New Agents and Strategies in the Management of Acute Myeloid Leukemia An Interactive Grand Rounds Series

Daniel A Pollyea, MD, MS

Associate Professor of Medicine Clinical Director of Leukemia Services Robert H Allen, MD Chair in Hematology Research Division of Hematology University of Colorado School of Medicine Aurora, Colorado

Disclosures

Advisory Committee	AbbVie Inc, Agios Pharmaceuticals Inc, argenx, Celgene Corporation, Celyad, Forty Seven Inc, Gilead Sciences Inc, Janssen Biotech Inc, Pfizer Inc
Consulting Agreements	AbbVie Inc, Astellas, Daiichi Sankyo Inc, Genentech, Takeda Oncology
Contracted Research	AbbVie Inc, Agios Pharmaceuticals Inc
Data and Safety Monitoring Board/Committee	GlycoMimetics Inc, Tolero Pharmaceuticals

Grand Rounds Program Steering Committee

Harry P Erba, MD, PhD Professor, Department of Medicine Director of the Leukemia Program Division of Hematologic Malignancies and Cellular Therapy Duke Cancer Institute Duke University School of Medicine Durham, North Carolina

Daniel A Pollyea, MD, MS Associate Professor of Medicine Clinical Director of Leukemia Services Robert H Allen, MD Chair in Hematology Research Division of Hematology University of Colorado School of Medicine Aurora, Colorado

Mark Levis, MD, PhD

Director, Adult Leukemia Program Co-Division Director, Hematologic Malignancies Professor of Oncology The Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University Baltimore, Maryland

Keith W Pratz, MD

Associate Professor of Medicine Director of Leukemia Program University of Pennsylvania Philadelphia, Pennsylvania

Grand Rounds Program Steering Committee

Eytan M Stein, MD Assistant Attending Physician Director, Center for Drug Development in Leukemia Leukemia Service Department of Medicine Memorial Sloan Kettering Cancer Center New York, New York

Richard M Stone, MD Chief of Staff Director, Translational Research Leukemia Division Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School Boston, Massachusetts

Wendy Stock, MD Anjuli Seth Nayak Professor of Leukemia Research University of Chicago Medicine Chicago, Illinois

Project Chair Neil Love, MD Research To Practice Miami, Florida

Which of the following best represents your clinical background?

- 1. Medical oncologist/hematologic oncologist
- 2. Radiation oncologist
- 3. Radiologist
- 4. Surgical oncologist or surgeon
- 5. Other MD
- 6. Nurse practitioner or physician assistant
- 7. Nurse
- 8. Researcher
- 9. Other healthcare professional

Medical oncologist/hematologic oncologist	0%	
Radiation oncologist	0%	
Radiologist	0%	
Surgical oncologist or surgeon	0%	
Other MD	0%	
- Nurse practitioner or physician assistant	0%	
Nurse	0%	
Researcher	0%	
Other healthcare professional	0%	Research To Practice®

Management of Acute Myeloid Leukemia

Module 1: Contemporary Biomarker Assessment

- Incidence and prognostic relevance of cytogenetic and other molecular markers
- Guideline-endorsed recommendations for biomarker assessment

Module 2: Bcl-2 Inhibition as a Rational Therapeutic Strategy

- Biologic rationale for venetoclax in AML
- Safety, efficacy and patient selection for venetoclax in combination with HMAs or LDAC

Module 3: FLT3 Inhibitors in the Up-Front and Recurrent Settings

- Data supporting midostaurin in newly diagnosed AML (RATIFY)
- Efficacy and safety data with gilteritinib (ADMIRAL)

Module 4: IDH Inhibitors in the Up-Front and Recurrent Settings

- Efficacy and safety of enasidenib and ivosidenib
- Differentiation syndrome and other side effects of IDH inhibitors

Module 5: Other Novel Treatment Approaches

- Efficacy, safety and recent approval of glasdegib for newly diagnosed AML (BRIGHT 1003)
- Optimal incorporation of CPX-351 for the treatment of AML
- CC-486 as maintenance therapy for AML in complete remission
- Emerging therapeutics (CAR T-cell therapy, checkpoint inhibitors)

In a medically stable patient with newly diagnosed AML, do you generally wait for genomic test results before initiating treatment?

- 1. Yes
- 2. No

In a medically stable patient with newly diagnosed AML, do you generally wait for genomic test results before initiating treatment?

HARRY P ERBA, MD, PHD	Yes
MARK LEVIS, MD, PHD	Yes
DANIEL A POLLYEA, MD, MS	Yes
KEITH W PRATZ, MD	Yes
EYTAN M STEIN, MD	Yes
WENDY STOCK, MD	Yes
RICHARD M STONE, MD	Yes

Significantly Mutated Genes in 200 Adult Patients with De Novo AML

Research To Practice®

The Cancer Genome Atlas Research Network; N Engl J Med 2013;368:2059-74.

Guidelines for Risk Stratification

Risk category	Genetic abnormality
Favorable	 t(8;21)(q22;q22.1); RUNX1-RUNX1T1 inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 Mutated NPM1 without FLT3-ITD or with FLT3-ITD^{low} Biallelic mutated CEBPA
Intermediate	 Mutated NPM1 and FLT3-ITD^{high} Wild-type NPM1 without FLT3-ITD or with FLT3-ITD^{low} without adverse-risk genetic lesions t(9;11)(p21.3;q23.3); MLLT3-KMT2A Cytogenetic abnormalities not classified as favorable or adverse
Poor/Adverse	 t(6;9)(p23;q34.1); DEK-NUP214 t(v;11q23.3); KMT2A rearranged t(9;22)(q34.1;q11.2); BCR-ABL1 inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1) -5 or del(5q); -7; -17/abn(17p) Complex karyotype; monosomal karyotype Wild-type NPM1 and FLT3-ITD^{high} Mutated RUNX1* Mutated ASXL1* Mutated TP53

*Not used as an adverse prognostic marker if they co-occur with favorable-risk AML subtypes

Research To Practice®

Dohner H et al. Blood 2017;129(4):424-47; NCCN AML v2.2020

Guideline-Recommended Genetic Analyses

- Cytogenetics
 - Karyotype + FISH
- Molecular Analyses
 - c-KIT, FLT3 (ITD and TKD), NPM1, CEBPA (biallelic), IDH1, IDH2, TP53 and other mutations
 - While the above mutations should be tested in all patients, multiplex gene panels and NGS are recommended for a comprehensive prognostic assessment

