Welcome participants at UH Seidman Cancer Center

Clinical Investigator
Perspectives on the Current and Future
Management of Multiple Myeloma

A Meet The Professor Series

Sagar Lonial, MD

Chair and Professor
Department of Hematology and
Medical Oncology
Anne and Bernard Gray Family Chair in Cancer
Chief Medical Officer
Winship Cancer Institute
Emory University School of Medicine
Atlanta, Georgia

Meet The Professor Program Steering Committee

Rafael Fonseca, MD Getz Family Professor of Cancer Chair, Department of Internal Medicine Mayo Clinic Arizona Scottsdale, Arizona

Ola Landgren, MD, PhD Professor of Medicine Chief, Myeloma Service Department of Medicine Memorial Sloan Kettering **Cancer Center** New York, New York

Shaji K Kumar, MD **Professor of Medicine** Consultant Division of Hematology and Blood and **Marrow Transplantation** Mayo Clinic Rochester, Minnesota

Sagar Lonial, MD Chair and Professor Department of Hematology and Medical Oncology Anne and Bernard Gray Family Chair in Cancer Chief Medical Officer Winship Cancer Institute **Emory University School** of Medicine Atlanta, Georgia

Meet The Professor Program Steering Committee

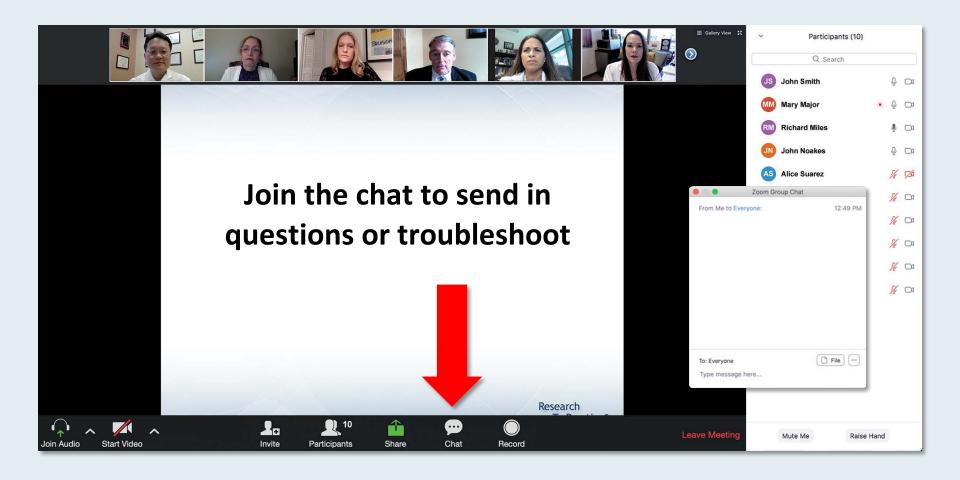
Professor of Medicine Harvard Medical School Director of Basic and Correlative Science Associate Director, Jerome Lipper Multiple Myeloma Center Department of Medical Oncology Dana-Farber Cancer Institute Boston, Massachusetts

Nikhil C Munshi, MD

Robert Z Orlowski, MD, PhD Florence Maude Thomas Cancer Research Professor Department of Lymphoma and Myeloma Professor, Department of **Experimental Therapeutics** Director, Myeloma Section **Division of Cancer Medicine** The University of Texas MD Anderson Cancer Center Houston, Texas

Noopur Raje, MD Director Center for Multiple Myeloma Massachusetts General Hospital Cancer Center Professor of Medicine Harvard Medical School Boston, Massachusetts

Nina Shah, MD Associate Professor of Medicine University of California San Francisco Division of Hematology-Oncology San Francisco, California



Project Chair Neil Love, MD Research To Practice Miami, Florida

Research Co-provided by **USF**Health To Practice®

Familiarizing yourself with the Zoom interface

How to participate in the chat

Management of Multiple Myeloma (MM)

