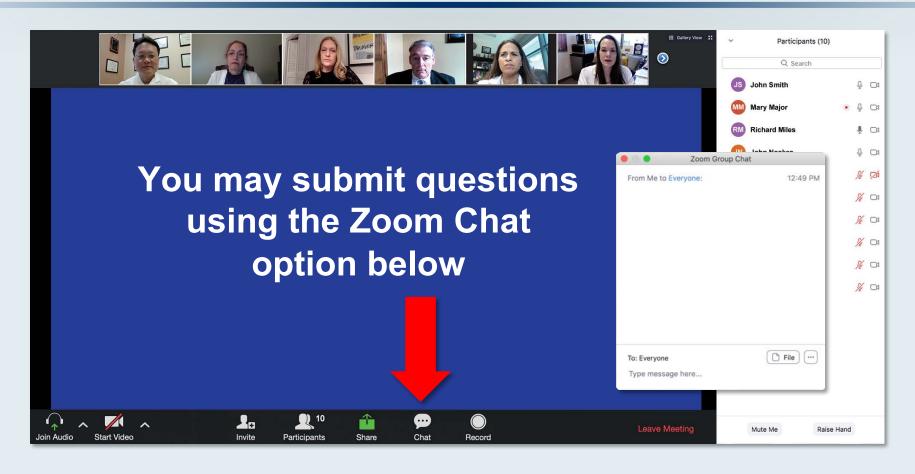
Thank you for joining us. The program will commence momentarily.

Virtual Molecular Tumor Board: Role of Genomic Profiling for Patients with Solid Tumors and the Optimal Application of Available Testing Platforms

Friday, July 31, 2020


9:00 AM - 10:00 AM ET

Faculty

Andrew McKenzie, PhD Bryan P Schneider, MD Milan Radovich, PhD

Dr Love and Faculty Encourage You to Ask Questions

Feel free to submit questions **now before** the program commences and **throughout the program**.

Familiarizing yourself with the Zoom interface How to answer poll questions

When a poll question pops up, click your answer choice from the available options. Results will be shown after everyone has answered.

Commercial Support

This activity is supported by an educational grant from Lilly.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following commercial interests: AbbVie Inc, Acerta Pharma — A member of the AstraZeneca Group, Adaptive Biotechnologies Corporation, Agendia Inc. Agios Pharmaceuticals Inc, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Biodesix Inc, bioTheranostics Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Boston Biomedical Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Daiichi Sankyo Inc, Dendreon Pharmaceuticals Inc, Eisai Inc, EMD Serono Inc, Exelixis Inc, Foundation Medicine, Genentech, a member of the Roche Group, Genmab, Genomic Health Inc, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Guardant Health, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Infinity Pharmaceuticals Inc, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Kite, A Gilead Company, Lexicon Pharmaceuticals Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Merrimack Pharmaceuticals Inc, Myriad Genetic Laboratories Inc, Natera Inc, Novartis, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Prometheus Laboratories Inc, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sandoz Inc, a Novartis Division, Sanofi Genzyme, Seattle Genetics, Sirtex Medical Ltd, Spectrum Pharmaceuticals Inc, Taiho Oncology Inc, Takeda Oncology, Tesaro, A GSK Company, Teva Oncology, Tokai Pharmaceuticals Inc. Tolero Pharmaceuticals and Verastem Inc.

RESEARCH TO PRACTICE CME PLANNING COMMITTEE MEMBERS, STAFF AND REVIEWERS

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr McKenzie — Disclosures

No relevant conflicts of interest to disclose

Dr Schneider — Disclosures

No relevant conflicts of interest to disclose

Dr Radovich — Disclosures

Contracted Research	Boston Biomedical Inc, Lilly	
Ownership Interest	Immunomedics Inc, LifeOmic Health LLC, Tyme Inc	

Virtual Molecular Tumor Board: Optimizing Biomarker-Based Decision-Making for Patients with Solid Tumors

Identification of New and Emerging Genomic Alterations in Metastatic Non-Small Cell Lung Cancer

Friday, August 7, 2020 9:00 AM - 10:00 AM ET

Alexander E Drilon, MD

Recognition and Management of Targetable Tumor Mutations in Less Common Cancer Types

> Friday, August 14, 2020 9:00 AM – 10:00 AM ET

Marcia S Brose, MD, PhD

All sessions moderated by Neil Love, MD and featuring Bryan Schneider, MD and Milan Radovich, PhD of the Indiana University Health Precision Genomics Program

Monday, August 3, 2020 5:00 PM - 6:00 PM ET

Recent Advances in Medical Oncology: Urothelial Bladder Carcinoma

Faculty

Arjun Balar, MD
Thomas Powles, MBBS, MRCP, MD
Arlene Siefker-Radtke, MD

Moderator

Neil Love, MD

Tuesday, August 4, 2020 1:00 PM - 2:00 PM ET

Clinical Investigator
Perspectives on the Current
and Future Management of
Multiple Myeloma

Faculty

Shaji K Kumar, MD

Moderator

Wednesday, August 5, 2020 5:00 PM - 6:30 PM ET

Recent Advances in Medical Oncology: Immunotherapy and Other Nontargeted Approaches for Lung Cancer

Faculty

Edward B Garon, MD, MS Stephen V Liu, MD David R Spigel, MD

Moderator

Neil Love, MD

Thursday, August 6, 2020 12:00 PM - 1:00 PM ET

Current Questions and Controversies in the Management of Lung Cancer

Faculty

John V Heymach, MD, PhD

Moderator

Monday, August 10, 2020 5:00 PM - 6:00 PM ET

Recent Advances in Medical Oncology: Hodgkin and Non-Hodgkin Lymphomas

Faculty

Jeremy Abramson, MD Christopher R Flowers, MD, MS

Moderator

Neil Love, MD

Wednesday, August 12, 2020 5:00 PM - 6:30 PM ET

Recent Advances in Medical Oncology: Hepatocellular Carcinoma and Pancreatic Cancer

Faculty

Tanios Bekaii-Saab, MD Eileen M O'Reilly, MD Philip A Philip, MD, PhD, FRCP Alan P Venook, MD

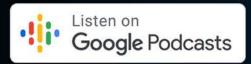
Moderator

Monday, August 17, 2020 5:00 PM - 6:00 PM ET

Recent Advances in Medical Oncology: ER-Positive Breast Cancer

Faculty

Virginia Kaklamani, MD, DSc Sara M Tolaney, MD, MPH


Moderator

ONCOLOGY TODAY

WITH DR NEIL LOVE

Virtual Molecular Tumor Board: Role of Genomic Profiling for Patients with Solid Tumors and the Optimal Application of Available Testing Platforms

Friday, July 31, 2020

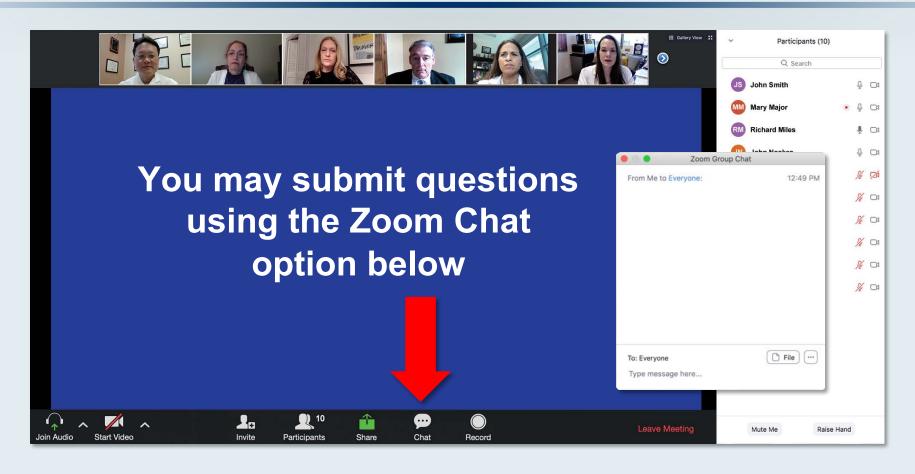
9:00 AM - 10:00 AM ET

Faculty

Andrew McKenzie, PhD Bryan P Schneider, MD Milan Radovich, PhD

Faculty

Andrew McKenzie, PhD
Director, Personalized Medicine
Sarah Cannon Research Institute
Nashville, Tennessee



Milan Radovich, PhD
Associate Professor
IU Health Vice President for Oncology Genomics
Indiana University Melvin and
Bren Simon Comprehensive Cancer Center
Indianapolis, Indiana

Bryan P Schneider, MD
The Vera Bradley Professor of Oncology
Director of the IU Health Precision Genomics Program
Indiana University Melvin and
Bren Simon Comprehensive Cancer Center
Indianapolis, Indiana

Dr Love and Faculty Encourage You to Ask Questions

Feel free to submit questions **now before** the program commences and **throughout the program**.