Research To Practice®

Dohner H et al. Blood 2017;129(4):424-47; NCCN AML v2.2020

Management of Acute Myeloid Leukemia

Module 1: Contemporary Biomarker Assessment

- Incidence and prognostic relevance of cytogenetic and other molecular markers
- Guideline-endorsed recommendations for biomarker assessment

Module 2: Bcl-2 Inhibition as a Rational Therapeutic Strategy

- Biologic rationale for venetoclax in AML
- Safety, efficacy and patient selection for venetoclax in combination with HMAs or LDAC

Module 3: FLT3 Inhibitors in the Up-Front and Recurrent Settings

- Data supporting midostaurin in newly diagnosed AML (RATIFY)
- Efficacy and safety data with gilteritinib (ADMIRAL)

Module 4: IDH Inhibitors in the Up-Front and Recurrent Settings

- Efficacy and safety of enasidenib and ivosidenib
- Differentiation syndrome and other side effects of IDH inhibitors

Module 5: Other Novel Treatment Approaches

- Efficacy, safety and recent approval of glasdegib for newly diagnosed AML (BRIGHT 1003)
- Optimal incorporation of CPX-351 for the treatment of AML
- CC-486 as maintenance therapy for AML in complete remission
- Emerging therapeutics (CAR T-cell therapy, checkpoint inhibitors)

What initial treatment would you recommend for a 65-yearold man with AML with a PS of 1 and pancytopenia, 35% marrow myeloblasts, a complex karyotype and a TP53 mutation?

- **1. 7 + 3 induction**
- 2. CPX-351
- 3. Azacitidine
- 4. Decitabine
- 5. Azacitidine + venetoclax
- 6. Decitabine + venetoclax
- 7. Low-dose cytarabine + venetoclax
- 8. Other

What initial treatment would you recommend for a 65year-old man with AML with a PS of 1 and pancytopenia, 35% marrow myeloblasts, a complex karyotype and a TP53 mutation?

What initial treatment would you recommend for a 68year-old woman with AML with a performance status (PS) of 2 and a history of hypertension, coronary artery disease, anemia for 2 years with unclear etiology and diabetes mellitus, assuming organ function is normal?

HARRY P ERBA, MD, PHD	Azacitidine + venetoclax
MARK LEVIS, MD, PHD	Azacitidine + venetoclax
DANIEL A POLLYEA, MD, MS	Azacitidine + venetoclax
KEITH W PRATZ, MD	Azacitidine + venetoclax
EYTAN M STEIN, MD	Azacitidine + venetoclax
WENDY STOCK, MD	Azacitidine + venetoclax
RICHARD M STONE, MD	Azacitidine + venetoclax

Changing Clinical Landscape in AML

Relapsed/refractory AML

Research To Practice®

Courtesy Andrew H Wei, MBBS, PhD, December 2019

Venetoclax Mechanism of Action

- Cancer cells increase the expression of anti-apoptotic proteins to offset the increase in pro-apoptotic proteins, tipping the balance toward cell survival
- The large # of pro-apoptotic proteins bound and sequestered by Bcl-2 in AML make them "primed" for death

Research To Practice®

Kumar et al. Proc ASCO 2015; Abstract 8576.

FDA Approves Venetoclax Combinations for AML Press Release – November 21, 2018

"On November 21, 2018, the Food and Drug Administration granted accelerated approval to venetoclax in combination with azacitidine or decitabine or low-dose cytarabine for the treatment of newly-diagnosed acute myeloid leukemia (AML) in adults who are age 75 years or older, or who have comorbidities that preclude use of intensive induction chemotherapy.

Approval was based on two open-label non-randomized trials in patients with newly-diagnosed AML who were ≥ 75 years of age or had comorbidities that precluded the use of intensive induction chemotherapy. Efficacy was established based on the rate of complete remission (CR) and CR duration."

> Research To Practice®

https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm626499.htm

Plenary Paper

CLINICAL TRIALS AND OBSERVATIONS

Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia

Courtney D. DiNardo,¹ Keith Pratz,² Vinod Pullarkat,^{3,4} Brian A. Jonas,⁵ Martha Arellano,⁶ Pamela S. Becker,^{7,8} Olga Frankfurt,⁹ Marina Konopleva,¹ Andrew H. Wei,¹⁰ Hagop M. Kantarjian,¹ Tu Xu,¹¹ Wan-Jen Hong,¹² Brenda Chyla,¹¹ Jalaja Potluri,¹¹ Daniel A. Pollyea,¹³ and Anthony Letai¹⁴

Blood 2019;133(1):7-17

Summary of Efficacy: Venetoclax + HMA (Azacitidine or Decitabine) in Treatment-Naïve, Elderly Patients with AML

Cohort	N	CR + CRi	ORR	LRR [†]	Median duration of CR + CRi	Median OS
All pts*	145	67%	68%	83%	11.3 mo	17.5 mo
VEN 400 mg + HMA	60	73%	73%	82%	12.5 mo	Not reached 17+ mo

* All pts, include those receiving venetoclax 400, 800 or 1200 mg ⁺ LRR, leukemia response rate (CR + CRi + PR + MLFS)

> Research To Practice®

DiNardo CD et al. Blood 2019;133(1):7-17.

Venetoclax + HMA: Response by Subgroup

DiNardo CD et al. Proc ASCO 2018; Abstract 7010; DiNardo CD et al. Blood 2019;133(1):7-17. To Practice®

Research

Or Por Vanasti Combined With Low-Dose Cytarabine State National State National

Venetoclax + LDAC: Response and Survival Summary

Patients	N	CR/CRi	Median OS
All	82	54%	10.1 mo
AML type			
De novo	42	71%	16.9 mo
Secondary	40	35%	4.0 mo
Age			
<75 years	42	48%	6.5 mo
≥75 years	40	60%	14.9 mo
Prior HMA treatment			
Yes	24	33%	4.1 mo
No	58	62%	13.5 mo

Research To Practice®

Wei A et al. J Clin Oncol 2019;37:1277-84.