Module 1: Clinical Decision-Making for Patients with Newly Diagnosed MM (NDMM)

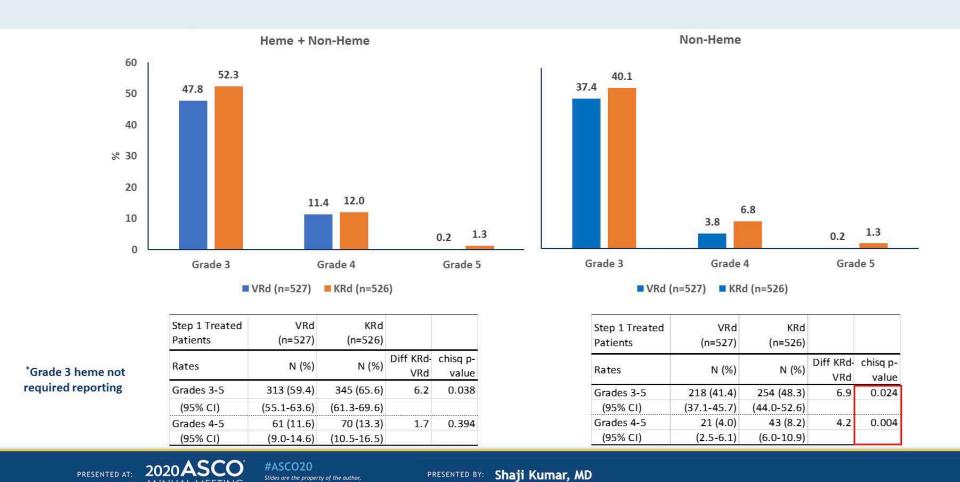
- Daratumumab-containing front-line therapy (CASSIOPEIA, MAIA, GRIFFIN)
- Minimal residual disease (MRD) testing and use in treatment decision-making
- Consolidation and maintenance therapy; emerging data with ixazomib (TOURMALINE-MM3, TOURMALINE-MM4)
- Recent relevant datasets

Module 2: Contemporary Management of Relapsed/Refractory MM

- Data with daratumumab-containing regimens; split dosing
- Combination regimens with ixazomib (TOURMALINE-MM1)
- Recent FDA approval of selinexor and pivotal data from STORM
- Recent FDA approval of anti-CD38 isatuximab plus pomalidomide/low-dose dexamethasone and pivotal data from ICARIA-MM
- Recent relevant datasets

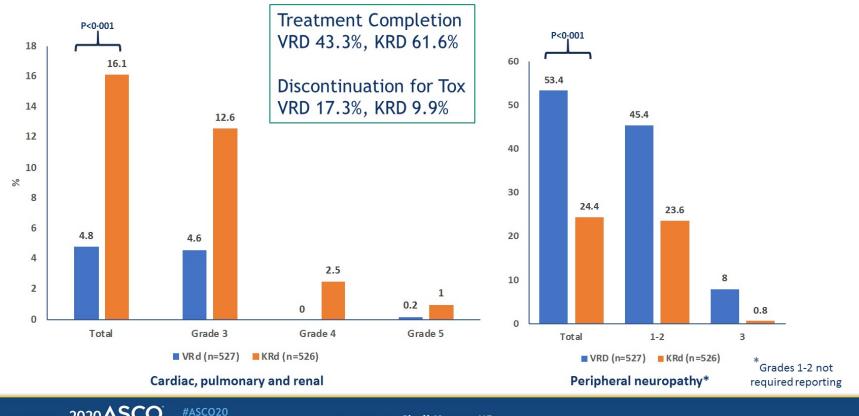
Module 3: Novel Agents in Late-Stage Development

- Belantamab mafodotin (DREAMM-2)
- Clinical development of other anti-BCMA agents
- Recent relevant datasets