Recent Advances in Medical Oncology: Urothelial Bladder Carcinoma

Monday, August 3, 2020 5:00 PM - 6:00 PM ET

Faculty

Arjun Balar, MD
Thomas Powles, MBBS, MRCP, MD
Arlene Siefker-Radtke, MD

Clinical Investigator Perspectives on the Current and Future Management of Multiple Myeloma A Meet The Professor Series

Tuesday, August 4, 2020 1:00 PM - 2:00 PM ET

Faculty
Shaji K Kumar, MD

Recent Advances in Medical Oncology: Immunotherapy and Other Nontargeted Approaches for Lung Cancer

Wednesday, August 5, 2020 5:00 PM - 6:30 PM ET

Faculty

Edward B Garon, MD, MS
Stephen V Liu, MD, PhD
David R Spigel, MD

Current Questions and Controversies in the Management of Lung Cancer

Thursday, August 6, 2020 12:00 PM – 1:00 PM ET

Faculty

John V Heymach, MD, PhD

Moderator

Virtual Molecular Tumor Board: Optimizing Biomarker-Based Decision-Making for Patients with Solid Tumors

Identification of New and Emerging Genomic Alterations in Metastatic Non-Small Cell Lung Cancer

Friday, August 7, 2020 9:00 AM – 10:00 AM ET

Alexander E Drilon, MD

Recognition and Management of Targetable Tumor Mutations in Less Common Cancer Types

> Friday, August 14, 2020 9:00 AM – 10:00 AM ET

Marcia S Brose, MD, PhD

All sessions moderated by Neil Love, MD and featuring Bryan Schneider, MD and Milan Radovich, PhD of the Indiana University Health Precision Genomics Program

Recent Advances in Medical Oncology: Hodgkin and Non-Hodgkin Lymphomas

Monday, August 10, 2020 5:00 PM – 6:00 PM ET

Faculty

Jeremy Abramson, MD Christopher R Flowers, MD, MS

Recent Advances in Medical Oncology: Hepatocellular Carcinoma and Pancreatic Cancer

Wednesday, August 12, 2020 5:00 PM - 6:30 PM ET

Faculty

Tanios Bekaii-Saab, MD Eileen M O'Reilly, MD

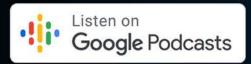
Philip A Philip, MD, PhD, FRCP Alan P Venook, MD

Recent Advances in Medical Oncology: ER-Positive Breast Cancer

Monday, August 17, 2020 5:00 PM – 6:00 PM ET

Faculty

Virginia Kaklamani, MD, DSc Sara M Tolaney, MD, MPH



ONCOLOGY TODAY

WITH DR NEIL LOVE

About the Enduring Program

- This webinar is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.
 An email will be sent to all attendees when the activity is available.
- To learn more about our education programs visit our website, www.ResearchToPractice.com

Make the Meeting Even More Relevant to You

Download the RTP Live app on your smartphone or tablet to access program information, including slides being presented during the program:

www.ResearchToPractice.com/RTPLiveApp

Virtual Molecular Tumor Board: Role of Genomic Profiling for Patients with Solid Tumors and the Optimal Application of Available Testing Platforms

Friday, July 31, 2020

9:00 AM - 10:00 AM ET

Faculty

Andrew McKenzie, PhD Bryan P Schneider, MD Milan Radovich, PhD

Agenda

Part 1: Case Discussion

- Case 1 Drs Radovich, Schneider: A 76-year-old man with prostate cancer (AKT E17k mutation)
- Case 2 Dr Ibrahim: A frail 80-year-old woman with endometrial cancer (AKT mutation)
- Case 3 Dr McKenzie: A 58-year-old man with salivary gland HNSCC (NTRK3-ETV6 fusion)
- Case 4 Drs Radovich, Schneider: An 80-year-old man with bladder cancer (TMB 67 Muts/Mb)
- Case 5 Dr Ibrahim: A 68-year-old man with muscle-invasive bladder cancer (PIK3CA, RET amplification)
- Case 6 Dr McKenzie: A 62-year-old man with cholangiocarcinoma (FGFR2 rearrangement)

Part 2: FDA-approved and Guideline-endorsed Platforms For Genomic Testing

Advantages and limitations of available assays

Part 3: Case Discussion

- Case 7 Drs Radovich, Schneider: A 64-year-old woman with glioblastoma (FGFR3-TACC3 fusion)
- Case 8 Dr Ibrahim: An 82-year-old man with cancer of unknown primary (TMPRSS2 ERG)
- Case 9 Dr McKenzie: A 64-year-old woman with metastatic breast cancer (PIK3CA, ESR1 mutations)
- Case 10 Drs Radovich, Schneider: A 64-year-old woman with pancreatic cancer (KRAS G12C)
- Case 11 Dr McKenzie: A 66-year-old woman with metastatic adenocarcinoma of the lung (KRAS G12C)

Agenda

Part 1: Case Discussion

- Case 1 Drs Radovich, Schneider: A 76-year-old man with prostate cancer (AKT E17k mutation)
- Case 2 Dr Ibrahim: A frail 80-year-old woman with endometrial cancer (AKT mutation)
- Case 3 Dr McKenzie: A 58-year-old man with salivary gland HNSCC (NTRK3-ETV6 fusion)
- Case 4 Drs Radovich, Schneider: An 80-year-old man with bladder cancer (TMB 67 Muts/Mb)
- Case 5 Dr Ibrahim: A 68-year-old man with muscle-invasive bladder cancer (PIK3CA, RET amplification)
- Case 6 Dr McKenzie: A 62-year-old man with cholangiocarcinoma (FGFR2 rearrangement)

Part 2: FDA-approved and Guideline-endorsed Platforms For Genomic Testing

Advantages and limitations of available assays

Part 3: Case Discussion

- Case 7 Drs Radovich, Schneider: A 64-year-old woman with glioblastoma (FGFR3-TACC3 fusion)
- Case 8 Dr Ibrahim: An 82-year-old man with cancer of unknown primary (TMPRSS2 ERG)
- Case 9 Dr McKenzie: A 64-year-old woman with metastatic breast cancer (PIK3CA, ESR1 mutations)
- Case 10 Drs Radovich, Schneider: A 64-year-old woman with pancreatic cancer (KRAS G12C)
- Case 11 Dr McKenzie: A 66-year-old woman with metastatic adenocarcinoma of the lung (KRAS G12C)

Case 1: 76-year-old man with prostate cancer

- HISTORY OF PRESENT ILLNESS: 76-year-old man with advanced prostate cancer. The patient's history includes having been diagnosed with prostate cancer in 2004. He received 1 month of androgen deprivation therapy and then underwent a prostatectomy where he had a Gleason 8 prostate adenocarcinoma with ductal features. He had salvage radiation therapy due to a biochemical relapse where he completed only 10/32 planned doses due to substantial colitis. He subsequently had biochemical relapse and oligometastatic bone met in 2016 and was started on leuprolide. He did not tolerate the side effects of leuprolide and was switched to degarelix and had radiation therapy to his oligometastatic site in the left acetabulum. He has had substantial toxicity associated with the degarelix including substantial hot flashes, chills, just feeling generally poorly, and has stopped these at this time. His most recent imaging showed no disease outside the bone but new left inferior pubic ramus metastasis and increased disease in the left acetabulum and pubic bone. He is currently off all therapy and here now to discuss genomic sequencing to help guide future targeted therapy.
- PAST MEDICAL HISTORY: prostatectomy, cholecystectomy, spinal fusion s/p MVA, appendectomy.
- **FHx:** Brother with colon cancer in his 60s