Molecular Determinants of Outcome with Venetoclax Combinations

CR/CRi	HMA + VEN	LDAC + VEN
Intermediate CG	74%	63%
Adverse CG	60%	42%
NPM1 mutant	91%	89%
<i>IDH1/2</i> mutant	71%	72%
FLT3 mutant	72%	44%
TP53 mutant	47%	30%

J Clin Oncol 2019;37:1277-84. Research To Practice®

DiNardo CD et al. Blood 2019;133 (1):7-17; Wei A et al. J Clin Oncol 2019;37:1277-84.

Efficacy of Venetoclax in Combination with LDAC or HMA in Untreated AML by Mutation Status

Clinical outcomes of molecularly defined patient subgroups from the Phase Ib/II studies of venetoclax with LDAC or HMA were analyzed.

	Complete Remission (CR)/CRi	Median Overall Survival	Duration of Response
Molecular Marker Cohort (n = 167)	65.3%	12.5 mo	15.0 mo
IDH1/IDH2 (n = 43)	83.7%	Not reached	Not reached
NPM1 (n = 26)	84.6%	Not reached	Not reached
TP53 (n = 37)	59.5%	8.9 mo	5.6 mo
FLT3 (n = 30)	53.3%	12.4 mo	19.9 mo

Research To Practice®

Chyla BJ et al. Proc ASH 2019; Abstract 546.

All patients with AML who are receiving venetoclax in combination with a hypomethylating agent should be admitted to the hospital to begin treatment and receive tumor lysis syndrome prophylaxis regardless of disease burden or performance status.

- 1. Agree
- 2. Disagree

All patients with AML who are receiving venetoclax in combination with a hypomethylating agent should be admitted to the hospital to begin treatment and receive tumor lysis syndrome prophylaxis regardless of disease burden or performance status.

HARRY P ERBA, MD, PHD	Disagree
MARK LEVIS, MD, PHD	Agree
DANIEL A POLLYEA, MD, MS	Agree
KEITH W PRATZ, MD	Disagree
EYTAN M STEIN, MD	Disagree
WENDY STOCK, MD	Disagree
RICHARD M STONE, MD	Disagree

Which agents do you generally administer as prophylaxis to patients receiving venetoclax in combination with azacitidine?

HARRY P ERBA, MD, PHD	Acyclovir, allopurinol, antifungal therapy, extended-spectrum quinolone
MARK LEVIS, MD, PHD	Acyclovir, allopurinol, extended-spectrum quinolone
DANIEL A POLLYEA, MD, MS	Acyclovir, allopurinol, extended-spectrum quinolone
KEITH W PRATZ, MD	Acyclovir, allopurinol, extended-spectrum quinolone
EYTAN M STEIN, MD	Acyclovir, allopurinol, antifungal therapy, extended-spectrum quinolone
WENDY STOCK, MD	Acyclovir, allopurinol, antifungal therapy, extended-spectrum quinolone
RICHARD M STONE, MD	Allopurinol

Venetoclax Dosing in AML

HMA + Venetoclax

Patients received venetoclax plus decitabine Or azacitidine

LDAC + Venetoclax

DiNardo CD et al. *Lancet Oncol* 2018;19(2):226-8; Wei AH et al. *JCO* 2019;37(15):1678-85; Venetoclax package insert, July 2019.

Select Treatment-Emergent Adverse Events in Phase Ib/II Studies of Venetoclax with LDAC or HMA

Treatment-emergent AE	VEN 400 mg + HMA (n = 60)	VEN 600 mg + LDAC (n = 82)
Any event	100%	100%
AE with Grade ≥3		
Febrile neutropenia	50%	42%
Decreased WBC count	33%	34%
Anemia	27%	27%

- Patients in both studies were hospitalized and had tumor lysis syndrome (TLS) prophylaxis initiated before the first dose of venetoclax.
- There were no laboratory or clinical cases of TLS in the Phase Ib study of venetoclax with HMA.
- There were 2 cases of laboratory TLS and no cases of clinical TLS in the Phase Ib/II study of venetoclax with LDAC.

Research To Practice®

DiNardo CD et al. Blood 2019;133 (1):7-17; Wei A et al. J Clin Oncol 2019;37:1277-84.

Select Ongoing Phase III Studies of Venetoclax in AML

Study	Target accrual	Setting	Randomization
VIALE-A (NCT02993523)	443	Treatment-naïve*	Azacitidine + venetoclaxAzacitidine
VIALE-C (NCT03069352)	211	Treatment-naïve*	 Low-dose cytarabine + venetoclax Low-dose cytarabine
VIALE-M (NCT04102020)	360	CR/CRi after induction and consolidation [†]	Azacitidine + venetoclaxBest supportive care

* Ineligible for standard induction therapy ⁺ Intermediate- or adverse-risk cytogenetics

> Research To Practice®

www.clinicaltrials.gov. Accessed October 2019.

Management of Acute Myeloid Leukemia

Module 1: Contemporary Biomarker Assessment

- Incidence and prognostic relevance of cytogenetic and other molecular markers
- Guideline-endorsed recommendations for biomarker assessment

Module 2: Bcl-2 Inhibition as a Rational Therapeutic Strategy

- Biologic rationale for venetoclax in AML
- Safety, efficacy and patient selection for venetoclax in combination with HMAs or LDAC

Module 3: FLT3 Inhibitors in the Up-Front and Recurrent Settings

- Data supporting midostaurin in newly diagnosed AML (RATIFY)
- Efficacy and safety data with gilteritinib (ADMIRAL)

Module 4: IDH Inhibitors in the Up-Front and Recurrent Settings

- Efficacy and safety of enasidenib and ivosidenib
- Differentiation syndrome and other side effects of IDH inhibitors

Module 5: Other Novel Treatment Approaches

- Efficacy, safety and recent approval of glasdegib for newly diagnosed AML (BRIGHT 1003)
- Optimal incorporation of CPX-351 for the treatment of AML
- CC-486 as maintenance therapy for AML in complete remission
- Emerging therapeutics (CAR T-cell therapy, checkpoint inhibitors)
A 76-year-old otherwise healthy woman presents with mildly symptomatic AML with normal karyotype, WBC = 20K with 50% blasts, HCT = 28 and PLT = 42. A FLT3-ITD mutation is detected by PCR with an <u>allelic burden of 0.7</u>. What initial therapy would you recommend?

