neil Love, MD Friday, December 11, 2020 8:30 PM – 10:00 PM ET

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Triple-Negative Breast Cancer

Faculty P Kelly Marcom, MD Joyce O'Shaughnessy, MD Hope S Rugo, MD Professor Peter Schmid, MD, PhD

Moderator Neil Love, MD

Thank you for joining us!

CME credit information will be emailed to each participant within 3 business days.

ONCOLOGY TODAY WITH DR NEIL LOVE

ACUTE MYELOID LEUKEMIA WITH FLT3 MUTATIONS

DR KEITH PRATZ UNIVERSITY OF PENNSYLVANIA

Dr Keith Pratz Acute Myeloid Leukemia Oncology Today with Dr Neil Love —

(15) (30)

Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

Hodgkin and Non-Hodgkin Lymphoma

Friday, December 4, 2020 7:00 PM – 8:30 PM Pacific Time

FacultyJonathan W Friedberg, MD, MMScJohn P Leonard, MDJohn Kuruvilla, MDMichael E Williams, MD, ScMAnn S LaCasce, MD, MMScImage: Colspan="2">Image: Colspan="2" Image: Co

Moderator

Neil Love, MD

Exploring Current Management Paradigms for Patients with Acute Myeloid Leukemia Not Eligible for Intensive Therapy

Friday, October 25, 2019, 1:15 PM – 3:45 PM Orlando, Florida

> Faculty Courtney D DiNardo, Keith W Pratz, Richard M Stop

> > Modera

M

Ne

Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

Acute Myeloid Leukemia

Friday, December 4, 2020 3:00 PM – 4:30 PM Pacific Time

Faculty

Mark Levis, MD, PhD Alexander Perl, MD Daniel A Pollyea, MD, MS Eytan M Stein, MD Andrew H Wei, MBBS, PhD

Moderator

Neil Love, MD

Faculty

Mark Levis, MD, PhD Director, Adult Leukemia Program Co-Division Director, Hematologic Malignancies Professor of Oncology The Sidney Kimmel Comprehensive Cancer Center Johns Hopkins Medicine Baltimore, Maryland

Daniel A Pollyea, MD, MS Associate Professor of Medicine Clinical Director of Leukemia Services Robert H Allen, MD Chair in Hematology Research Division of Hematology University of Colorado School of Medicine Aurora, Colorado

Alexander Perl, MD

Associate Professor of Medicine Perelman School of Medicine at the University of Pennsylvania Member, Leukemia Program Abramson Cancer Center of the University of Pennsylvania Philadelphia, Pennsylvania

Eytan M Stein, MD Assistant Attending Physician Director, Center for Drug Development in Leukemia Leukemia Service, Department of Medicine Memorial Sloan Kettering Cancer Center New York, New York

Faculty

Andrew H Wei, MBBS, PhD Adjunct Professor, Department of Haematology Alfred Hospital and Monash University Melbourne, Australia

Moderator Neil Love, MD Research To Practice Miami, Florida

Consensus or Controversy Survey Participants (in Addition to Our Faculty)

Courtney D DiNardo, MD, MSCE The University of Texas MD Anderson Cancer Center Houston, Texas

Alice S Mims, MD The James Cancer Hospital at The Ohio State University Columbus, Ohio

Eunice S Wang MD Roswell Park Comprehensive Cancer Institute Buffalo, New York

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface How to answer poll questions

When a poll question pops up, click your answer choice from the available options. Results will be shown after everyone has answered.

ONCOLOGY TODAY WITH DR NEIL LOVE

ACUTE MYELOID LEUKEMIA WITH FLT3 MUTATIONS

DR KEITH PRATZ UNIVERSITY OF PENNSYLVANIA

Dr Keith Pratz Acute Myeloid Leukemia Oncology Today with Dr Neil Love —

(15) (30)

Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

Hodgkin and Non-Hodgkin Lymphoma

Friday, December 4, 2020 7:00 PM – 8:30 PM Pacific Time

FacultyJonathan W Friedberg, MD, MMScJohn P Leonard, MDJohn Kuruvilla, MDMichael E Williams, MD, ScMAnn S LaCasce, MD, MMScImage: Colspan="2">Image: Colspan="2" Image: Co

Moderator

Neil Love, MD

Year in Review: Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology

Colorectal and Gastroesophageal Cancers

Tuesday, December 8, 2020 5:00 PM – 6:00 PM ET

Faculty Peter C Enzinger, MD Zev Wainberg, MD, MSc

> Moderator Neil Love, MD

Meet The Professor Immunotherapy and Novel Agents in Gynecologic Cancers

> Wednesday, December 9, 2020 12:30 PM – 1:30 PM ET

> > Faculty Gottfried E Konecny, MD

> > > Moderator Neil Love, MD

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of HER2-Positive Breast Cancer

Thursday, December 10, 2020 8:30 PM – 10:00 PM ET

Faculty

Carey K Anders, MD Erika Hamilton, MD Sara Hurvitz, MD Mark D Pegram, MD Sara M Tolaney, MD, MPH

Moderator Neil Love, MD

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Triple-Negative Breast Cancer

Friday, December 11, 2020 8:30 PM – 10:00 PM ET

Faculty

P Kelly Marcom, MD Joyce O'Shaughnessy, MD Hope S Rugo, MD Professor Peter Schmid, MD, PhD

Moderator Neil Love, MD

Recent Advances in Hematologic Oncology: A 4-Part Live Webinar Series Reviewing Key Data and Presentations from the 62nd ASH Annual Meeting

Acute Myeloid Leukemia Wednesday, January 20, 2021 5:00 – 6:00 PM ET

Faculty

Daniel A Pollyea, MD, MS Andrew H Wei, MBBS, PhD Additional faculty to be announced

Multiple Myeloma Wednesday, February 10, 2021 5:00 – 6:00 PM ET

Faculty Robert Z Orlowski, MD, PhD Edward A Stadtmauer, MD *Additional faculty to be announced* Hodgkin and Non-Hodgkin Lymphoma Wednesday, February 3, 2021 5:00 – 6:00 PM ET

Faculty John Kuruvilla, MD John P Leonard, MD Michael E Williams, MD, ScM

Chronic Lymphocytic Leukemia Wednesday, February 24, 2021 5:00 – 6:00 PM ET

Faculty Matthew S Davids, MD, MMSc *Additional faculty to be announced*

Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

Acute Myeloid Leukemia

Friday, December 4, 2020 3:00 PM – 4:30 PM Pacific Time

Faculty

Mark Levis, MD, PhD Alexander Perl, MD Daniel A Pollyea, MD, MS Eytan M Stein, MD Andrew H Wei, MBBS, PhD