Recent Relevant Datasets

Carfilzomib, Lenalidomide, and Dexamethasone (KRd) versus Bortezomib, Lenalidomide, and Dexamethasone (VRd) for Initial Therapy of Newly Diagnosed Multiple Myeloma (NDMM): Results of ENDURANCE (E1A11) Phase III Trial

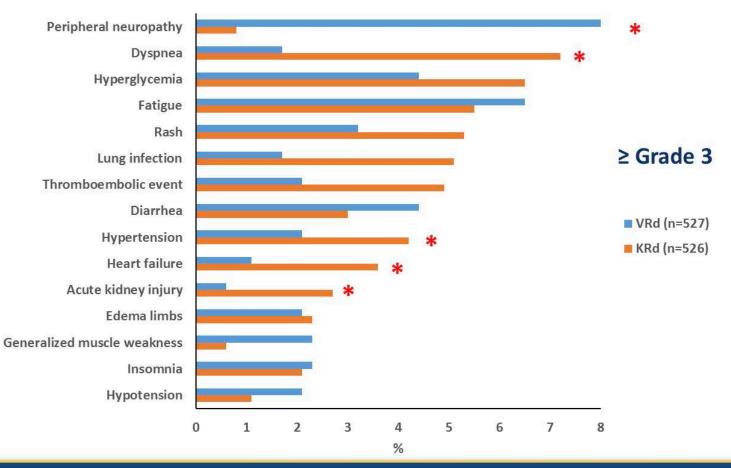
Kumar S et al.


ASCO 2020; Abstract LBA3. (Plenary)

ENDURANCE (E1A11): Treatment-Related AEs

Research
Co-provided by USFHealth To Practice®

ENDURANCE (E1A11): TEAEs of Interest


PRESENTED AT:

#ASCO20
Slides are the property of the author permission required for reuse.

PRESENTED BY: Shaji Kumar, MD

ENDURANCE (E1A11): Treatment-Related AEs (≥2%)

PRESENTED AT:

2020 ASCO

#ASCO20 Slides are the property of the author, permission required for reuse.

PRESENTED BY:

Shaji Kumar, MD

Primary Analysis of the Randomized Phase II Trial of Bortezomib, Lenalidomide, Dexamthasone with/without Elotuzumab for Newly Diagnosed, High-Risk Multiple Myeloma (SWOG-1211)

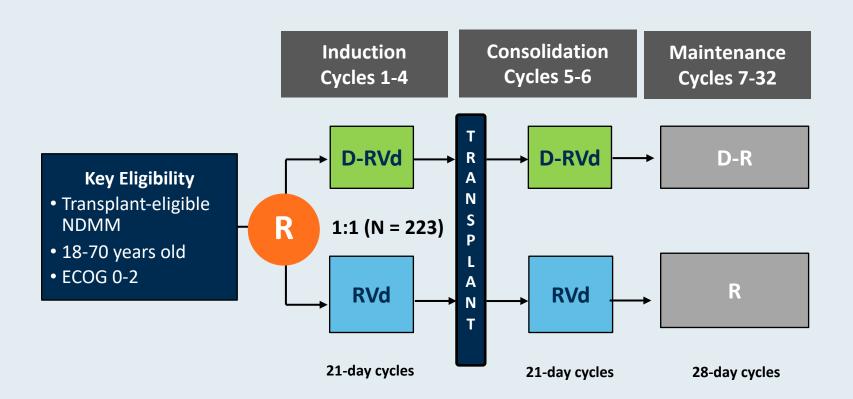
Usmani SZ et al. ASCO 2020; Abstract 8507.

Depth of Response to Isatuximab, Carfilzomib, Lenalidomide, and Dexamethasone (Isa-KRd) in Front-Line Treatment of High-Risk Multiple Myeloma: Interim Analysis of the GMMG-CONCEPT Trial

Weisel K et al.