- 1. Midostaurin
- 2. 7 + 3 induction + midostaurin
- 3. HMA
- 4. HMA + venetoclax
- 5. HMA + venetoclax + FLT3 inhibitor
- 6. Low-dose cytarabine + venetoclax
- 7. Low-dose cytarabine + venetoclax + FLT3 inhibitor
- 8. Gilteritinib
- 9. Other

A 76-year-old otherwise healthy woman presents with mildly symptomatic AML with normal karyotype, WBC = 20K with 50% blasts, HCT = 28 and PLT = 42. A FLT3-ITD mutation is detected by PCR with an <u>allelic burden of</u> 0.7. What initial therapy would you recommend?

HARRY P ERBA, MD, PHD	7 + 3 induction + midostaurin
MARK LEVIS, MD, PHD	Azacitidine + venetoclax + gilteritinib
DANIEL A POLLYEA, MD, MS	Azacitidine + venetoclax
KEITH W PRATZ, MD	Azacitidine + venetoclax
EYTAN M STEIN, MD	Azacitidine + venetoclax
WENDY STOCK, MD	Azacitidine + venetoclax (followed by gilteritinib if no CR)
RICHARD M STONE, MD	7 + 3 induction + midostaurin

A 32-year-old man is diagnosed with AML after evaluation at an urgent care for respiratory symptoms and petechiae. WBC is 55K with circulating blasts. Bone marrow demonstrates 80% CD33+ blasts with NPM1 and FLT3-ITD mutation with an allelic ratio of 0.2. What treatment would you recommend?

HARRY P ERBA, MD, PHD	Intensive chemotherapy + midostaurin
MARK LEVIS, MD, PHD	Intensive chemotherapy + midostaurin
DANIEL A POLLYEA, MD, MS	Intensive chemotherapy + midostaurin
KEITH W PRATZ, MD	Intensive chemotherapy + midostaurin
EYTAN M STEIN, MD	Intensive chemotherapy + midostaurin
WENDY STOCK, MD	Intensive chemotherapy + midostaurin
RICHARD M STONE, MD	Intensive chemotherapy + midostaurin

FLT3 Mutations (ITD and TKD) Occur in **Approximately 30-35% of Patients with AML**

Daver N et al. Leukemia 2019;33:299-312.

Characteristics of Select FLT3 Inhibitors

FLT3 Inhibitor	Inhibitory Type	FLT3 Kinase Inhibition IC50 (nmol/L)	Non-FLT3 Targets	FLT3-TKD mutation activity	Major Toxicities
Sorafenib 400 mg BID	II	58	c-KIT PDGFR RAF VEGFR	No	Rash Hemorrhage Myelosuppression
Midostaurin 50 mg BID	I	6.3	c-KIT PDGFR PKC VEGFR	Yes	GI toxicity Myelosuppression
Quizartinib 30 – 60 mg QD	II	1.6	c-KIT	No	QTc prolongation Myelosuppression
Gilteritinib 120 mg QD	Ι	0.29	AXL LTK ALK	Yes	Elevated transaminases Diarrhea

Kiyoi H et al. *Cancer Science* 2019;[Epub ahead of print]; Short NJ et al. *Ther Adv Hematol* 2019;10:2040620719827310.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation

R.M. Stone, S.J. Mandrekar, B.L. Sanford, K. Laumann, S. Geyer, C.D. Bloomfield,
C. Thiede, T.W. Prior, K. Döhner, G. Marcucci, F. Lo-Coco, R.B. Klisovic, A. Wei,
J. Sierra, M.A. Sanz, J.M. Brandwein, T. de Witte, D. Niederwieser, F.R. Appelbaum,
B.C. Medeiros, M.S. Tallman, J. Krauter, R.F. Schlenk, A. Ganser, H. Serve,
G. Ehninger, S. Amadori, R.A. Larson, and H. Döhner

N Engl J Med 2017;377:454-64

RATIFY: Overall Survival Analyses

Stone RM et al. N Engl J Med 2017;377:454-64.

A 66-year-old otherwise healthy man with AML with a FLT3 mutation receives 7 + 3 induction and midostaurin, achieves remission and receives consolidation with 3 cycles of modified high-dose cytarabine and midostaurin. Four months after completion of therapy, he experiences disease progression and a FLT3-ITD mutation (allelic burden of 0.4) is found. What would you recommend?

- 1. Gilteritinib
- 2. Sorafenib/azacitidine
- 3. MEC + midostaurin
- 4. HMA + venetoclax
- 5. HMA + venetoclax + gilteritinib
- 6. Low-dose cytarabine + venetoclax
- 7. Low-dose cytarabine + venetoclax + gilteritinib
- 8. Other

A 66-year-old otherwise healthy man with AML with a FLT3 mutation receives 7 + 3 induction and midostaurin, achieves remission and receives consolidation with 3 cycles of modified high-dose cytarabine and midostaurin. Four months after completion of therapy, he experiences disease progression and a FLT3-ITD mutation (allelic burden of 0.4) is found. What would you recommend?

HARRY P ERBA, MD, PHD	Gilteritinib
MARK LEVIS, MD, PHD	Azacitidine + gilteritinib
DANIEL A POLLYEA, MD, MS	Gilteritinib
KEITH W PRATZ, MD	Azacitidine + venetoclax + gilteritinib
EYTAN M STEIN, MD	Gilteritinib
WENDY STOCK, MD	Gilteritinib
RICHARD M STONE, MD	Gilteritinib

FDA Approves Addition of Survival Data to Gilteritinib Label for Relapsed or Refractory AML with a FLT3 Mutation Press Release – May 29, 2019

"The Food and Drug Administration approved the addition of overall survival data in labeling for gilteritinib, indicated for adult patients who have relapsed or refractory AML with a FLT3 mutation as detected by an FDA-approved test.

Approval was based on the ADMIRAL trial (NCT02421939), which included 371 adult patients with relapsed or refractory AML having a FLT3 ITD, D835, or I836 mutation by the LeukoStrat CDx FLT3 Mutation Assay. Patients were randomized (2:1) to receive gilteritinib 120 mg once daily (n = 247) over continuous 28-day cycles or prespecified salvage chemotherapy (n = 124). Salvage chemotherapy included either intensive cytotoxic chemotherapy or a low-intensity regimen. For the analysis, overall survival (OS) was measured from the randomization date until death by any cause."