Courtesy of Bryan P Schneider, MD and Milan Radovich, PhD

Diagnosis: Prostate cancer

TUMOR GENOMIC ALTERATIONS ¹						
AKT1 CTNNB1 ERCC5						
GENOMIC TARGETS	FDA-APPROVED DRUGS -for patient's cancer	FDA-APPROVED DRUGS -for another cancer	DRUGS PREDICTED NON-BENEFICIAL	POTENTIAL CLINICAL TRIALS		
3	0	2	0	Yes		
AKT1 (E17K)		everolimus, temsirolimus		Yes		
CTNNB1 (S45P)				Yes		
ERCC5 (K904fs)				Yes		
TUMOR MUTATION BURDEN (TMB)						
LOW (1 mut/Mb)				No		
MICROSATELLITE STATUS (MSI)						
STABLE	morto	OM ELLITE OTATO		No		

Case 2: 80-year-old woman with metastatic endometrial cancer

80-year-old frail woman who was diagnosed with stage III endometrial cancer and had a hysterectomy and radiation therapy. Unable to tolerate adjuvant chemotherapy. Develops metastatic disease about a year later. Refuses chemotherapy. NGS shows AKT2 amplification. See attached NGS. Treated with off label Temsirolimus with disease control and objective response for 2 years and dies later of unrelated causes

Question:

Also has ERRB2 amplification. If you were treating her today could you use Trastuzumab Deruxtecan instead of chemo plus trastuzumab as was recently reported for metastatic uterine cancer?

Case 2: NGS Report

OTHER ALTERATIONS & BIOMARKERS IDENTIFIED

Results reported in this section are not prescriptive or conclusive for labeled use of any specific therapeutic product. See professional services section for additional information.

Microsatellite status MS-Stable §

Tumor Mutational Burden 3 Muts/Mb§

AKT2 amplification §

CCNE1 amplification §

ERBB2 amplification §

ERBB3 amplification §

KRAS G12V

PIK3R1 K567E

TP53 R175H

§ Refer to appendix for limitation statements related to detection of any copy number alterations, gene rearrangements, MSI or TMB result in this section.

Please refer to appendix for Explanation of Clinical Significance Classification and for variants of unknown significance (VUS).

Case 3: 58-year-old man with salivary gland cancer

- 58yr Male
- Diagnosed 2/2018 with salivary gland HNSCC
- Initiated cisplatin 3/2018
- Switched to carboplatin + paclitaxel 3/2018 9/2019 until progression
 - Testing 5/2019 revealed NTRK3-ETV6 fusion
- Larotrectinib initiated 10/2019 present

Case 3: 58-year-old man with salivary gland cancer (cont)

Interpretive content on this page and subsequent pages is provided as a professional service, and is not reviewed or approved by the FDA.

PATIENT

DISEASE Salivary gland myoepithelial carcinoma

NAME

DATE OF BIRTH

SEX Male

MEDICAL RECORD

PHYSICIAN

ORDERING PHYSICIAN

MEDICAL FACILITY

ADDITIONAL RECIPIENT None

MEDICAL FACILITY ID

PATHOLOGIST Not Provided

SPECIMEN

SPECIMEN SITE Lung

SPECIMEN ID

SPECIMEN TYPE Block

DATE OF COLLECTION 11 March 2019

SPECIMEN RECEIVED 27 March 2019

Biomarker Findings

Microsatellite status - MS-Stable

Tumor Mutational Burden - TMB-Low (0 Muts/Mb)

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

NTRK3 ETV6-NTRK3 fusion

ARID1A H203fs*197

CDKN2A/B loss

TERT promoter -146C>T

- 1 Therapies with Clinical Benefit
- O Theraples with Lack of Response

13 Clinical Trials

Case 4: 80-year-old man with UBC

- **HISTORY OF PRESENT ILLNESS:** 80-year-old man with metastatic cancer either of urothelial or salivary gland origin. He was diagnosed with a superficial bladder cancer in 2016, for which he underwent transurethral resection and had a T1 lesion with no muscle invasion. He received BCG and did well until July 2018 when he developed a right anterior neck mass. Biopsy of this was consistent with metastatic urothelial carcinoma, and he subsequently started on pembrolizumab in September 2018. He had a mixed response to therapy, and pembrolizumab was held in January 2019. He then developed another right-sided neck mass, for which he underwent a right neck dissection on January 22, 2019, showing this time metastatic adenocarcinoma in 4 of 8 lymph nodes which were AR positive, GATA3 positive, CK7 positive, and mammaglobin positive. These findings were felt to be most consistent with a salivary gland cancer. Postoperatively, he underwent radiation therapy from March through May 2019. He also had 2 cycles of adjuvant pembrolizumab. More recently, he had progression of disease in September 2019 with increasing bone involvement and restarted pembrolizumab in September 2019. His most recent imaging in June 2020 showed progressive bone metastases with lung and bone involvement. He has recently started gemcitabine and carboplatin. He is status post 1 dose of that and tolerating well.
- PAST MEDICAL HISTORY: HTN
- **FHx:** Father lung cancer at 90

Courtesy of Bryan P Schneider, MD and Milan Radovich, PhD

Case 4: 80-year-old man with UBC (cont)

OTHER ALTERATIONS & BIOMARKERS IDENTIFIED

Results reported in this section are not prescriptive or conclusive for labeled use of any specific therapeutic product. See *professional services* section for additional information.

Microsatellite status MS-Stable §

Tumor Mutational Burden 67 Muts/Mb§

ASXL1 E635fs*15

ERBB2 R103Q

ERBB3 T355P

FBXW7 C453fs*43

MAP3K1 splice site 1965+1G>T

NOTCH3 R9fs*16

PALB2 S475*

PARK2 M11

STAG2 splice site 1117-1G>T

TERT promoter -124C>T

TP53 E180K

TP53 E285V

TSC2 S625*

TSC2 splice site 1717-1G>C

§ Refer to appendix for limitation statements related to detection of any copy number alterations, gene rearrangements, BRCA1/2 alterations, LOH, MSI, or TMB results in this section.

Please refer to appendix for Explanation of Clinical Significance Classification and for variants of unknown significance (VUS).

Courtesy of Bryan P Schneider, MD and Milan Radovich, PhD

Case 5: 68-year-old with UBC

68-year-old with muscle invasive bladder cancer treated with neoadjuvant dose dense MVAC. Unable to tolerate and is stopped. Has a cystectomy. Found to have significant residual disease including metastatic disease to a pelvic lymph node.

Question:

 Would you give carboplatin-based adjuvant therapy or immunotherapy based on this NGS report?

Case 5: NGS Report

OTHER ALTERATIONS & BIOMARKERS IDENTIFIED

Results reported in this section are not prescriptive or conclusive for labeled use of any specific therapeutic product. See *professional services* section for additional information.

Microsatellite status MS-Stable § (B9*; N1*) §

Tumor Mutational Burden 16 Muts/Mb § PIK3CA E545K

CASP8 splice site 1356-1G>A RAD21 Q214*

MCL1 amplification § RET amplification §

MLL2 E3081* TERT promoter -124C>T

NOTCH3 BRD4(NM_014299)-NOTCH3(NM_000435) fusion TP53 R273C

§ Refer to appendix for limitation statements related to detection of any copy number alterations, gene rearrangements, BRCA1/2 alterations, LOH, MSI, or TMB results in this section.

Please refer to appendix for Explanation of Clinical Significance Classification and for variants of unknown significance (VUS).