Moderator

Neil Love, MD

ASH AML 2020 Presentation Library

Optimizing the Management of AML in Older Patients or Those Ineligible for Intensive Chemotherapy Download Slides Andrew H Wei, MBBS, PhD **Treatment Options for Patients with AML Harboring FLT3 Mutations Download Slides Alexander Perl, MD** Management of Newly Diagnosed and Previously Treated AML with **IDH Mutations Download Slides** Eytan M Stein, MD **Tailoring Induction and Maintenance Therapy for Younger Patients** with AML without Targetable Tumor Mutations **Download Slides** Mark Levis, MD, PhD **Other Novel Agents and Investigational Strategies for Patients Download Slides** with AML Daniel A Pollyea, MD, MS

Agenda

Module 1: Optimizing the Management of AML in Older Patients or Those Ineligible for Intensive Chemotherapy — Dr Wei

Module 2: Treatment Options for Patients with AML Harboring FLT3 Mutations — Dr Perl

Module 3: Management of Newly Diagnosed and Previously Treated AML with IDH Mutations — Dr Stein

Module 4: Tailoring Induction and Maintenance Therapy for Younger Patients with AML without Targetable Tumor Mutations — Dr Levis

Module 5: Other Novel Agents and Investigational Strategies for Patients with AML — Dr Pollyea

Life expectancy in older people

Recent FDA-approved drugs for AML (Survival Outcomes)

AZA, azacitidine; ENA, enasidenib; GO, gemtuzumab ozogamicin; LDAC, low-dose cytarabine; Ven, venetoclax.

1. Stone M, et al. N Engl J Med 2017; **377:**454–464; 2. Lancet JE, et al. J Clin Oncol 2018; **36**:2684–2692; 3. Norsworthy KJ, et al. Clin Cancer Res 2019; **25:**6021–6025;

4. DiNardo CD, et al. EHA 2020; oral presentation S139 5. Lambert J, et al. Haematologica 2019; 104:113–119; 6. Perl AE, et al. N Engl J Med 2019; 381:1728–1740;

7. Wei AH, et al. ASH 2019; oral presentation LBA3; 8. DiNardo CD, et al. N Engl J Med 2020; 383:617–629.

Courtesy of Andrew H Wei, MBBS, PhD

Comparison of HMA or LDAC + venetoclax responses

Wei et al, Blood 2020; EHA 2020, Di Nardo et al, EHA 2020

Courtesy of Andrew H Wei, MBBS, PhD

Uncertainties with targeting BCL2 in AML

- Role of monotherapy
- Safety in MF-associated AML
- Optimal dose in combination with anti-fungal agents
- Role of VEN in prior HMA failure
- Management of VEN-AZA treatment failure

Courtesy of Andrew H Wei, MBBS, PhD

Future directions

- More intensive combinations
- Combinations with targeted therapies
 - Targeted drugs
 - Immunotherapy
- Maintenance therapy
- More convenient regimens- with CC-486, ASTX727 (decitabine + cedazuridine)

What initial treatment would you generally recommend for an 80-year-old patient with AML and intermediate-risk cytogenetics?

- 1. Azacitidine
- 2. Decitabine
- 3. Azacitidine + venetoclax
- 4. Decitabine + venetoclax
- 5. Low-dose cytarabine + venetoclax
- 6. Low-dose cytarabine + glasdegib
- 7. Other

What initial treatment would you generally recommend for an 80-year-old patient with AML and <u>intermediate-risk</u> cytogenetics?

MARK LEVIS, MD	Azacitidine + venetoclax	ANDREW H WEI, MBBS, PHD	Azacitidine + venetoclax		
ALEXANDER PERL, MD	Azacitidine + venetoclax	COURTNEY D DINARDO, MD, MSCE	Azacitidine + venetoclax		
DANIEL A POLLYEA, MD, MS	Azacitidine + venetoclax	ALICE S MIMS, MD	Azacitidine + venetoclax		
EYTAN M STEIN, MD	Azacitidine + venetoclax	EUNICE S WANG, MD	Azacitidine + venetoclax		
GENERAL MEDICAL ONCOLOGISTS (N = 75) Azacitidine + venetoclax					

LDAC, low-dose cytarabine

What initial treatment would you generally recommend for an 80-year-old patient with AML and <u>poor-risk</u> cytogenetics?

LDAC, low-dose cytarabine

What initial treatment would you recommend for a 65-year-old patient with AML with a performance status (PS) of 2 and a history of hypertension, coronary artery disease and diabetes mellitus, assuming organ function is normal?

- 1. 7 + 3 induction
- 2. Azacitidine
- 3. Decitabine
- 4. Azacitidine + venetoclax
- 5. Decitabine + venetoclax
- 6. Low-dose cytarabine + venetoclax
- 7. Low-dose cytarabine + glasdegib
- 8. Other

What initial treatment would you recommend for a 65-yearold patient with AML with a performance status (PS) of 2 and a history of hypertension, coronary artery disease and diabetes mellitus, assuming organ function is normal?

How would you compare the <u>global efficacy</u> of venetoclax/HMA or venetoclax/low-dose cytarabine to that of glasdegib/low-dose cytarabine in patients with AML?

MARK LEVIS, MD	Venetoclax-based therapy is more efficacious	ANDREW H WEI, MBBS, PHD	Venetoclax-based therapy is more efficacious		
ALEXANDER PERL, MD	Venetoclax-based therapy is more efficacious	COURTNEY D DINARDO, MD,	Venetoclax-based therapy is more efficacious		
DANIEL A POLLYEA, MD, MS	Venetoclax-based therapy is more efficacious	ALICE S MIMS, MD	Venetoclax-based therapy is more efficacious		
EYTAN M STEIN, MD	Venetoclax-based therapy is more efficacious	EUNICE S WANG, MD	Venetoclax-based therapy is more efficacious		
GENERAL MEDICAL ONCOLOGISTS (N = 75) Venetoclax-based therapy is more efficacious					

How would you compare the <u>tolerability/toxicity</u> of venetoclax/HMA or venetoclax/low-dose cytarabine to that of glasdegib/low-dose cytarabine in patients with AML?

- 1. About the same
- 2. Venetoclax-based therapy has less toxicity
- 3. Glasdegib/low-dose cytarabine has less toxicity
- 4. There are currently not enough data
- 5. I don't know

How would you compare the <u>tolerability/toxicity</u> of venetoclax/HMA or venetoclax/low-dose cytarabine to that of glasdegib/low-dose cytarabine in patients with AML?