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approvesaddition-survival-data-gilteritinib-label-refractory-aml-flt3-mutation

Gilteritinib Significantly Prolongs Overall Survival in Patients with FLT3-Mutated (FLT3^{mut+}) Relapsed/Refractory (R/R) Acute Myeloid Leukemia (AML): Results from the Phase 3 ADMIRAL Trial¹

Effect of Gilteritinib on Survival in Patients with FLT3-Mutated (FLT3^{mut+}) Relapsed/Refractory (R/R) AML Who Have Common AML Co-Mutations or a High FLT3-ITD Allelic Ratio²

¹ Perl A et al. *Proc EHA* 2019;Abstract S876.

² Levis MJ et al. *Proc ASCO* 2019;Abstract 7000.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML

A.E. Perl, G. Martinelli, J.E. Cortes, A. Neubauer, E. Berman, S. Paolini,
P. Montesinos, M.R. Baer, R.A. Larson, C. Ustun, F. Fabbiano, H.P. Erba,
A. Di Stasi, R. Stuart, R. Olin, M. Kasner, F. Ciceri, W.-C. Chou, N. Podoltsev,
C. Recher, H. Yokoyama, N. Hosono, S.-S. Yoon, J.-H. Lee, T. Pardee, A.T. Fathi,
C. Liu, N. Hasabou, X. Liu, E. Bahceci, and M.J. Levis

N Engl J Med 2019;381:1728-40.

ADMIRAL: Overall Survival

Perl AE et al. N Engl J Med 2019;381:1728-40.

ADMIRAL: Subgroup Analysis of Overall Survival

		Salvage		
Subgroup	Gilteritinib	Chemotherap	by Hazard Ratio for Death	
n	o. of events/to	tal no. of patier	nts	
All patients	171/247	90/124		0.64
FLT3 mutation type				
FLT3 ITD alone	145/215	81/113		0.62
FLT3 TKD alone	16/21	8/10		0.69
FLT3 ITD and FLT3 TKD	6/7	0		NE
Other	4/4	1/1	-	0.70
Previous use of FLT3 inhibitor				
Yes	26/32	11/14		0.70
No	145/215	79/110		0.62
Cytogenetic risk status				
Favorable	3/4	1/1	-	0.70
Intermediate	119/182	63/89		0.60
Unfavorable	22/26	7/11		1.63
Unknown	27/35	19/23	_	0.46
Response to first-line therapy per IRT				
Relapse ≤6 mo after allogeneic HSCT	24/31	16/17		0.38
Relapse >6 mo after allogeneic HSCT	10/17	4/8		0.86
Primary refractory disease without HSCT	70/98	28/48	_	0.99
Relapse ≤6 mo after composite complete remission and no HSC	T 47/67	28/34		0.49
Relapse >6 mo after composite complete remission and no HSC	T 20/34	14/17		0.49
Preselected chemotherapy per IRT				
High intensity	96/149	52/75		0.66
Low intensity	75/98	38/49		0.56
		C	0.1 0.5 1.0 2.0	10.0

Gilteritinib Better Salvage Chemotherapy Better

Research To Practice®

Perl AE et al. N Engl J Med 2019;381:1728-40.

ADMIRAL: Antileukemic Responses

	Gilteritinib (n = 247)	Salvage Chemo (n = 124)	HR or Risk Difference
Complete remission (CR)	21.1%	10.5%	10.6
CR or CR with partial hematologic recovery	34.0%	15.3%	18.6
CR with partial hematologic recovery	13.0%	4.8%	Not determined
CR with incomplete hematologic recovery	25.5%	11.3%	Not determined
CR with incomplete platelet recovery	7.7%	0	Not determined
Composite CR*	54.3%	21.8%	32.5
Overall response	67.6%	25.8%	Not reported

*Composite complete remission was defined as the combination of CR, CR with incomplete hematologic recovery, and CR with incomplete platelet recovery

Perl AE et al. N Engl J Med 2019;381:1728-40.

Select Ongoing Phase III Trials of FLT3 Inhibitors

Study	Target Accrual	Setting	Randomization
NCT01371981	1,641	Newly diagnosed	 Chemotherapy Chemotherapy + bortezomib Chemotherapy + bortezomib + sorafenib
NCT02997202	346	Newly diagnosed/ Maintenance after transplant	GilteritinibPlacebo
HOVON 156 AML (NCT04027309)	768	Newly diagnosed	 Induction/consolidation chemo + midostaurin → midostaurin Induction/consolidation chemo + gilteritinib → gilteritinib
QuANTUM-FIRST	539	Newly diagnosed	 Induction/consolidation chemo + quizartinib → quizartinib Induction/consolidation chemo + placebo → placebo

Research To Practice®

www.clinicaltrials.gov. Accessed January 2020.

Management of Acute Myeloid Leukemia

Module 1: Contemporary Biomarker Assessment

- Incidence and prognostic relevance of cytogenetic and other molecular markers
- Guideline-endorsed recommendations for biomarker assessment

Module 2: Bcl-2 Inhibition as a Rational Therapeutic Strategy

- Biologic rationale for venetoclax in AML
- Safety, efficacy and patient selection for venetoclax in combination with HMAs or LDAC

Module 3: FLT3 Inhibitors in the Up-Front and Recurrent Settings

- Data supporting midostaurin in newly diagnosed AML (RATIFY)
- Efficacy and safety data with gilteritinib (ADMIRAL)

Module 4: IDH Inhibitors in the Up-Front and Recurrent Settings

- Efficacy and safety of enasidenib and ivosidenib
- Differentiation syndrome and other side effects of IDH inhibitors

Module 5: Other Novel Treatment Approaches

- Efficacy, safety and recent approval of glasdegib for newly diagnosed AML (BRIGHT 1003)
- Optimal incorporation of CPX-351 for the treatment of AML
- CC-486 as maintenance therapy for AML in complete remission
- Emerging therapeutics (CAR T-cell therapy, checkpoint inhibitors)

What initial treatment would you recommend for a 77-year-old woman with AML with an IDH1 mutation?

- 1. 7 + 3 induction
- 2. HMA
- 3. HMA + venetoclax
- 4. HMA + venetoclax + ivosidenib
- 5. Low-dose cytarabine + venetoclax
- 6. Low-dose cytarabine + venetoclax + ivosidenib

Research

To Practice®

10

- 7. HMA + ivosidenib
- 8. Ivosidenib
- 9. Other

What initial treatment would you recommend for a 77-year-old woman with AML with an IDH1 mutation?