Courtesy of Sulfi Ibrahim, MD

Case 6: 62-year-old man with cholangiocarcinoma

- 62yr Male
- Diagnosed 2/2015 with cholangiocarcinoma
 - Testing revealed FGFR2 rearrangement intron 17
- Adjuvant with capecitabine and irradiation and finished that in March of 2016
- Metastatic disease in the lungs 1/2018
- Cisplatin and gemcitabine 1/2018 10/2018
- Treatment break until 4/2019 then FOLFOX initiated until progression 7/2020
 - Test re-run on original 2015 sample confirming FGFR2 rearrangement
- Initiated erdafitinib 7/2020

Case 6: 62-year-old man with cholangiocarcinoma (cont)

SPEC # \$15-281	STATUS: SOUT	PERFORMED AT:		Date of Birth		Medical Facility				
RECEIVED: 02/02/15 1243	TOTAL TI	ME IN FORMALIN: 12:30		Sex	Male	Ordering Physician			specimen Received	12 February 2018
COLLECTED: 02/02/15		HEMIC TIME:0:00		FMI Case #		Additional Recipient	Not Given		Specimen Site	Liver
		12.0.00		Medical Record #		Medical Facility ID #			Date of Collection	02 February 2015
	***************************************		***************************************	Specimen ID		Pathologist		THOUSENED THE HELD PARTY	Specimen Type	Block

Addendum

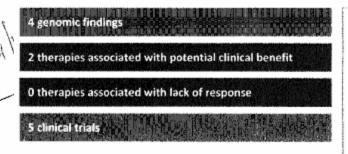
The results of the test are received and yield the following:

Tumor Type: Unknown Primary Carcinoma (NOS)

Genomic Alterations Identified

FGFR2 rearrangement intron 17 BAP1 A359fs*39

Additional Findings


Microsatellite status MS-Stable

Tumor Mutation Burden TMB-low; 1 Muts/Mb

ABOUT THE TEST:

FoundationOne** is a next-generation sequencing (NGS) based assay that identifies genomic alterations within hundreds of cancer-related genes.

PATIENT RESULTS

TUMOR TYPE: UNKNOWN PRIMARY CARCINOMA (NOS)

Genomic Alterations Identified[†]

FGFR2 rearrangement intron 17 BAP1 A359fs*39

Additional Findings[†]

Microsatellite status MS-Stable

Tumor Mutation Burden TMB-Low; 1 Muts/Mb

Please refer to the Laboratory/Scanned Reports in the patient's EMR for the scanned copy of the original complete report. PJD/dd - 3/8/2018

While new test confirms FGFR2 rearrangement, a new biopsy should be taken to confirm active clone

Agenda

Part 1: Case Discussion

- Case 1 Drs Radovich, Schneider: A 76-year-old man with prostate cancer (AKT E17k mutation)
- Case 2 Dr Ibrahim: A frail 80-year-old woman with endometrial cancer (AKT mutation)
- Case 3 Dr McKenzie: A 58-year-old man with salivary gland HNSCC (NTRK3-ETV6 fusion)
- Case 4 Drs Radovich, Schneider: An 80-year-old man with bladder cancer (TMB 67 Muts/Mb)
- Case 5 Dr Ibrahim: A 68-year-old man with muscle-invasive bladder cancer (PIK3CA, RET amplification)
- Case 6 Dr McKenzie: A 62-year-old man with cholangiocarcinoma (FGFR2 rearrangement)

Part 2: FDA-approved and Guideline-endorsed Platforms For Genomic Testing

Advantages and limitations of available assays

Part 3: Case Discussion

- Case 7 Drs Radovich, Schneider: A 64-year-old woman with glioblastoma (FGFR3-TACC3 fusion)
- Case 8 Dr Ibrahim: An 82-year-old man with cancer of unknown primary (TMPRSS2 ERG)
- Case 9 Dr McKenzie: A 64-year-old woman with metastatic breast cancer (PIK3CA, ESR1 mutations)
- Case 10 Drs Radovich, Schneider: A 64-year-old woman with pancreatic cancer (KRAS G12C)
- Case 11 Dr McKenzie: A 66-year-old woman with metastatic adenocarcinoma of the lung (KRAS G12C)

FDA-approved/guideline-endorsed platforms for genomic testing; advantages and limitations of available assays

FDA Cleared/Approved Nucleic Acid Based Tests

Disease/Use	Trade Name	Submission
Tumor Profiling	MSK-IMPACT (Integrated Mutation Profiling Of Actionable Cancer Targets):A Hybridization-Capture Based Next Generation Sequencing Assay	DEN170058
	FoundationOne CDx	P170019
Tumor Profiling	Myriad myChoice CDx	P190014
Tumor Profiling	Omics Core	K190661
Tumor Profiling	PGDx elio tissue complete	K192063

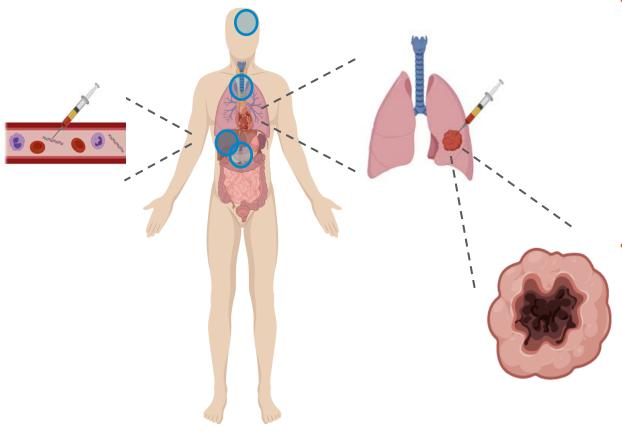
"This is a list of nucleic acid-based tests that have been cleared or approved by the Center for Devices and Radiological Health. These tests analyze variations in the sequence, structure, or expression of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) in order to diagnose disease or medical conditions, infection with an identifiable pathogen, or determine genetic carrier status."

https://www.fda.gov/medical-devices/vitro-diagnostics/nucleic-acid-based-tests

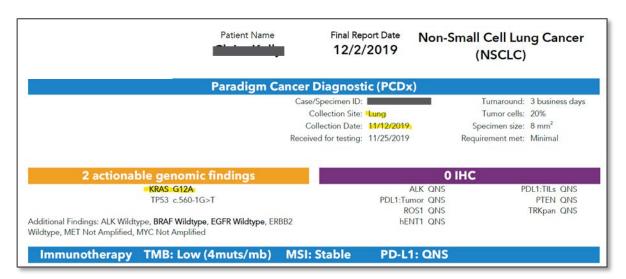
Factors That Influence NGS Utility

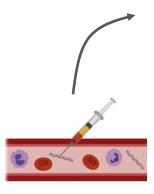
- Analyte (DNA, RNA, Protein)
- Biopsy Type (Blood, Plasma, Urine, Saliva)
- Gene List (FDA approved genes, expanded gene panels)
- Tissue Requirement (Slides, FFPE block, input (ng of DNA/RNA))
- Turnaround Time (3 day (Paradigm) to 10-14 day (typical))
- FDA Approval