MARK LEVIS, MD	Venetoclax-based therapy has less toxicity	ANDREW H WEI, MBBS, PHD	Glasdegib/LDAC has less toxicity		
ALEXANDER PERL, MD	Venetoclax-based therapy has less toxicity	COURTNEY D DINARDO, MD,	About the same		
DANIEL A POLLYEA, MD, MS	Not enough data to answer	ALICE S MIMS, MD	About the same		
EYTAN M STEIN, MD	Venetoclax-based therapy has less toxicity	EUNICE S WANG, MD	Glasdegib/LDAC has less toxicity		
GENERAL MEDICAL ONCOLOGISTS (N = 75) Venetoclax-based therapy has less toxicity					

Case Presentation – Dr Wei: A 78-year-old woman with AML with 34% marrow blasts

- 78yo lady
- Dec 2014: AML 34% blasts (IDH2 R140Q)
 - Rx LDAC + VEN → CR
 - Ceased in July 2016 (15 cycles)
 - IDH2 R140Q still present
- Jan 2020: Relapse 51% blasts (IDH2 R140Q, new SRSF2)
 - Rx enasidenib \rightarrow MLFS EOC4 2% blasts
- FLT3-ITD relapse
 - Rx gilteritinib

Learning points

- Patient able to cease therapy
- Relapse 3.5 years after ceasing therapy
- Important to look for targetable causes of clonal evolution with targeted therapy

Agenda

Module 1: Optimizing the Management of AML in Older Patients or Those Ineligible for Intensive Chemotherapy — Dr Wei

Module 2: Treatment Options for Patients with AML Harboring FLT3 Mutations — Dr Perl

Module 3: Management of Newly Diagnosed and Previously Treated AML with IDH Mutations — Dr Stein

Module 4: Tailoring Induction and Maintenance Therapy for Younger Patients with AML without Targetable Tumor Mutations — Dr Levis

Module 5: Other Novel Agents and Investigational Strategies for Patients with AML — Dr Pollyea

FLT3 mutations in AML

Slide courtesy of Ashkan Emadi Courtesy of Alexander Perl, MD

- Incidence
 - FLT3-ITD 20-25%
 - FLT3-TKD 5-10%
- Clinical features
 - Leukocytosis
 - High marrow blast percent
 - Proliferative disease
- Genetic associations
 - Diploid karyotype
 - NPM1 mutation
 - t(6;9)
 - t(15;17)
- Frequently subclonal
 - gained at relapse/progression
 - sometimes lost at relapse/progression

ITD= internal tandem duplication TKD= tyrosine kinase domain

3 therapies improve FLT3-ITD+ AML cure rates

Note: includes FLT3-ITD (77%) and FLT3-D835 (23%) 57% underwent alloHSCT

Luskin MR, et al. *Blood*. 2016 Mar 24;127(12):1551-8 Schlenk RF, et al. N Engl J Med. 2008 May 1;358(18):1909-18. Stone RM, et al. *N Engl J Med*. 2017 Aug 3;377(5):454-464

Potency and selectivity of FLT3 inhibitors

20 24

60 mg

		IC ₅₀ (medium)	IC ₅₀ (plasma)	Single agent clinical activity	Kinase inhibition
1 st gen	Lestaurtinib	2 nM	700 nM	-	Type 1
	Midostaurin	6 nM	~1000 nM	-	Type 1
	Sorafenib	3 nM	~265 nM	+/-	Type 2
	Quizartinib	1 nM	18 nM	+	Type 2
2 nd gen	Crenolanib	2 nM	48 nM	+	Type 1
	Gilteritinib	3 nM	43 nM	+	Type 1

The plasma inhibitory activity (PIA) assay for FLT3

Type 2 inhibitors: resistance due to FLT3-D835 Type 1 inhibitors: active against FLT3-D835, limited potential for on-target resistance

Pratz KW, et al. Blood 2010;115(7):1425-32 Zarrinkar PP, et al. Blood. 2009 Oct 1;114(14):2984-92 Galanis A, et al. Blood 2014 Jan 2;123(1):94-100 Levis M, Perl AE. Blood Adv. 2020 Mar 24;4(6):1178-1191 Smith CC, et al. Nature. 2012 Apr 15;485(7397):260-3 Tarver TC, et al. Blood Adv. 2020 Feb 11;4(3):514-524

Current relapsed/refractory standard of care: gilteritinib

• Gilteritinib toxicities:

- Months
- Cytopenias, elevation of LFTs, CPK, fevers/rashes (Sweet's syndrome)
- Uncommon toxicities: differentiation syndrome, QT prolongation

Courtesy of Alexander Perl, MD

Ongoing questions in the FLT3 world

- The NCCN guidelines only recommend midostaurin for intermediate risk karyotype FLT3^{mut+}--does it work in other patients?
- Do FLT3-TKD+ patients benefit from midostaurin?
- Which FLT3^{mut+} patients need transplant?
- Should I give TKI maintenance after transplant?
- Should I give midostaurin or a newer FLT3 inhibitor with induction?
- What should newly diagnosed FLT3^{mut+} unfit patients receive?

Newer FLT3 inhibitors in frontline intensive therapy?

Combination: gilteritinib + intensive chemotherapy for newly diagnosed FLT3mut+ AML

Response FLT3 ^{mut+} (n=33 ⁺)	N (%)	
CR	22 (66.7)	
CRp	1 (3.0)	
CRi	8 (24.2)	
 PR	0	
NR	2 (6.1)	
CRc [‡]	31 (93.9)	

up to 2 induction cycles permitted; HSCT followed by maintenance allowed without leaving study

Trial	Phase (N)	Control	Maintenance	Primary endpoint	status
Quantum-FIRST (quizartinib) ¹	3 (539)	Placebo	1-3 years	EFS, OS	Enrollment complete
ARO-021 (crenolanib) ²	3 (510)	Midostaurin	1 year	EFS	Ongoing (US)
PrECOG 0905 (gilteritinib) ³	2 (170)	Midostaurin	None	FLT3 ^{mut} (-) CRc	Ongoing (US)
HOVON 156 (gilteritinib) ⁴	3 (768)	Midostaurin	1 year	EFS	Ongoing (Europe)