IDH1 and IDH2 Mutations in AML

Buege MJ et al. *Cancers* 2018;10:187; Döhner H et al. *N Engl J Med* 2015;373(12):1136-52; Bullinger L et al. *J Clin Oncol* 2017;35(9):934-46.

FDA Approval of Ivosidenib as First-Line Treatment for AML with IDH1 Mutation Press Release – May 2, 2019

"On May 2, 2019, the Food and Drug Administration approved ivosidenib for newly-diagnosed AML with a susceptible IDH1 mutation, as detected by an FDA-approved test, in patients who are at least 75 years old or who have comorbidities that preclude the use of intensive induction chemotherapy. Approval was based on an open-label, single-arm, multicenter clinical trial (Study AG120-C-001, NCT02074839) of single-agent ivosidenib for newlydiagnosed AML with an IDH1 mutation.

The adverse reactions that occurred in at least 25% of patients were diarrhea, fatigue, edema, decreased appetite, leukocytosis, nausea, arthralgia, abdominal pain, dyspnea, differentiation syndrome and myalgia. Prescribing information contains a Boxed Warning alerting health care professionals and patients about the risk of differentiation syndrome which may be life-threatening or fatal."

www.fda.gov/drugs/resources-information-approved-drugs/fda-approvesivosidenib-first-line-treatment-aml-idh1-mutation

Ivosidenib (IVO; AG-120) in IDH1-Mutant Newly-Diagnosed Acute Myeloid Leukemia (ND AML): Updated Results from a Phase 1 Study

Roboz GJ et al. *Proc ASCO* 2019;Abstract 7028.

Ivosidenib in Newly Diagnosed AML: Treatment Duration, Best Overall Response and Transfusion Independence

ORR = 54.4%

Research To Practice®

Roboz GJ et al. Proc ASCO 2019; Abstract 7028.

Mutant IDH1 Inhibitor Ivosidenib (IVO; AG-120) in Combination with Azacitidine (AZA) for Newly Diagnosed Acute Myeloid Leukemia (ND AML)¹

Enasidenib Plus Azacitidine Significantly Improves Complete Remission and Overall Response Compared with Azacitidine Alone in Patients with Newly Diagnosed Acute Myeloid Leukemia (AML) with Isocitrate Dehydrogenase 2 (IDH2) Mutations: Interim Phase II Results from an Ongoing, Randomized Study²

¹DiNardo CD et al. *Proc ASCO* 2019;Abstract 7011.

²DiNardo C et al. *Proc ASH* 2019;Abstract 643.

Clinical Efficacy of Ivosidenib or Enasidenib plus Azacitidine in Newly Diagnosed AML

Phase Ib Study of Ivosidenib	lvosidenib + AZA (n = 23)
Overall response rate	18 (78.3%)
Median duration of response	Not estimable
Complete remission rate	14 (60.9%)

Phase II Study of Enasidenib	Enasidenib + AZA (n = 68)	AZA Monotherapy (n = 33)	<i>p</i> -value
Overall response rate	68%	42%	0.0155
Median duration of response	Not reached	10.2 mos	0.13
Complete remission rate	50%	12%	0.0002

Research To Practice®

DiNardo C et al. Proc ASH 2019; Abstract 643.

Ongoing Phase III Studies of IDH Inhibitors in Newly Diagnosed AML

Study	N	Setting	Randomization
HOVON 150 AML (NCT03839771)	968	 Previously untreated AML or MDS-EB2 IDH1 or IDH mutation Eligible for intensive chemo 	 Ivosidenib or enasidenib + induction + consolidation therapy → maintenance therapy Placebo + induction + consolidation therapy → maintenance therapy
AGILE (NCT03173248)	392	Previously untreated AMLIDH1 mutationIneligible for intensive chemo	Ivosidenib + azacitidinePlacebo + azacitidine

Research To Practice®

www.clinicaltrials.gov. Accessed December 2019.

FDA Approvals of IDH Inhibitors for R/R AML

The FDA approved **ivosidenib**, a small-molecule inhibitor of isocitrate dehydrogenase (IDH)1 on **July 20, 2018**, for treatment of adults with relapsed or refractory acute myeloid leukemia (R/R AML) with susceptible IDH1 mutation as detected by an FDA-approved test. The efficacy of ivosidenib was established on the basis of complete remission (CR) + CR with partial hematologic recovery (CRh) rate, duration of CR + CRh, and conversion from transfusion dependence (TD) to transfusion independence (TI) in **Study AG120-C-001 (NCT02074839)**

On **August 1, 2017**, the U.S. Food and Drug Administration granted regular approval to **enasidenib** for the treatment of adult patients with relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-2 (IDH2) mutation as detected by an FDA-approved test. The enasidenib approval was based on **Study AG221-C-001 (NCT01915498)**, an open-label, single-arm, multicenter, clinical trial of enasidenib that included 199 adults with relapsed or refractory AML who had an IDH2 mutation as detected by the above assay. Patients were treated with enasidenib 100 mg orally daily. Complete response (CR) and complete response with partial hematologic recovery (CRh) rates, CR/CRh duration, and conversion from transfusion dependence to transfusion independence were the basis of approval.

Norsworthy KJ et al. Clin Cancer Res 2019;25(20):6021-5.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-granted-regularapproval-enasidenib-treatment-relapsed-or-refractory-aml

Regular Article

CLINICAL TRIALS AND OBSERVATIONS

Molecular remission and response patterns in patients with mutant-*IDH2* acute myeloid leukemia treated with enasidenib

Eytan M. Stein,^{1,2,*} Courtney D. DiNardo,^{3,*} Amir T. Fathi,^{4,5,*} Daniel A. Pollyea,⁶ Richard M. Stone,⁷ Jessica K.| Altman,⁸ Gail J. Roboz,^{2,9} Manish R. Patel,¹⁰ Robert Collins,¹¹ Ian W. Flinn,¹² Mikkael A. Sekeres,¹³ Anthony S. Stein,¹⁴ Hagop M. Kantarjian,³ Ross L. Levine,¹ Paresh Vyas,¹⁵ Kyle J. MacBeth,¹⁶ Alessandra Tosolini,¹⁷ Jason VanOostendorp,¹⁷ Qiang Xu,¹⁷ Ira Gupta,¹⁷ Thomas Lila,¹⁶ Alberto Risueno,¹⁸ Katharine E. Yen,¹⁹ Bin Wu,¹⁹ Eyal C. Attar,¹⁹ Martin S. Tallman,^{1,2,†} and Stéphane de Botton^{20,21,†}

Blood 2019;133(7):676-87.