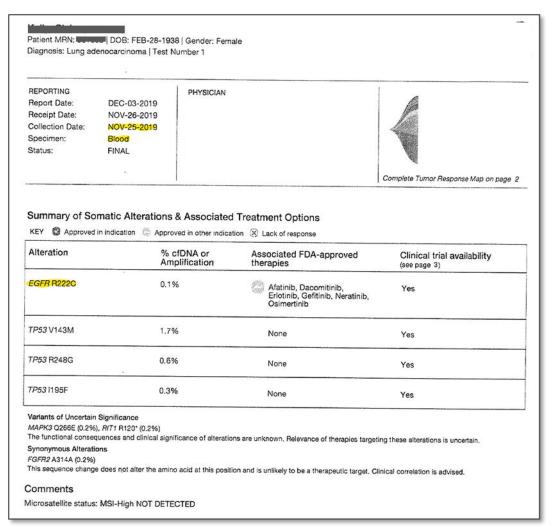
Commercial NGS Tests in Oncology Care


				No. of				
Test Name	Biopsy Type	Analyte	Tumor/Normal	genes on panel	TMR	NASI	FDA approval	Reference
rest Name	ыорзу турс	Analyte	Tumor/Normal	рапсі	טועוו	IVISI	1 DA approvai	Reference
FoundationOne CDx	Tissue	DNA	No	324	Yes	Yes	Yes	https://assets.ctfassets.net/vhribv12lmne/4ZHUEfEil8iOCk2Q6saGcU/11dd3b532e30c34f56cb8e9b4a896783/F1CDx TechSpecs 10-
FoundationOne Liquid	Plasma	DNA	No	70	No	Yes	No	https://assets.ctfassets.net/vhribv12lmne/3SPYAcbGdqAeMsOqM yKUog/4e0d771e88afc920dc1a6f0515e2ff83/F1L_TechnicalInfor
FoundationOne Heme	Whole blood, bone marrow aspirate, or tissue	DNA/RNA	No	426	Yes	Yes	No	https://assets.ctfassets.net/vhribv12lmne/zBxaQC12cScqgsEk8seMO/c32a7d1adf083cb0f5d0c0b2439fdb87/F1H_Technical_Inform
MSK-IMPACT	Tissue	DNA	Yes	468	Yes	Yes	Yes	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5461196/
Caris Molecular Intelligence	Tissue	DNA/RNA/Protein*	No	442	Yes	Yes	No	https://www.carismolecularintelligence.com/wp-content/uploads/2017/05/TN0276-v7_Profile-Menu-Brochure.pdf
Guardant 360	Plasma	DNA	No	74	No	Yes	No	http://www.guardant360.com/?utm_source=AdWords&utm_term =Guardant360
PCDx	Tissue	DNA/RNA/Protein*	No	234	Yes	Yes	No	https://www.paradigmdx.com/wp-content/uploads/2018/11/technical-document-181109.pdf
Tempus xT	Tissue	DNA/RNA/Protein*	Yes	648	Yes	Yes	No	https://www.tempus.com/genomic-sequencing/
Tempus xF	Plasma	DNA	No	105	No	No	No	https://www.tempus.com/genomic-sequencing/
OncomineDx Target Test	Tissue	DNA/RNA	No	23	No	No	Yes	https://www.thermofisher.com/order/catalog/product/A32451
OmniSeq Advance	Tissue	DNA/RNA/Protein*	No	144	Yes	Yes	No	https://www.omniseq.com/omniseq-advance-assay/
OmniSeq Comprehensive	Tissue	DNA/RNA/Protein*	No	144	No	No	No	https://www.omniseq.com/comprehensive/
SmartGenomics	Tissue	DNA/RNA/Protein*	No	160	Yes	Yes	No	http://www.pathgroup.com/oncology/smartgenomics/
NeoType Discovery		DNA/RNA/Protein	No	323	Yes	Yes	No	https://neogenomics.com/test-menu/neotype-discovery-profile-solid-tumors
Trusight Oncology 500	Tissue	DNA/RNA	No	523	Yes	Yes	No	https://www.illumina.com/products/by-type/clinical-research-products/trusight-oncology-500.html
	*Protein is assayed using IHC; vend	ors vary in the proteins as	sayed					

Utility of liquid biopsy; sensitivity, specificity and concordance with tissue-based testing


Tissue vs. Liquid Specimens


- Tissue
 - Who?
 - Metastatic cancers especially with access to clinical trials
 - Patients with recent biopsies with adequate tumor purity
 - Patients who can tolerate additional lines of therapy
 - Why?
 - DNA/RNA/Protein can all be analyzed
 - Complex fusions are more reliably detected
 - Drawbacks
 - Testing tumor heterogeneity is limited
 - Monitoring response over time is invasive (multiple biopsies)
- Liquid
 - Who?
 - Patients with bone-only or difficult to biopsy disease
 - Low tumor purity on tissue sample
 - No access to fresh biopsy
 - Why?
 - Ease of sample collection
 - Most actionable mutations are easily detected
 - Resistance / tumor heterogeneity monitoring
 - Drawbacks
 - Limited fusion detection
 - No RNA or protein analysis
 - Lower sensitivities



Tissue vs. Liquid Specimens – Same Patient, Different Results

Different Results Are Somewhat Expected

Comparative Study > JAMA Oncol. 2017 Jul 1;3(7):996-998. doi: 10.1001/jamaoncol.2016.4983.

Comparison of 2 Commercially Available Next-**Generation Sequencing Platforms in Oncology**

Nicole M Kuderer ¹, Kimberly A Burton ¹, Sibel Blau ², Andrea L Rose ², Stephanie Parker ², Gary H Lyman 3, C Anthony Blau 4

Affiliations + expand

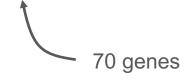
PMID: 27978570 PMCID: PMC5824236 DOI: 10.1001/jamaoncol.2016.4983

Abstract

This study compares reports from 2 next-generation sequencing tests to determine the level of concordance between platforms.

Patient No./Sex	Tumor Type	Stage	Time Difference, mo	F1 or G360, No.	Both, No. (%)
1/F	Breast cancer	IV	0.5	13	7 (54)
2/F	Pancreatic cancer	IV	1	16	4 (<mark>25</mark>)
3/F	Breast cancer	IV	15	8	5 (<mark>63</mark>)
4/F	Thymic carcinoma	1	0.5	0	0
5/F	Breast cancer	IV	0	9	5 (<mark>56</mark>)
6/F	Breast cancer	IV	0.5	19	4 (21)
7/M	Lung cancer	IV	1	18	7 (39)
8/M	Salivary gland cancer	IV	2.5	10	2 (<mark>20</mark>)
9/F	Breast cancer	Ш	0	19	11 (58)
Total				112	45 (<mark>40</mark>)
Abbreviatio	ns: F1, FoundationOne; G	360, Gu	ardant 360.		

"Both the F1 and G360 tests have **high specificities (>99%)** and somewhat lower sensitivities."



Different Vendors Offer Different Gene Panels

Genes with	full coding exc	onic regions	s included in Fo	undationOn	e®CDx for the	detection of su	ubstitutions,	
	V	-	-number altera					
ABL1	ACVR1B	AKTI	AKT2	AKT3	ALK	ALOX12B	AMER1 (FAM123B)	APC
AR	ARAF	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6
BCOR	BCORL1	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2
BTK	C11orf30 (EMSY)	CALR	CARD11	CASP8	CBFB	CBL	CCND1	CCND2
CCND3	CCNE1	CD22	CD274 (PD-L1)	CD70	CD79A	CD79B	CDC73	CDH1
CDK12	CDK4	CDK6	CDK8	CDKNIA	CDKN1B	CDKN2A	CDKN2B	CDKN2C
CEBPA	CHEKI	CHEK2	CIC	CREBBP	CRKL	CSF1R	CSF3R	CTCF
CTNNA1	CTNNB1	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1	DDR2
DIS3	DNMT3A	DOTIL	EED	EGFR	EP300	EPHA3	EPHB1	ЕРНВ4
ERBB2	ERBB3	ERBB4	ERCC4	ERG	ERRFI1	ESR1	EZH2	FAM46C
FANCA	FANCC	FANCG	FANCL	FAS	FBXW7	FGF10	FGF12	FGF14
FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4
FH	FLCN	FLT1	FLT3	FOXL2	FUBP1	GABRA6	GATA3	GATA4
GATA6	GID4 (C17orf39)	GNA11	GNA13	GNAQ	GNAS	GRM3	GSK3B	H3F3A
HDAC1	HGF	HNF1A	HRAS	HSD3B1	ID3	IDH1	IDH2	IGF1R
IKBKE	IKZF1	INPP4B	IRF2	IRF4	IRS2	JAK1	JAK2	JAK3
JUN	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL	KIT	KLHL6
KMT2A (MLL)	KMT2D (MLL2)	KRAS	LTK	LYN	MAF	MAP2K1 (MEKI)	MAP2K2 (MEK2)	MAP2K4
MAP3K1	MAP3K13	MAPKI	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1
MERTK	MET	MITF	MKNKI	MLH1	MPL	MRE11A	MSH2	MSH3
MSH6	MSTIR	MTAP	MTOR	MUTYH	MYC	MYCL (MYCLI)	MYCN	MYD88
NBN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2	NOTCH3
NPM1	NRAS	NT5C2	NTRK1	NTRK2	NTRK3	P2RY8	PALB2	PARK2
PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-I)	PDCD1LG2 (PD-L	2)	PDGFRA
PDGFRB	PDKI	PIK3C2B	PIK3C2G	PIK3CA	PIK3CB	PIK3R1	PIMI	PMS2
POLD1	POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKARIA	PRKCI	PTCH1
PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51	RAD51B	RAD51C
RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	REL	RET
RICTOR	RNF43	ROS1	RPTOR	SDHA	SDHB	SDHC	SDHD	SETD2
SF3B1	SGK1	SMAD2	SMAD4	SMARCA4	SMARCB1	SMO	SNCAIP	SOCS1
SOX2	SOX9	SPEN	SPOP	SRC	STAG2	STAT3	STKII	SUFU
SYK	TBX3	TEK	TET2	TGFBR2	TIPARP	TNFAIP3	TNFRSF14	TP53
TSC1	TSC2	TYRO3	U2AF1	VEGFA	VHL	WHSC1 (MMSET)	WHSC1L1	WT1
XPO1	XRCC2	ZNF217	ZNF703					