Pratz KW, et al. *Blood* 2018; 132 (Supplement 1): 564

Courtesy of Alexander Perl, MD

- NCT02668653 1.
- NCT03258931 2.
- NCT03836209 3. 4.
 - NCT04027309

VIALE-A Response Rates (CR+CRi) by Subgroups

AZA + venetoclax vs. AZA/placebo

HMA + ven: median OS= 14.7 mo HMA + PBO: median OS=9.6 mo

Age >60 unfit or age >75 fit/unfit All non-CBF subtypes, no prior HMA

Courtesy of Alexander Perl, MD

	Aza+Ven n/N(%)	Aza+Pbo n/N(%)		HR [95% CI] Aza+Ven vs. Aza+Pbo
All Subjects	161/286 (56.3)	109/145 (75.2)		0.64 (0.50, 0.82
Gender				
Female	61/114 (53.5)	41/58 (70.7)	⊢ ■(0.68 (0.46, 1.02
Male	100/172 (58.1)	68/ 87 (78.2)		0.62 (0.46, 0.85
Age (Years)				
< 75	66/112 (58.9)	36/ 58 (62.1)		0.89 (0.59, 1.33
≥75	95/174 (54.6)	73/87 (83.9)	—	0.54 (0.39, 0.73
Type of AML			1	
De Novo	120/214 (56.1)	80/110 (72.7)	H	0.67 (0.51, 0.90
Secondary	41/72 (56.9)	29/35 (82.9)	—	0.56 (0.35, 0.91
Cytogenetic Risk				
Intermediate	84/182 (46.2)	62/89 (69.7)		0.57 (0.41, 0.79
Poor	77/104 (74.0)	47/56 (83.9)	⊢_ ∎i	0.78 (0.54, 1.12
Molecular Marker				
FLT3	19/29 (65.5)	19/22 (86.4)		0.66 (0.35, 1.26
IDH1	15/23 (65.2)	11/ 11 (100.0)	H H	0.28 (0.12, 0.65
IDH2	15/40 (37.5)	14/ 18 (77.8)		0.34 (0.16, 0.71
IDH1/2	29/61 (47.5)	24/28 (85.7)	· · · · · · · · · · · · · · · · · · ·	0.34 (0.20, 0.60
TP53	34/38 (89.5)	13/ 14 (92.9)	· · · · · · · · · · · · · · · · · · ·	0.76 (0.40, 1.45
NPM1	16/27 (59.3)	14/ 17 (82.4)		0.73 (0.36, 1.51
			Favors Aza+Ven	s Aza+Pbo
			1	<u>_</u>

What would you recommend as first-line therapy to a <u>60-year-old</u> patient who presents with intermediate-risk AML and a FLT3-TKD mutation?

MARK LEVIS, MD	7 + 3 induction + midostaurin	ANDREW H WEI, MBBS, PHD	7 + 3 induction + midostaurin		
ALEXANDER PERL, MD	7 + 3 induction + midostaurin	COURTNEY D DINARDO, MD,	7 + 3 induction + midostaurin		
DANIEL A POLLYEA, MD, MS	7 + 3 induction + midostaurin	ALICE S MIMS, MD	7 + 3 induction + midostaurin		
EYTAN M STEIN, MD	7 + 3 induction + midostaurin	EUNICE S WANG, MD	7 + 3 induction + midostaurin		
GENERAL MEDICAL ONCOLOGISTS (N = 75) 7 + 3 induction + midostaurin					

What would you recommend as first-line therapy to a <u>60-year-old</u> patient who presents with intermediate-risk AML and a FLT3-ITD mutation?

What would you recommend as first-line therapy to a <u>78-year-old</u> patient (PS 0) who presents with intermediate-risk AML with a <u>FLT3-ITD</u> mutation?

- 1. Midostaurin
- 2. 7 + 3 induction + midostaurin
- 3. HMA
- 4. HMA + venetoclax
- 5. HMA + venetoclax + FLT3 inhibitor
- 6. Low-dose cytarabine + venetoclax
- 7. Low-dose cytarabine + venetoclax + FLT3 inhibitor
- 8. Gilteritinib
- 9. Other

What would you recommend as first-line therapy to a <u>78-year-old</u> patient (<u>PS 0</u>) who presents with intermediaterisk AML with a <u>FLT3-ITD</u> mutation?

What would you recommend as first-line therapy to a 78-year-old patient with a history of cardiac and renal abnormalities (PS 2) who presents with intermediate-risk AML with a FLT3-ITD mutation?

A 60-year-old with AML, FLT3 mutation receives 7 + 3 induction + midostaurin, achieves remission. Receives consolidation with 3 cycles of modified high-dose cytarabine + midostaurin. 4 months after completion of therapy, disease progression, FLT3 ITD mutation (allelic burden 0.4) confirmed. What would you recommend?

- 1. Gilteritinib
- 2. Sorafenib/azacitidine
- 3. FLAG-IDA
- 4. MEC + midostaurin
- 5. HMA + venetoclax
- 6. HMA + venetoclax + FLT3 inhibitor
- 7. Low-dose cytarabine + venetoclax
- 8. Low-dose cytarabine + venetoclax + FLT3 inhibitor
- 9. Other

A 60-year-old patient with AML with a FLT3 mutation receives 7 + 3 induction and midostaurin, achieves remission and receives consolidation with 3 cycles of modified high-dose cytarabine and midostaurin. Four months after completion of therapy he experiences disease progression, and a FLT3 ITD mutation (allelic burden of 0.4) is confirmed. What would you recommend?

Case Presentation – Dr Perl: A 53-year-old woman with AML with a FLT3-ITD mutation

- 53 YO previously well woman presents (in early 2017) with progressive DOE of 2 weeks duration
 - laboratory tests show hyperleukocytosis (WBC= 301K) with >95% blasts and she is leukapheresed
- Marrow biopsy diagnoses her with AML with myelodysplasia-related changes
 - Karyotype: 46,XX,i(17)(q10)
 - PCR: FLT3-ITD+ (ITD:WT allelic ratio: 0.5), no other mutations on 68 gene NGS panel
- She is induced with 7 + 3 but is refractory after two cycles, genetics unchanged from dx.
- She enrolls on a phase 3 clinical trial of a FLT3 inhibitor vs. standard chemotherapy
 - randomizes to control arm and does not respond
- She receives sorafenib and azacitidine
 - peripheral blasts clear and marrow blasts decrease to <10% after two cycles.
 - FLT3-ITD remains detectable by PCR
- She undergoes a myeloablative HSCT from her HLA-identical sibling.
 - she tolerates transplant well, engrafts with full donor chimerism, and has no detectable FLT3-ITD in marrow
 - She is started on post-HSCT sorafenib maintenance on day +50.

Courtesy of Alexander Perl, MD
Case Presentation – Dr Perl: A 53-year-old woman with AML with a FLT3-ITD mutation (continued)

- Resistance to FLT3 inhibitors can be from several causes
 - Immunologic/loss of GVL
 - Clonal evolution with new on-target mutations (e.g. FLT3-D835 on sorafenib; FLT3-F691L on gilteritinib)
 - Clonal evolution with new off-target mutations (e.g. ras pathway)
 - Selection for FLT3-WT clones
- Therapy for cases with prior TKI is uncertain
 - Only 12% of patients on ADMIRAL had prior TKI
 - Ras pathway mutations commonly emerge at gilteritinib progression
 - If Ras pathway mutations were present at study gilteritinib remained active
- This patient enrolled on a clinical trial of venetoclax + gilteritinib and entered CR2.
 - She remains on study therapy at 14 months duration without relapse and with full donor chimerism

Agenda

Module 1: Optimizing the Management of AML in Older Patients or Those Ineligible for Intensive Chemotherapy — Dr Wei

Module 2: Treatment Options for Patients with AML Harboring FLT3 Mutations — Dr Perl

Module 3: Management of Newly Diagnosed and Previously Treated AML with IDH Mutations — Dr Stein

Module 4: Tailoring Induction and Maintenance Therapy for Younger Patients with AML without Targetable Tumor Mutations — Dr Levis

Module 5: Other Novel Agents and Investigational Strategies for Patients with AML — Dr Pollyea

Recurring Mutations in Patients with AML

1884

Courtesy of Eytan M Stein, MD

Patel JP et al. N Engl J Med 2012;366:1079-1089.