Enasidenib for IDH2-Mutated Relapsed/Refractory AML: Updated Response and Survival Outcomes

	Refractory to intensive chemotherapy (n = 40)	Refractory to lower- intensity therapy (n = 44) [†]	Relapsed following any prior AML therapy (n = 130)
ORR, n (%)*	15 (37.5%)	19 (43.2%)	49 (37.7%)
CR, n (%)	4 (10.0%)	12 (27.3%)	26 (20.0%)
CRi/CRp, n (%)	4 (10.0%)	2 (4.5%)	14 (10.8%)
Median OS	12.4 mo	8.0 mo	8.1 mo

* ORR included CR, CRi/CRp, MLFS and PR ⁺ Hypomethylating agents or low-dose cytarabine

> Research To Practice®

Stein EM et al. Blood 2019;133(7):676-87.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML

C.D. DiNardo, E.M. Stein, S. de Botton, G.J. Roboz, J.K. Altman, A.S. Mims,
R. Swords, R.H. Collins, G.N. Mannis, D.A. Pollyea, W. Donnellan, A.T. Fathi,
A. Pigneux, H.P. Erba, G.T. Prince, A.S. Stein, G.L. Uy, J.M. Foran, E. Traer,
R.K. Stuart, M.L. Arellano, J.L. Slack, M.A. Sekeres, C. Willekens, S. Choe, H. Wang,
V. Zhang, K.E. Yen, S.M. Kapsalis, H. Yang, D. Dai, B. Fan, M. Goldwasser, H. Liu,
S. Agresta, B. Wu, E.C. Attar, M.S. Tallman, R.M. Stone, and H.M. Kantarjian

N Engl J Med 2018;378:2386-98.

Ivosidenib for IDH1-Mutated Relapsed or Refractory AML: Primary Efficacy Population (N = 125)

Efficacy endpoint	Rate	Median duration
CR or CRh	30.4%	8.2 mo
Complete remission	21.6%	9.3 mo
Overall response	41.6%	6.5 mo

Median OS: 8.8 mos Change from red-cell transfusion-dependent \rightarrow RBT-independent: 35%

DiNardo CD et al. *N Engl J Med* 2018;378:2386-98.

Commonly Observed and Noteworthy IDH Inhibitor-Related Adverse Events (AEs)

Commonly Observed Treatment-Emergent AEs (Any Grade, >20%)

- Enasidenib: Hyperbilirubinemia, nausea
- **Ivosidenib:** Diarrhea, leukocytosis, nausea, fatigue, febrile neutropenia, dyspnea, anemia, QT prolongation, peripheral edema

Noteworthy Grade 3/4 AEs

- IDH-differentiation syndrome: 5-6%
- Prolongation of the QT interval
 - Enasidenib: Not reported
 - Ivosidenib: ~8%
- Leukocytosis: 2-3%
- Hyperbilirubinemia
 - Enasidenib: 12%
 - Ivosidenib: Not reported

Stein EM et al. *Blood* 2017;130(6):722-31; DiNardo CD et al. *N Engl J Med* 2018;378:2386-98; Fathi AT et al. *JAMA Oncol* 2018;4(8):1106-10.

IDH Differentiation Syndrome (IDH-DS)

- Potentially fatal complication of effective leukemia treatment
 - First described in patients with APL treated with ATRA
- Signs and symptoms of DS are not specific
 - Fever, edema, weight gain, leukocytosis, rash, hypotension, renal dysfunction, and pleural and pericardial effusions
 - A rising leukocyte count, comprising increasing neutrophils with a parallel decrease in leukemic blasts
- Median time to onset: ~30 days (range: 5-340 days)
- Frequency: 5-6% Grade 3 or higher
 - Frequent dose interruptions but not associated with treatment discontinuation
- Treatment
 - Corticosteroids for IDH-DS
 - Hydroxyurea for leukocytosis, which frequently accompanies IDH-DS
 - Hyperuricemia agents for tumor lysis syndrome, which may co-occur

Stein EM et al. *Blood* 2017;130(6):722-31; Stein EM et al. *Blood* 2019;133(7):676-87; DiNardo CD et al. *N Engl J Med* 2018;378:2386-98; Birendra KC, DiNardo CD. *Clin Lymphoma Myeloma Leuk* 2016;16(8):460-5.
A 64-year-old patient presents with new-onset shortness of breath, hypoxemia and fever 3 weeks into therapy with ivosidenib for relapsed AML. Chest CT reveals diffuse ground glass infiltrates. The patient has an ANC of 600, 27% blasts in the blood and has been receiving prophylaxis with levofloxacin and acyclovir only. What would you recommend?

HARRY P ERBA, MD, PHD	Discontinue ivosidenib and begin antibiotics and corticosteroids
MARK LEVIS, MD, PHD	Continue ivosidenib and begin antibiotics and corticosteroids
DANIEL A POLLYEA, MD, MS	Continue ivosidenib and begin antibiotics and corticosteroids
KEITH W PRATZ, MD	Continue ivosidenib and begin antibiotics and corticosteroids
EYTAN M STEIN, MD	Continue ivosidenib and begin antibiotics and corticosteroids
WENDY STOCK, MD	Continue ivosidenib and begin antibiotics and corticosteroids
RICHARD M STONE, MD	Continue ivosidenib and begin antibiotics and corticosteroids

A 65-year-old man with relapsed/refractory AML and an IDH2 R140 mutation presents with a WBC of 25K and 80% blasts and is started on enasidenib. After 3 weeks, his WBC has risen to 50K and the patient still has 80% blasts. He is clinically stable otherwise. What would you recommend?