Point Mutatio (74 Genes)	ons (SNVs) and De	eletion Variants (Inde	els)			Amplification (18 Genes)	S	Fusions (6 Genes)
AKT1	ALK	APC	AR	ARAF	ARID1A	AR	BRAF	ALK
ATM	BRAF	BRCA1	BRCA2	CCND1	CCND2	CCND1	CCND2	FGFR2
CCNE1	CDH1	CDK4	CDK6	CDK12	CDKN2A	CCNE1	CDK4	FGFR3
CTNNB1	DDR2	EGFR	ERBB2	ESR1	EZH2	CDK6	EGFR	NTRK1
FBXW7	FGFR1	FGFR2	FGFR3	GATA3	GNA11	ERBB2	FGFR1	RET
GNAQ	GNAS	HNF1A	HRAS	IDH1	IDH2	FGFR2	KIT	ROS1
JAK2	JAK3	KIT	KRAS	MAP2K1	MAP2K2	KRAS	MET	
MAPK1	МАРКЗ	MET	MLH1	MPL	MTOR	MYC	PDGFRA	
MYC	NF1	NFE2L2	NOTCH1	NPM1	NRAS	PIK3CA	RAF1	
NTRK1	NTRK3	PDGFRA	PIK3CA	PTEN	PTPN11			
RAF1	RB1	RET	RHEB	RHOA	RIT1			
ROS1	SMAD4	SMO	STK11	$TERT^{\dagger}$	TP53			
TSC1	VHL							

Different NGS Vendors Probe Different Analytes

Capacity of testing methods to accurately identify various genomic abnormalities (eg, germline mutations, gene fusions, amplifications)

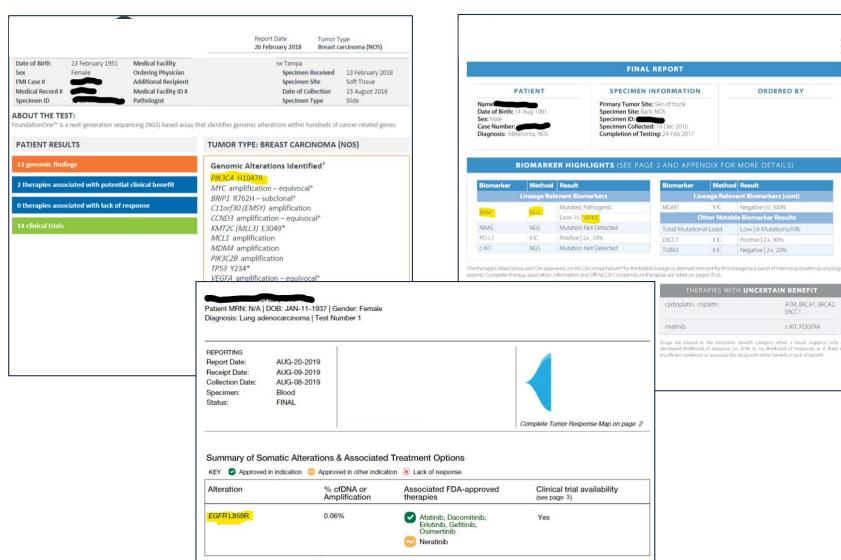
Molecular Profiling Technologies

Detect the presence or absence of a specific <u>protein</u>

- Immunohistochemistry (IHC)
- Proteomics

Detect the amplification or loss of a specific gene

- In Situ Hybridization (ISH)
- DNA sequencing
- RNA sequencing


Detect large <u>gene</u> rearrangements or fusions

- In Situ Hybridization (ISH)
- DNA sequencing
 - PCR
 - NGS
- RNA sequencing

Detect gene mutations

- DNA sequencing
 - PCR
 - NGS

Driver Mutations Across Tumor Types

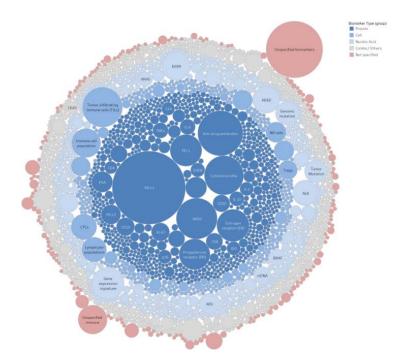
Challenges in the interpretation and applicability of NGS results; current clinical validity of genetic alterations in various solid tumors and potential role of emerging tumor drivers

Challenges – Complexity of Biomarkers

As new data and technologies emerge, clinicians are required to interpret and act upon increasingly complex information

 NANA Gene List: Entire Cooling Sequence for the Detection of Base Substitutions, Insertion/Deletions, and Copy Number Alterations

 ABL1
 ABL2
 ACVIIIB
 AKT2
 AKT3
 ALK
 AMERI [FAMI238]
 APC
 AR


 ABLA
 ANIPATI
 ANIVO
 ARTIA
 ATTM
 ATTR
 ATTRK
 ALIRCA

 ARARE
 ANIVOTA
 ANI
 ARAI
 ANIVOTA
 ASXL1
 ATTM
 ATTR
 ATTRK
 ALIRCA

 ACRORIA
 CANINI
 AX
 ABLAT
 ARIOTA
 ARAID
 ASXL1
 ASXL1
 ATTM
 ATTRK
 ALIRCA
 CBCOR

 CORDIT
 CIRTA
 CIVAL
 COKDO2
 COCRO3
 CCND1
 CCND2
 CCND3
 CCND1
 CCND2
 CCND3
 CCND1
 CCND2
 CCND3
 CCND1
 CCND2
 CCND3
 CCND1
 CCND3
 CCND1
 CCND3
 CCND3
 CCND1

An increasing number of standard of care treatment options and clinical trials require the knowledge of a molecular alteration

Molecular reports do not present information in an easily clinically actionable format

TUMOR TYPE: STOMACH ADENOCARCINOMA (NOS)

Genomic Alterations Identified

CDC73 V230fs*28 CIC P1116fs*45 DICER1 C1354fs*1

MLL2 R4904* MSH2 Q183fs*31

PPP2R1A R183W

RUNX1T1 R458C SOX9 Q505fs*72

Additional Findings†

Microsatellite status MSI-High

Tumor Mutational Burden TMB-High; 32 Muts/Mb

Additional Disease-relevant Genes with No Reportable Alterations Identified[†]

ERBB2

Challenges – Different tests reveal different results

Comparative Study > JAMA Oncol. 2017 Jul 1;3(7):996-998. doi: 10.1001/jamaoncol.2016.4983.

Comparison of 2 Commercially Available Next-**Generation Sequencing Platforms in Oncology**

Nicole M Kuderer ¹, Kimberly A Burton ¹, Sibel Blau ², Andrea L Rose ², Stephanie Parker ², Gary H Lyman 3, C Anthony Blau 4

Affiliations + expand

PMID: 27978570 PMCID: PMC5824236 DOI: 10.1001/jamaoncol.2016.4983

Abstract

This study compares reports from 2 next-generation sequencing tests to determine the level of concordance between platforms.

Patient No./Sex	Tumor Type	Stage	Time Difference, mo	F1 or G360, No.	Both, No. (%)
1/F	Breast cancer	IV	0.5	13	7 (54)
2/F	Pancreatic cancer	IV	1	16	4 (<mark>25</mark>)
3/F	Breast cancer	IV	15	8	5 (<mark>63</mark>)
4/F	Thymic carcinoma	1	0.5	0	0
5/F	Breast cancer	IV	0	9	5 (<mark>56</mark>)
6/F	Breast cancer	IV	0.5	19	4 (21)
7/M	Lung cancer	IV	1	18	7 (39)
8/M	Salivary gland cancer	IV	2.5	10	2 (<mark>20</mark>)
9/F	Breast cancer	Ш	0	19	11 (58)
Total				112	45 (<mark>40</mark>)
Abbreviatio	ns: F1, FoundationOne; G	360, Gu	ardant 360.		