IDH2m and IDH1m: Distinct Genetically Defined Populations

IDH Mutations Seen in Multiple Cancer Types				
Target	Indication	IDHm (%)		
IDH2m	AML	15%		
	MDS/MPN	5%		
	Angio-immunoblastic NHL	25%		
	Others (melanoma, glioma, chondro)	3-5%		
	Type II D-2HG Aciduria (inborn error of metabolism)	100%		
IDH1m	Low-grade glioma & 2 ^{ary} GBM	70%		
	Chondrosarcoma	>50%		
	AML	7.5%		
	MDS/MPN	5%		
	Intrahepatic cholangiocarcinoma	20%		
	Others (colon, melanoma, lung)	1-2%		

Efficacy of Enasidenib in R/R AML

	Relapsed/Refractory AML		
	Enasidenib 100 mg/day (n=214)	All patients (N=280)	
Overall response rate, n (%)	38.8% (83/214)	39.6% (111/280)	
CR + CRi/CRp	62 (29·0)	78 (27·9)	
Best response, n (%)			
Complete remission	42 (19 ·6)	53 (18-9)	
CR with incomplete count recovery (CRi/CRp)	20 (9·3)	25 (8·9)	
Partial remission, n (%)	9 (4·2)	17 (6.1)	
Morphologic leukemia-free state, n (%)	12 (5·6)	16 (5·7)	
Stable disease, n (%)	98 (45·8)	122 (43·6)	
Progressive disease, n (%)	19 (8·9)	26 (9·3)	
Not evaluable, n (%)	3 (1·4)	4 (1·4)	

IDHentify – Randomized Enasidenib versus SOC

Update on Phase 3 IDHENTIFY Trial in Patients with Relapsed or Refractory Acute Myeloma Leukemia

08/25/2020

CATEGORY: Corporate/Financial News

PRINCETON, N.J.—(BUSINESS WIRE)– (NYSE:BMY) The Phase 3 IDHENTIFY study evaluating enasidenib plus best supportive care (BSC) versus conventional care regimens, which include best supportive care (BSC) only, azacitadine plus BSC, low-dose cytarabine plus BSC or intermediate-dose cytarabine plus BSC, did not meet the primary endpoint of overall survival (OS) in patients with relapsed or refractory acute myeloid leukemia (R/R AML) with an isocitrate dehydrogenase-2 (IDH2) mutation. The safety profile of enasidenib was consistent with previously reported findings. The company will complete a full evaluation of the enasidenib data and work with investigators to present detailed results at a future medical meeting.

Memorial Sloan Kettering Cancer Center

Courtesy of Eytan M Stein, MD

https://news.bms.com/news/details/2020/Bristol-Myers-Squibb-Provides-Update-on-Phase-3 -IDHENTIFY-Trial-in-Patients-with-Relapsed-or-Refractory-Acute-Myeloid-Leukemia/default.aspx

Ivosidenib – Response and Response Duration

Response	Primary Efficacy Population (N=125)	Relapsed or Refractory AML (N=179)		
CR or CRh				
No. of patients	38	54		
% (95% CI)	30.4 (22.5–39.3)	30.2 (23.5–37.5)		
Median time to CR or CRh (range) — mo	2.7 (0.9–5.6)	2.0 (0.9–5.6)		
Median duration of CR or CRh (95% CI) — mo	8.2 (5.5–12.0)	6.5 (5.5–11.1)		
CR				
No. of patients	27	39		
% (95% CI)	21.6 (14.7–29.8)	21.8 (16.0–28.6)		
Median time to CR (range) — mo	2.8 (0.9–8.3)	2.8 (0.9–8.3)		
Median duration of CR (95% CI) — mo	9.3 (5.6–18.3)	9.3 (5.6–12.5)		
Overall response				
No. of patients	52	70		
% (95% CI)	41.6 (32.9–50.8)	39.1 (31.9–46.7)		
Median time to first response (range) — mo \S	1.9 (0.8–4.7)	1.9 (0.8–4.7)		
Median duration of response (95% CI) — mo	6.5 (4.6–9.3)	6.5 (4.6-9.3)		

Memorial Sloan Kettering Cancer Center

Courtesy of Eytan M Stein, MD

Response Among Patients With and Without IDH-DS

Patient Response	IDH-DS, No. (%) (n = 33) ^a	No IDH-DS, No. (%) (n = 248)		
Overall response ^b	15 (45.5)	93 (37.5)		
CR	6 (18.2)	49 (19.8)		
CRi/CRp	6 (18.2)	16 (6.5)		
PR	2 (6.1)	14 (5.7)		
MLFS	1 (3.0)	14 (5.7)		
Stable disease ^c	16 (48.5)	121 (48.8)		
Disease progression	1 (3.0)	14 (5.7)		

Table 2. Response Among Patients With and Without IDH-DS

Ivosidenib – Newly Diagnosed AML

1884

Roboz G, et. Al, Blood 2020

Enasidenib/Ivosidenib with Induction Chemotherapy

Memorial Sloan Kettering Cancer Center

SCREENING

1884

ARA-C = cytarabine; DNR = daunorubicin; IDR = idarubicin

Courtesy of Eytan M Stein, MD

Enasidenib/Ivosidenib with Induction Chemotherapy

Table 3. Best overall responses at any time during the study in the FAS

	lvosidenib 500 mg + chemotherapy, n (%)		Enasidenib 100 mg + chemotherapy, n (%)			
		De novo	Secondary		De novo	Secondary AML,
Response category	AII, N = 60	AML, n = 42	AML, n = 18	AII, N = 91*	AML, n = 56	n = 35
CR/CRi/CRp	46 (77)	37 (88)	9 (50)	67 (74)	45 (80)	22 (63)
CR	41 (68)	32 (76)	9 (50)	50 (55)	36 (64)	14 (40)
CRi/CRp	5 (8)	5 (12)	—	17 (19)	9 (16)	8 (23)
MLFS	4 (7)	3 (7)	1 (6)	10 (11)	5 (9)	5 (14)
PR	2 (3)	—	2 (11)	2 (2)	1 (2)	1 (3)
Treatment failure†	8 (13)	2 (5)	6 (33)	12 (13)	5 (9)	7 (20)

What would you recommend as first-line therapy to a <u>60-year-old</u> patient who presents with intermediate-risk AML with an <u>IDH1</u> mutation?

What would you recommend as first-line therapy to a <u>78-year-old</u> patient (PS 0) who presents with intermediate-risk AML with an <u>IDH1</u> mutation?

- 1. 7 + 3 induction
- 2. HMA
- 3. HMA + venetoclax
- 4. HMA + venetoclax + ivosidenib
- 5. Low-dose cytarabine + venetoclax
- 6. Low-dose cytarabine + venetoclax + ivosidenib
- 7. HMA + ivosidenib
- 8. Ivosidenib
- 9. Other

What would you recommend as first-line therapy to a <u>78-year-old</u> patient (PS 0) who presents with intermediaterisk AML with an <u>IDH1</u> mutation?