HARRY P ERBA, MD, PHD	Continue enasidenib and begin hydroxyurea
MARK LEVIS, MD, PHD	Continue enasidenib and begin hydroxyurea
DANIEL A POLLYEA, MD, MS	Continue enasidenib and begin hydroxyurea
KEITH W PRATZ, MD	Continue enasidenib and begin hydroxyurea and corticosteroids for differentiation syndrome
EYTAN M STEIN, MD	Continue enasidenib and begin hydroxyurea
WENDY STOCK, MD	Continue enasidenib and begin hydroxyurea
RICHARD M STONE, MD	Continue enasidenib and begin hydroxyurea

Management of Acute Myeloid Leukemia

Module 1: Contemporary Biomarker Assessment

- Incidence and prognostic relevance of cytogenetic and other molecular markers
- Guideline-endorsed recommendations for biomarker assessment

Module 2: Bcl-2 Inhibition as a Rational Therapeutic Strategy

- Biologic rationale for venetoclax in AML
- Safety, efficacy and patient selection for venetoclax in combination with HMAs or LDAC

Module 3: FLT3 Inhibitors in the Up-Front and Recurrent Settings

- Data supporting midostaurin in newly diagnosed AML (RATIFY)
- Efficacy and safety data with gilteritinib (ADMIRAL)

Module 4: IDH Inhibitors in the Up-Front and Recurrent Settings

- Efficacy and safety of enasidenib and ivosidenib
- Differentiation syndrome and other side effects of IDH inhibitors

Module 5: Other Novel Treatment Approaches

- Efficacy, safety and recent approval of glasdegib for newly diagnosed AML (BRIGHT 1003)
- Optimal incorporation of CPX-351 for the treatment of AML
- CC-486 as maintenance therapy for AML in complete remission
- Emerging therapeutics (CAR T-cell therapy, checkpoint inhibitors)

FDA Approves Glasdegib with Low-Dose Cytarabine for AML in Adults Aged 75 or Older or Those with Comorbidities Press Release – November 21, 2018

"On November 21, 2018, the Food and Drug Administration approved glasdegib in combination with low-dose cytarabine (LDAC), for newly-diagnosed acute myeloid leukemia (AML) in patients who are 75 years old or older or who have comorbidities that preclude intensive induction chemotherapy. Approval was based on a multicenter, open-label, randomized study (BRIGHT AML 1003, NCT01546038)...

Efficacy was established based on an improvement in overall survival. With a median follow-up of 20 months, median survival was 8.3 months (95% CI: 4.4, 12.2) for the glasdegib + LDAC arm and 4.3 months (95% CI: 1.9, 5.7) for the LDAC alone arm and HR of 0.46 (95% CI: 0.30, 0.71; p = 0.0002)."

Research To Practice®

https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm626494.htm

ARTICLE

Acute myeloid leukemia

Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome

Jorge E. Cortes¹ · Florian H. Heidel^{2,14} · Andrzej Hellmann³ · Walter Fiedler⁴ · B. Douglas Smith⁵ · Tadeusz Robak⁶ · Pau Montesinos ^{7,8} · Daniel A. Pollyea ⁹ · Pierre DesJardins¹⁰ · Oliver Ottmann¹¹ · Weidong Wendy Ma¹² · M. Naveed Shaik¹² · A. Douglas Laird¹² · Mirjana Zeremski¹² · Ashleigh O'Connell¹² · Geoffrey Chan¹² · Michael Heuser¹³

Leukemia 2019;33:379-89

BRIGHT AML 1003: Low-Dose Cytarabine with or without Glasdegib for Untreated AML or High-Risk MDS

Cortes JE et al. Leukemia 2019;33:379-89.

A 69-year-old woman with a history of myelodysplastic syndrome (MDS) treated with azacitidine for 10 months presents 1 year later with AML with 35% marrow blasts, trisomy 8 and ASXL1, NRAS and U2AF1 mutations (VAFs 45, 20 and 45, respectively). What would you recommend?

HARRY P ERBA, MD, PHD	CPX-351		
MARK LEVIS, MD, PHD	CPX-351		
DANIEL A POLLYEA, MD, MS	Continue azacitidine and add venetoclax		
KEITH W PRATZ, MD	Decitabine + venetoclax		
EYTAN M STEIN, MD	CPX-351		
WENDY STOCK, MD	CPX-351		
RICHARD M STONE, MD	CPX-351		

VOLUME 36 · NUMBER 26 · SEPTEMBER 10, 2018

JOURNAL OF CLINICAL ONCOLOGY

RAPID COMMUNICATION

CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia

Jeffrey E. Lancet, Geoffrey L. Uy, Jorge E. Cortes, Laura F. Newell, Tara L. Lin, Ellen K. Ritchie, Robert K. Stuart, Stephen A. Strickland, Donna Hogge, Scott R. Solomon, Richard M. Stone, Dale L. Bixby, Jonathan E. Kolitz, Gary J. Schiller, Matthew J. Wieduwilt, Daniel H. Ryan, Antje Hoering, Kamalika Banerjee, Michael Chiarella, Arthur C. Louie, and Bruno C. Medeiros

Study 301: Survival and Toxicity

Research To Practice®

Lancet JE et al. J Clin Oncol 2018;36(26):2684-92.

Phase III QUAZAR AML-001 Study Design

Primary endpoint: Overall survival

Roboz GJ et al. Future Oncol 2016;12(3):293-302.

QUAZAR AML-001: Overall and Relapse-Free Survival

Wei AH et al. Proc ASH 2019; Abstract LBA-3.

QUAZAR AML-001: GI Adverse Events, Dosing Modifications or Treatment Discontinuation

	CC-486 (n = 236)		Placebo (n = 233)	
GI AEs, n (%)	All Grades	Grades 3/4	All Grades	Grades 3/4
Discontinuation due to GI AE	4.7%		0.4%	
Nausea	153 (65)	6 (3)	55 (24)	1 (0.4)
Vomiting	141 (60)	7 (3)	23 (10)	0
Diarrhea	119 (50)	12 (5)	50 (22)	3 (1)
Constipation	91 (39)	3 (1)	56 (24)	0

	CC-486	Placebo
Dose interruptions	43%	17%
Dose reductions	16%	3%

Neutropenia was the most common reason for dose modifications.

Research To Practice®

Wei AH et al. Proc ASH 2019; Abstract LBA-3.

New Agents and Strategies in the Management of Acute Myeloid Leukemia An Interactive Grand Rounds Series

Daniel A Pollyea, MD, MS

Associate Professor of Medicine Clinical Director of Leukemia Services Robert H Allen, MD Chair in Hematology Research Division of Hematology University of Colorado School of Medicine Aurora, Colorado