"Both the F1 and G360 tests have **high specificities (>99%)** and somewhat lower sensitivities."



Different Vendors Offer Different Gene Panels

Genes with	full coding ex	onic regions	s included in Fo	undationOn	On for the	detection of su	pstitutions	
		-	-number altera			detection or st	abstitutions,	
ABL1	ACVR1B	AKTI	AKT2	AKT3	ALK	ALOX12B	AMER1 (FAM123B)	APC
AR	ARAF	ARFRP1	ARIDIA	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6
BCOR	BCORL1	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2
BTK	C11orf30 (EMSY)	CALR	CARD11	CASP8	CBFB	CBL	CCND1	CCND2
CCND3	CCNE1	CD22	CD274 (PD-L1)	CD70	CD79A	CD79B	CDC73	CDH1
CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B	CDKN2C
CEBPA	CHEKI	CHEK2	CIC	CREBBP	CRKL	CSFIR	CSF3R	CTCF
CTNNA1	CTNNB1	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1	DDR2
DIS3	DNMT3A	DOTIL	EED	EGFR	EP300	EPHA3	EPHB1	ЕРНВ4
ERBB2	ERBB3	ERBB4	ERCC4	ERG	ERRFI1	ESR1	EZH2	FAM46C
FANCA	FANCC	FANCG	FANCL	FAS	FBXW7	FGF10	FGF12	FGF14
FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4
FH	FLCN	FLT1	FLT3	FOXL2	FUBP1	GABRA6	GATA3	GATA4
GATA6	GID4 (C17orf39)	GNA11	GNA13	GNAQ	GNAS	GRM3	GSK3B	H3F3A
HDAC1	HGF	HNFIA	HRAS	HSD3B1	ID3	IDH1	IDH2	IGF1R
IKBKE	IKZF1	INPP4B	IRF2	IRF4	IRS2	JAK1	JAK2	JAK3
JUN	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL	KIT	KLHL6
KMT2A (MLL)	KMT2D (MLL2)	KRAS	LTK	LYN	MAF	MAP2K1 (MEKI)	MAP2K2 (MEK2)	MAP2K4
MAP3K1	MAP3K13	MAPKI	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1
MERTK	MET	MITF	MKNKI	MLH1	MPL	MRE11A	MSH2	MSH3
MSH6	MSTIR	MTAP	MTOR	MUTYH	MYC	MYCL (MYCLI)	MYCN	MYD88
NBN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2	NOTCH3
NPM1	NRAS	NT5C2	NTRK1	NTRK2	NTRK3	P2RY8	PALB2	PARK2
PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-1)	PDCD1LG2 (PD-L	2)	PDGFRA
PDGFRB	PDK1	PIK3C2B	PIK3C2G	PIK3CA	PIK3CB	PIK3R1	PIMI	PMS2
POLD1	POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKARIA	PRKCI	PTCH1
PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51	RAD51B	RAD51C
RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	REL	RET
RICTOR	RNF43	ROS1	RPTOR	SDHA	SDHB	SDHC	SDHD	SETD2
SF3B1	SGK1	SMAD2	SMAD4	SMARCA4	SMARCB1	SMO	SNCAIP	SOCS1
SOX2	SOX9	SPEN	SPOP	SRC	STAG2	STAT3	STKII	SUFU
SYK	TBX3	TEK	TET2	TGFBR2	TIPARP	TNFAIP3	TNFRSF14	TP53
TSC1	TSC2	TYRO3	U2AF1	VEGFA	VHL	WHSC1 (MMSET)	WHSC1L1	WT1
XPO1	XRCC2	ZNF217	ZNF703					

Point Mutatio (74 Genes)	ons (SNVs) and De	eletion Variants (Inde	els)			Amplification (18 Genes)	15	Fusions (6 Genes)
AKT1	ALK	APC	AR	ARAF	ARID1A	AR	BRAF	ALK
ATM	BRAF	BRCA1	BRCA2	CCND1	CCND2	CCND1	CCND2	FGFR2
CCNE1	CDH1	CDK4	CDK6	CDK12	CDKN2A	CCNE1	CDK4	FGFR3
CTNNB1	DDR2	EGFR	ERBB2	ESR1	EZH2	CDK6	EGFR	NTRK1
FBXW7	FGFR1	FGFR2	FGFR3	GATA3	GNA11	ERBB2	FGFR1	RET
GNAQ	GNAS	HNF1A	HRAS	IDH1	IDH2	FGFR2	KIT	ROS1
JAK2	JAK3	KIT	KRAS	MAP2K1	MAP2K2	KRAS	MET	
MAPK1	МАРКЗ	MET	MLH1	MPL	MTOR	MYC	PDGFRA	
MYC	NF1	NFE2L2	NOTCH1	NPM1	NRAS	PIK3CA	RAF1	
NTRK1	NTRK3	PDGFRA	PIK3CA	PTEN	PTPN11			
RAF1	RB1	RET	RHEB	RHOA	RIT1			
ROS1	SMAD4	SMO	STK11	$TERT^{\dagger}$	TP53			
TSC1	VHL							

Different Vendors Probe Different Analytes

Agenda

Part 1: Case Discussion

- Case 1 Drs Radovich, Schneider: A 76-year-old man with prostate cancer (AKT E17k mutation)
- Case 2 Dr Ibrahim: A frail 80-year-old woman with endometrial cancer (AKT mutation)
- Case 3 Dr McKenzie: A 58-year-old man with salivary gland HNSCC (NTRK3-ETV6 fusion)
- Case 4 Drs Radovich, Schneider: An 80-year-old man with bladder cancer (TMB 67 Muts/Mb)
- Case 5 Dr Ibrahim: A 68-year-old man with muscle-invasive bladder cancer (PIK3CA, RET amplification)
- Case 6 Dr McKenzie: A 62-year-old man with cholangiocarcinoma (FGFR2 rearrangement)

Part 2: FDA-approved and Guideline-endorsed Platforms For Genomic Testing

Advantages and limitations of available assays

Part 3: Case Discussion

- Case 7 Drs Radovich, Schneider: A 64-year-old woman with glioblastoma (FGFR3-TACC3 fusion)
- Case 8 Dr Ibrahim: An 82-year-old man with cancer of unknown primary (TMPRSS2 ERG)
- Case 9 Dr McKenzie: A 64-year-old woman with metastatic breast cancer (PIK3CA, ESR1 mutations)
- Case 10 Drs Radovich, Schneider: A 64-year-old woman with pancreatic cancer (KRAS G12C)
- Case 11 Dr McKenzie: A 66-year-old woman with metastatic adenocarcinoma of the lung (KRAS G12C)

Case 7: 64-year-old woman with glioblastoma

- HISTORY OF PRESENT ILLNESS: 64-year-old right-handed woman with recently diagnosed left frontotemporal brain glioblastoma, MGMT methylated. The patient's pertinent history includes having increasing difficulty with word finding and weakness, and presented with a seizure at work on 01/17/2020. She had a gross total resection of the mass on 02/14/2020, where she had worsening aphasia and worsening weakness in the left arm thereafter. She briefly had improvement in aphasia, but then subsequently again worsened. The patient began temozolomide with concurrent radiation therapy. The temozolomide has been held recently due to platelet count, but she is 2 days away from completing her radiation therapy.
- PAST MEDICAL HISTORY: hyperlipidemia, supraventricular tachycardia
- FHx: none

Case 7: 64-year-old woman with glioblastoma (cont)

OTHER ALTERATIONS & BIOMARKERS IDENTIFIED

Results reported in this section are not prescriptive or conclusive for labeled use of any specific therapeutic product. See *professional services* section for additional information.

Microsatellite status MS-Stable §

Tumor Mutational Burden 1 Muts/Mb§

CDK4 amplification §

FGFR3 FGFR3(NM_000142)-TACC3(NM_006342) fusion (F17;

T11) §

MDM2 amplification §

TERT promoter -146C>T

§ Refer to appendix for limitation statements related to detection of any copy number alterations, gene rearrangements, BRCA1/2 alterations, LOH, MSI, or TMB results in this section.

Please refer to appendix for Explanation of Clinical Significance Classification and for variants of unknown significance (VUS).