What would you recommend as first-line therapy to a <u>78-year-old</u> patient with a history of cardiac and renal abnormalities (PS = 2) who presents with intermediate-risk AML with an <u>IDH1</u> mutation?

MARK LEVIS, MD	Azacitidine + ivosidenib	ANDREW H WEI, MBBS, PHD	Ivosidenib	
ALEXANDER PERL, MD	Azacitidine + venetoclax	COURTNEY D DINARDO, MD, MSCE	Ivosidenib	
DANIEL A POLLYEA, MD, MS	Azacitidine + venetoclax	ALICE S MIMS, MD	Ivosidenib	
EYTAN M STEIN, MD	Azacitidine + venetoclax	EUNICE S WANG, MD	Ivosidenib	
GENERAL MEDICAL ONCOLOGISTS (N = 75)				

What would you generally recommend as the next line of treatment for a <u>60-year-old</u> patient with AML with an <u>IDH2</u> mutation who has experienced disease progression after <u>7 + 3 induction, consolidation</u> <u>therapy and transplant</u>?

- 1. Chemotherapy
- 2. HMA + venetoclax
- 3. HMA + venetoclax + enasidenib
- 4. Low-dose cytarabine
- 5. Low-dose cytarabine + venetoclax
- 6. Low-dose cytarabine + venetoclax + enasidenib
- 7. HMA + enasidenib
- 8. Enasidenib
- 9. Other

What would you generally recommend as the next line of treatment for a <u>60-year-old</u> patient with AML with an <u>IDH2</u> mutation who has experienced disease progression after <u>7 + 3</u> induction, consolidation therapy and transplant?

What would you generally recommend as the next line of treatment for a <u>78-year-old</u> patient with AML with an <u>IDH2</u> mutation who has experienced disease progression after <u>venetoclax/azacitidine</u>?

A 65-year-old patient presents with new-onset shortness of breath, hypoxemia and fever 3 weeks into therapy with ivosidenib for relapsed AML. Chest CT reveals diffuse ground glass infiltrates. The patient has an ANC of 600, 27% blasts in the blood and has been receiving prophylaxis with levofloxacin and acyclovir only. What would you recommend?

MARK LEVIS, MD	Continue ivosidenib and begin antibiotics and corticosteroids	ANDREW H WEI, MBBS, PHD	Continue ivosidenib and begin antibiotics and corticosteroids	
ALEXANDER PERL, MD	Test for COVID-19; Continue ivosidenib and begin antibiotics and corticosteroids	COURTNEY D DINARDO, MD, MSCE	Continue ivosidenib and begin antibiotics and corticosteroids	
DANIEL A POLLYEA, MD, MS	Continue ivosidenib and begin antibiotics and corticosteroids	ALICE S MIMS, MD	Continue ivosidenib and begin antibiotics and corticosteroids	
EYTAN M STEIN, MD	Continue ivosidenib and begin antibiotics and corticosteroids	EUNICE S WANG, MD	Continue ivosidenib and begin antibiotics and corticosteroids	
GENERAL MEDICAL ONCOLOGISTS (N = 75) Continue ivosidenib and begin antibiotics and corticosteroids				

Case Presentation – Dr Stein: An 86-year-old woman with newly diagnosed AML with an IDH2 mutation

- 86 year old woman with newly diagnosed AML associated with mutations in IDH2, RUNX1 and DNMT3A.
- Physical exam is normal. Peformance status is 1.
- Labs notable for pancytopenia with WBC of 3 (ANC of 0.5), Hgb of 8 and platelets of 13.
- Started on treatment with aza/ven. Achieves a complete remission with the presence of MRD after one cycle of therapy
- Develops COVID pneumonia, 3 week hospitalization, survives.
- Receives another cycle of aza/ven and relapses with 30% blasts
- Started on enasidenib 100 mg daily. Has brief onset of differentiation syndrome a month into therapy, with lower extremity edema and shortness of breath. Steroids given.
- Achieves an MRD negative complete remission at cycle 3 day 1.

Case Presentation – Dr Stein: A 76-year-old woman with AML with a IDH1 mutation

- 76 year old woman presents with fatigue, shortness of breath, petechiae.
- Exam shows scattered bruising and a petechial rash.
- Labs notable for WBC of 6, hgb of 6.4, platelets of 5.
- Bone marrow biopsy confirms a diagnosis of AML with 55% blasts and mutations in IDH1 and DNMT3A.
- Patient wants to take oral medication does not want aza or aza/ven– and is started on ivosidenib 500mg qd.
- At cycle 4 day 1, achieves an MRD negative complete remission.
- Is now in a continuous MRD negative complete remission at cycle 60 (5 years!).

Agenda

Module 1: Optimizing the Management of AML in Older Patients or Those Ineligible for Intensive Chemotherapy — Dr Wei

Module 2: Treatment Options for Patients with AML Harboring FLT3 Mutations — Dr Perl

Module 3: Management of Newly Diagnosed and Previously Treated AML with IDH Mutations — Dr Stein

Module 4: Tailoring Induction and Maintenance Therapy for Younger Patients with AML without Targetable Tumor Mutations — Dr Levis

Module 5: Other Novel Agents and Investigational Strategies for Patients with AML — Dr Pollyea

Phase III VIALE-A Trial

- Patients with newly-diagnosed AML
 - Age 75 or older...or...
 - ..."unfit" for intensive chemotherapy
- Randomization (2:1):
 - Azacitidine + venetoclax
 - Azacitidine + placebo
- Primary endpoint: Overall Survival
- 431 patients enrolled from Feb 2017 to May 2019
 - Median age 76
 - Poor-risk cytogenetics in 36%

VIALE-A Trial

N Engl J Med 2020;383:617-29

Courtesy of Mark Levis, MD, PhD

What do we know about maintenance therapy for AML?

Maintenance therapy in acute myeloid leukemia: an evidence-based review of randomized trials

Armin Rashidi,¹ Roland B. Walter,²⁻⁴ Martin S. Tallman,⁵ Frederick R. Appelbaum,^{2,6} and John F. DiPersio¹

"...the benefit of maintenance seems more apparent after suboptimal induction and consolidation. This may be relevant to patients who cannot tolerate consolidation (e.g., some elderly patients or those who develop serious complications during induction)."

JOURNAL OF CLINICAL ONCOLOGY

Phase I Study of Oral Azacitidine in Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, and Acute Myeloid Leukemia

Guillermo Garcia-Manero, Steven D. Gore, Christopher Cogle, Renee Ward, Tao Shi, Kyle J. MacBeth, Eric Laille, Heidi Giordano, Sarah Sakoian, Elias Jabbour, Hagop Kantarjian, and Barry Skikne J Clin Oncol. 2011; 29:2521-2527

- 45 patients with MDS or AML
- First cycle treated with SQ aza
- Second cycle and beyond:
 - Oral azacitidine (CC-486)
- Overall response rate in untreated patients:
 - 73%

The Phase III QUAZAR AML-001 Study

- Multi-center, randomized, double-blinded, placebo-controlled
- Patients age 55+ with AML
 - Within 4 months of achieving CR or CRi after intensive induction
- 472 randomized
 - Median age 68
 - Most (65%) had received 0 or 1 cycle consolidation
- Primary endpoint:
 - Overall survival

Maintenance therapy with oral azacitidine after partiallycompleted intensive therapy for AML prolongs survival

On September 1, 2020, the FDA approved oral azacitidine (CC-486) for the continued treatment of AML in patients who attain first complete remission (CR) or CR with incomplete blood count recovery (CRi) after intensive induction chemotherapy and who are not able to complete intensive curative therapy.

Approval was based on the results of the QUAZAR AML-001 trial.

Courtesy of Mark Levis, MD, PhD

Conclusions

- AML patients without obvious targetable mutations can still clearly benefit from newer induction regimens with targeted drugs.
 - Venetoclax with azacitidine/decitabine is a "targeted" regimen with broad applicability.
- Maintenance therapy with a hypomethylating agent seems to be most effective in AML patients who have been unable to complete a standardized course of intensive chemotherapy
- Oral azacitidine appears to offer a more patient-friendly version of this type of maintenance.
- Question going forward:
 - Can oral azacitidine (or oral decitabine) be substituted for the SQ/IV versions in a venetoclax-based induction?

What initial treatment would you recommend for a 65-year-old man with AML with a PS of 1 and pancytopenia, 35% marrow myeloblasts, a complex karyotype and a TP53 mutation?

- 1. 7 + 3 induction
- 2. Azacitidine
- 3. Decitabine
- 4. Azacitidine + venetoclax
- 5. Decitabine + venetoclax
- 6. Low-dose cytarabine + venetoclax
- 7. Other

What initial treatment would you recommend for a 65year-old man with AML with a PS of 1 and pancytopenia, 35% marrow myeloblasts, a complex karyotype and a TP53 mutation?

A 65-year-old with intermediate-risk AML, no actionable mutations and a PS of 0 receives standard 7 + 3 induction. He achieves a complete remission after 2 cycles of induction and then receives 2 cycles of high-dose cytarabine as consolidation but ultimately declines transplant. Would you offer this patient maintenance therapy?

- 1. Yes
- 2. Yes, with oral azacitidine (CC-486)
- 3. No

A 65-year-old patient with intermediate-risk AML, no actionable mutations and a PS of 0 receives standard 7 + 3 induction. He achieves a complete remission after 2 cycles of induction and then receives 2 cycles of high-dose cytarabine as consolidation but ultimately declines transplant. Would you offer this patient maintenance therapy?

Reimbursement issues aside, do you believe your patients with AML would prefer to receive an all-oral regimen like venetoclax/CC-486 rather than venetoclax/standard intravenous azacitidine?

Case Presentation – Dr Levis: A 70-year-old man with AML, complex karyotype and a TP53 mutation

- 70 yo man, recently retired
 - Travelling around country with spouse
- Notices unusual fatigue while hiking...
 - ...and an infected tooth not responding to antibiotics.
- Sees internist on return from trip
 - Blood work ordered:
 - WBC 2.2, ANC 670, Hgb 9.1, platelets 143
- Referred to a hematologist
- Bone marrow biopsy:
 - AML with dysplastic granulocytes
 - 60% blasts
- Molecular analysis:
 - Monosomal/complex karyotype
 - 45XY, -3; del5q22q33; t(3;6)(q26;p25); t(9;15)(p24;q22); -14; 15; add (17)(p11.2);-22
 - NGS:
 - TP53 H179Q VAF 36.8%

Courtesy of Mark Levis, MD, PhD
Case Presentation – Dr Levis: A 70-year-old man with AML, complex karyotype and a TP53 mutation (continued)

- Marrow blasts fall to 5% after cycle 1
- Marrow blasts fall to 1% after cycle 2
- Other than protocolmandated admission on Day 1 Cycle 1, no further admissions.
 - After cycle 3, resumes active lifestyle, including travel
- Completes 12 cycles, then progresses.

Courtesy of Mark Levis, MD, PhD

Case Presentation – Dr Levis: A 73-old-man with newly diagnosed AML

- 73 yo man, still working
 - MDS (mild anemia) diagnosed three years previously, no treatment required so far
- Develops dyspnea on exertion
 - CBC shows Hgb 8.3, platelets 56K, white blood cells 26K, 40% blasts
- Diagnosed with AML
 - Normal karyotype
 - NGS: STAG2, TET2, NRAS mutations
- Initiated on azacitidine and venetoclax
- Achieves a prompt remission after 1 cycle, normalization of counts
 - Bone marrow biopsy normal, no mutations detected
- Bone marrow biopsy after 10 cycles (~14 months):
 - Mutations re-emerging, dysplasia evident
- Allogeneic transplant is offered:
 - Non-myeloablative
 - Successful engraftment

Courtesy of Mark Levis, MD, PhD

Case Presentation – Dr Levis: A 73-old-man with newly diagnosed AML (continued)

- At age 78, in early relapse 2.5 years post-transplant
- Counts normalized after 2 cycles of SQ azacitidine
- Begins therapy with oral azacitidine (CC-486)

Agenda

Module 1: Optimizing the Management of AML in Older Patients or Those Ineligible for Intensive Chemotherapy — Dr Wei

Module 2: Treatment Options for Patients with AML Harboring FLT3 Mutations — Dr Perl

Module 3: Management of Newly Diagnosed and Previously Treated AML with IDH Mutations — Dr Stein

Module 4: Tailoring Induction and Maintenance Therapy for Younger Patients with AML without Targetable Tumor Mutations — Dr Levis

Module 5: Other Novel Agents and Investigational Strategies for Patients with AML — Dr Pollyea

Definition of Secondary AML

• AML from an antecedent hematological disorder

- Most commonly MDS (1/3 of MDS patients will develop AML)
- Could also be from MPN or a non-malignant antecedent disorder (e.g. aplastic anemia)

Treatment-related AML

- WHO defined as history of exposure to alkylating agents and/or topoisomerase II inhibitors and/or ionizing radiation to large fields including bone marrow
- Other implicated therapies include antimetabolites or antitubulin agents but their relationship is less certain.