Courtesy of Bryan P Schneider, MD and Milan Radovich, PhD

Case 8: 82-year-old who presents with high-grade neuroendocrine carcinoma

82-year-old presented with left supraclavicular lymph node - biopsy shows high grade neuroendocrine carcinoma with no obvious primary - has retroperitoneal adenopathy as well - treated with Carboplatin and Etoposide and then progression.

NGS done shows TMPRSS2 ERG which is characteristic of prostate cancer - PSA is 10

- Started on Leuprolide and now doing great
- Also has MRE 11A which is marker of response to PARP inhibitor
- NGS changed him from looking like hospice, to now doing great and with several more options upon progression

Case 8: NGS Report

OTHER ALTERATIONS & BIOMARKERS IDENTIFIED

Results reported in this section are not prescriptive or conclusive for labeled use of any specific therapeutic product. See *professional services* section for additional information.

Microsatellite status MS-Stable §

Tumor Mutational Burden 3 Muts/Mb§

FGFR1 amplification §

LYN amplification §

MRE11A E506*

MYC amplification §

NSD3 (WHSC1L1) amplification §

RAD21 amplification §

TMPRSS2 TMPRSS2(NM_005656)-ERG(NM_004449) fusion

(T2; E4) §

ZNF703 amplification §

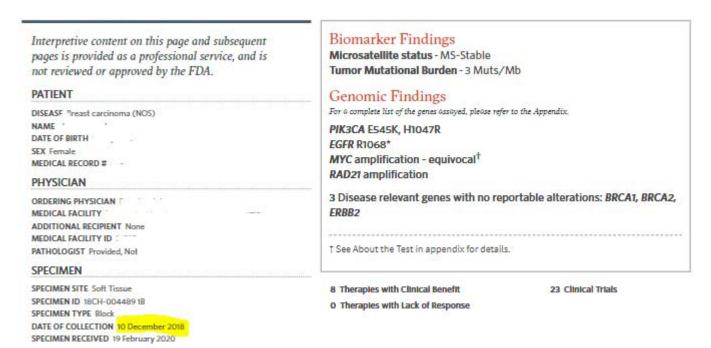
§ Refer to appendix for limitation statements related to detection of any copy number alterations, gene rearrangements, BRCA1/2 alterations, LOH, MSI, or TMB results in this section.

Please refer to appendix for Explanation of Clinical Significance Classification and for variants of unknown significance (VUS).

FoundationOne®CDx (F1CDx) is a next generation sequencing based in vitro diagnostic device for detection of substitutions, insertion and deletion alterations (indels), and copy number alterations (CNAs) in 324 genes and select gene rearrangements, as well as

TABLE 1: COMPANION DIAGNOSTIC INDICATIONS

3	INDICATION	BIOMARKER	THERAPY
		EGFR exon 19 deletions and EGFR exon 21 L858R alterations	Gilotrif® (Afatinib), Iressa® (Gefitinib), Tagrisso® (Osimertinib), or Tarceva® (Erlotinib)


Courtesy of Sulfi Ibrahim, MD

Case 9: 64-year-old woman with metastatic breast cancer

- 64yr Female
- Initially diagnosed in 2004 as stage T1 cN0 grade 2 ER+/HER2- breast cancer
- Metastatic recurrence in 2018
 - BRCA negative
- Initiated palbociclib/anastrozole Dec 2018 May 2020
 - Jan 2020 tissue-based testing was performed on original 2018 specimen. PIK3CA mutations were found and EGFR nonsense mutation was detected
- Progression in May 2020
 - Liquid-based test due to hard-to-biopsy metastatic disease in the pleural space
 - High concordance with tissue-based test with the addition of ESR1 mutations indicative of resistance to aromatase inhibitors
- Initiated fulvestrant/alpelisib May 2020 present (potential opportunity for next-gen SERD upon progression)



Case 9: 64-year-old woman with metastatic breast cancer (cont)

Report Date: 26-Feb-2020

Specimen collected: 10-Dec-2018

Case 10: 64-year-old woman with pancreatic cancer

- HISTORY OF PRESENT ILLNESS: 64-year-old woman with recently diagnosed pancreatic cancer. The patient presented in the late fall of 2019 with persistent abdominal discomfort and weight loss. CT scan of the abdomen and pelvis showed a pancreatic head mass concerning for pancreatic cancer. She underwent an EUS on 11/18/2019 that showed pancreatic mass and FNA was positive for adenocarcinoma consistent with pancreatic cancer. The patient was recommended preoperative FOLFIRINOX, however, deferred this to go directly to surgery. She underwent a Whipple procedure on 12/12/2019 where she was found to have a 1.7 cm adenocarcinoma of the pancreatic head, moderate to poorly differentiated with 1/20 lymph nodes involved, making this a pT1c N1.
- **PAST MEDICAL HISTORY:** arthritis, hypercholesterolemia, rectal prolapse, hypothyroidism secondary to thyroidectomy.
- FHx: No cancer

Diagnosis: Pancreatic Cancer

	TUMOR GENOMIC ALTERATIONS ¹									
KRAS MAP2K4 TP53										
GENOMIC TARGETS	FDA-APPROVED DRUGS -for patient's cancer	FDA-APPROVED DRUGS -for another cancer	DRUGS PREDICTED NON-BENEFICIAL	POTENTIAL CLINICAL TRIALS						
3	0	0	0	Yes						
KRAS (G12C)				Yes						
MAP2K4 (Q163fs)				Yes						
TP53 (V73fs)				Yes						
	TUMOR	MUTATION BURDE	N (TMB)							
LOW (2 mut/Mb)				No						
	MICRO	SATELLITE STATU	S (MSI)							
STABLE				No						

Case 11: 66-year-old woman with metastatic NSCLC

- 66yr Female
- Diagnosed stage IIIa NSCLC adenocarcinoma Jan-2019
 - Adjuvant Carboplatin/Pemetrexed July-2019 Oct-2019
 - Tissue-based NGS reveals KRAS G12C, AKT3 amp, STK11, CHEK2 splice site, NFKBla amp, NKX21 amp, MS-stable, TMBI.
- 7-Jan-2020 metastatic diagnosis
 - Carboplatin/pemetrexed/pembrolizumab Jan-2020 April-2020
- Progression 20-April-2020
- KRAS G12C inhibitor initiated in phase I clinical trial
 - Jun-2020: C3D1 KRAS G12C inhibitor "first disease eval shows partial response!"
 - Jul-2020: C4D1 KRAS G12C inhibitor "Feeling stronger and stronger."

Case 11: 66-year-old woman with metastatic **NSCLC** (cont)

Interpretive content on this page and subsequent pages is provided as a professional service, and is not reviewed or approved by the FDA.

PATIENT

DISEASE Lung adenocarcinoma

DATE OF BIRTH SEX Female

MEDICAL RECORD #

PHYSICIAN

ORDERING PHYSICIAN

MEDICAL FACILITY

ADDITIONAL RECIPIENT None

MEDICAL FACILITY ID

PATHOLOGIST Provided, Not

SPECIMEN

SPECIMEN SITE Lung **SPECIMEN ID** \$5-19-0001806 A5 SPECIMEN TYPE Block DATE OF COLLECTION 09 April 2019 SPECIMEN RECEIVED 28 January 2020

Biomarker Findings

Microsatellite status - MS-Stable Tumor Mutational Burden - 8 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

AKT3 amplification - equivocal[†]

STK11 1322fs*14

KRAS G12C

CHEK2 splice site 444+1G>A

NFKBIA amplification

NKX2-1 amplification

7 Disease relevant genes with no reportable alterations: EGFR, ALK, BRAF, MET, RET, ERBB2, ROSI


22 Clinical Trials

† See About the Test in appendix for details.

2 Therapies with Clinical Benefit

O Therapies with Lack of Response

Pre-treatment

Cycle 2 Day 1

PR: -86% reduction in target lesion measurements

Recent Advances in Medical Oncology: Urothelial Bladder Carcinoma

Monday, August 3, 2020 5:00 PM - 6:00 PM ET

Faculty

Arjun Balar, MD
Thomas Powles, MBBS, MRCP, MD
Arlene Siefker-Radtke, MD

Moderator Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 days.