De Novo AML vs Secondary AML

- Secondary AML patients are older, have more adverse biological risk factors (cytogenetics/TP53)
- Lower response rates to conventional treatments
- Worse overall survival
- Incurable without an allogeneic stem cell transplantation

Courtesy of Daniel A Pollyea, MD, MS

Hulegardh et al, AJH 2015

Phase III Study 301: CPX-351 vs 7+3 for Older Patients with Newly Diagnosed Secondary AML

- Consider CPX-351 for newly diagnosed, *induction eligible* secondary AML patients, particularly if they would be suitable candidates for a transplant
- How can you tell if they have secondary AML? Probably OK to wait (up to 15 days) for marrow results (Rollig et al, Blood 2020)
- Caution if TP53+ (Lindsley et al, ASH 2019)

Courtesy of Daniel A Pollyea, MD, MS

CD33 Antibody Drug Conjugate: Gemtuzumab Ozogamicin

- Monoclonal anti-CD33 antibody linked to calicheamicin
- Internalized and cleaved in lysosomes to release calicheamicin
- Calicheamicin enters nucleus and interacts with DNA causing double-strand breaks initiating apoptosis
- Approved in 2000 based on 30%
 ORR in R/R AML

Rosen DB, et al. PLoS One. 2013;8:e53518.

Sievers et al, JCO 2001

Gemtuzumab in AML: Select Phase III Results

Study	Ν	Treatment	Results of GO vs Comparator
MRC/NCRI AML1 (2011)	1113	GO (3 mg/m²) + either ADE, DA, or FLAG-IDA	 Improved 5-yr OS for favorable-risk group No difference in ORR, TRM, relapse, survival
ALFA 0701 (2012)	280	GO (3 mg/m²) + DA	 Improved 2-yr EFS, RFS, OS No difference in ORR or mortality
MRC/NCRI AML (2012)	1115	GO (3 mg/m ²) + either DA or DCLo	 Reduced 3-yr relapse risk, and superior DFS and OS No difference in TRM
SWOG S0106 (2013)	637	GO (6 mg/m²) + DA induction vs DA	 No difference in CR, DFS, OSs

Antibody-Drug Conjugates

Target	Drug(s)	Clinical Experience	Citation
CD33	Gemtuzumab ozogamicin	Extensive, previously reviewed	Multiple
	IMG779	Modest activity	Cortes et al, Blood 2018
CD123	IMGN632	Blast reduction and modest response rates	Daver et al, ASH 2019
	SGN-CD123A	Not reported	
CD25	Camidanlumab tesirine	Minimal responses, manageable toxicity	Goldberg et al, Leukemia Research 2020
CD30	Brentuximab vedotin	Used with chemotherapy for R/R AML; ~40% ORR	Narayan et al, Cancer 2020
CLL-1	Several	Pre-clinical	

Courtesy of Daniel A Pollyea, MD, MS

Immune Checkpoint Inhibitors

PD-1/PD-L1 inhibitors with azacitidine in R/R AML

Best response	Azacitidine/nivolumab
Overall response rate	23 (33)
CR	4 (6)
CRi/CRp	11 (16)
PR	1 (1)
HIª (6 months+)	7 (10)
Stable disease (6 months+) ^b	6 (9)
Nonresponders	41 (58)
Median cycles to response	2 (1-13)
Median follow-up, in months	13.3 (8.2-25.5)

 Ongoing work with pembrolizumab and durvalumab in combinations and in various settings...

Daver et al, Cancer Discovery 2019

Phase III PRAN-16-52 Trial Design

Eligibility (N = 406)

- Newly diagnosed AML (including de novo, secondary to hematologic disorders or treatment-related disease with intermediate or unfavorable-risk cytogenetics)
- Ineligibility for intensive chemotherapy
- ECOG PS 0-2

Primary endpoint: Overall survival

Secondary endpoints include morphologic CR rate, CR without MRD, cytogenetic CR rate and transfusion independence

www.clinicaltrials.gov (NCT03151408) – Accessed November 2020. Garcia-Manero G et al. ASCO 2018; Abstract TPS7078.

Phase III PRAN-16-52 Trial Discontinued After Completing Interim Analysis Press Release: July 02, 2020

"An interim futility analysis of the ongoing Phase 3 study of pracinostat in combination with azacitidine in patients with AML who are unfit to receive standard intensive chemotherapy, undertaken by the study Independent Data Monitoring Committee ('IDMC'), has demonstrated it was unlikely to meet the primary endpoint of overall survival compared to the control group.

Based on the outcome of the interim analysis, the decision was made to discontinue the recruitment of patients and end the study. The decision was based on a lack of efficacy and not on safety concerns.

Pending further evaluation, patients currently enrolled in other pracinostat studies will continue treatment."

https://www.globenewswire.com/news-release/2020/07/02/2056824/0/en/Helsinn-Group-and-MEI-Pharma-Discontinue-the-Phase-3-Study-with-Pracinostat-in-AML-after-Completing-Interim-Analysis.html

A 65-year-old patient with a history of myelodysplastic syndrome treated with azacitidine for 10 months presents 1 year later with AML with 35% marrow blasts, trisomy 8 and ASXL1, NRAS and U2AF1 mutations (VAFs 45, 20 and 45, respectively). What would you recommend?

- 1. 7 + 3 induction
- 2. CPX-351
- 3. Decitabine
- 4. Decitabine + venetoclax
- 5. Low-dose cytarabine + venetoclax
- 6. Low-dose cytarabine + glasdegib
- 7. Other

A 65-year-old patient with a history of myelodysplastic syndrome treated with azacitidine for 10 months presents 1 year later with AML with 35% marrow blasts, trisomy 8 and ASXL1, NRAS and U2AF1 mutations (VAFs 45, 20 and 45, respectively). What would you recommend?

What initial treatment would you recommend for a 64-year-old woman with a history of breast cancer, for which she received adjuvant chemotherapy, who now presents with bone marrow findings consistent with therapy-related AML?

Case Presentation – Dr Pollyea: A 79-year-old man with newly diagnosed AML and intermediate cytogenetics

79 year old healthy male with newly diagnosed AML. Had intermediate cytogenetics with a trisomy 8 and mutations in ASXL1, BCORL1, TET2 and RUNX1. He started venetoclax + azacitidine and experienced a CRi after cycle 1. He continued therapy and after 10 cycles had a routine bone marrow biopsy that showed 10% blasts. No new mutations on repeat sequencing. He stopped venetoclax and azacitidine and had two cycles of decitabine; a repeat bone marrow biopsy showed 30% blasts. No new mutations on repeat sequencing; he was CD33+. He had a course of gemtuzumab ozogamicin (three doses over 28 days) and a repeat bone marrow biopsy now showed 50% blasts. No new mutations on repeat sequencing. The patient opted for hospice and passed away 3 weeks later.

Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

Hodgkin and Non-Hodgkin Lymphoma

Friday, December 4, 2020 7:00 PM – 8:30 PM Pacific Time

FacultyJonathan W Friedberg, MD, MMScJohn P Leonard, MDJohn Kuruvilla, MDMichael E Williams, MD, ScMAnn S LaCasce, MD, MMScImage: Colspan="2">Image: Colspan="2" Image: Co

Moderator

Neil Love, MD

Thank you for joining us!

CME credit information will be emailed to each participant within 3 business days.