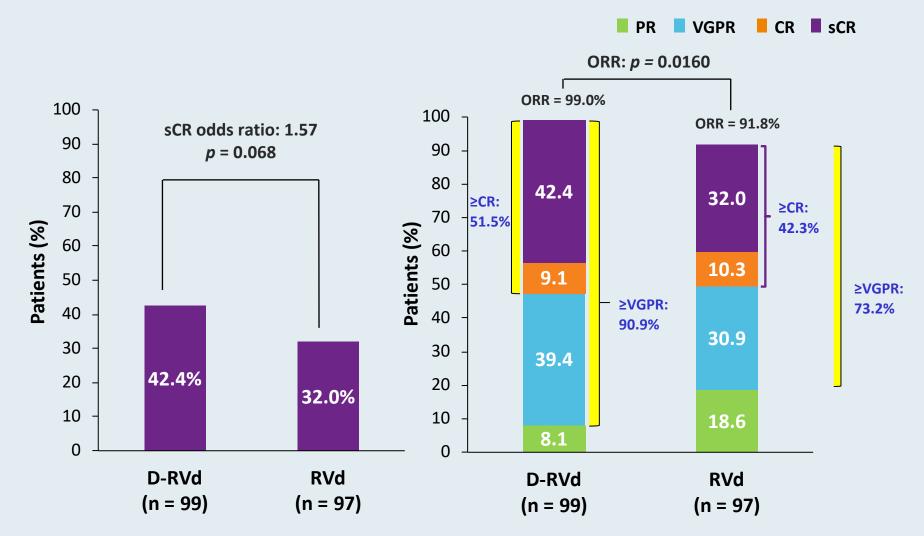
ASCO 2020; Abstract 8508.

Audience Polling

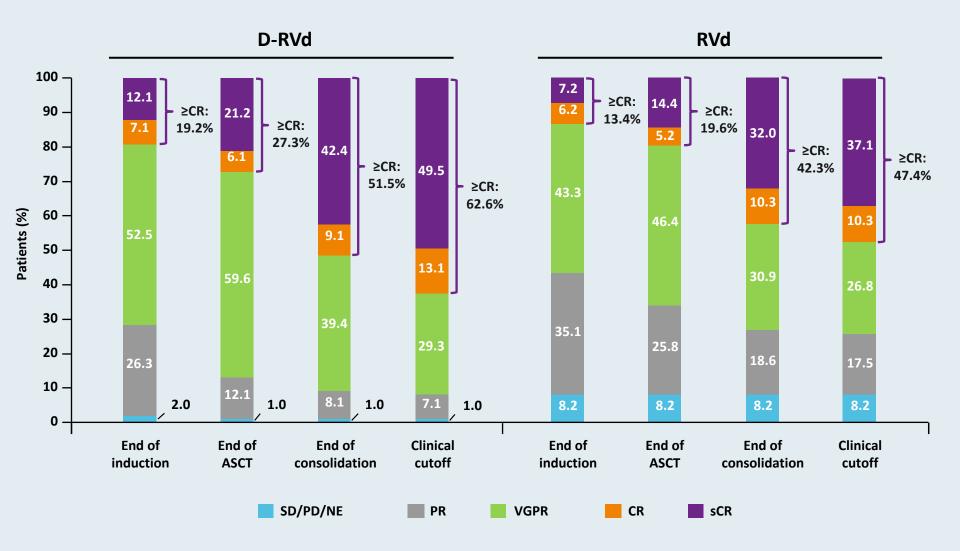

Currently, what is your usual pretransplant induction regimen for a 65-year-old patient with MM and no high-risk features?

- 1. RVD (lenalidomide/bortezomib/dexamethasone)
- 2. KRd (carfilzomib/lenalidomide/dexamethasone)
- 3. CyBorD
- 4. MVP, MPR or MPT (M = melphalan, P = prednisone, V = bortezomib, R = lenalidomide, T = thalidomide)
- 5. MVP/daratumumab
- 6. Rd/daratumumab
- 7. VTd (bortezomib/thalidomide/dexamethasone) with daratumumab
- 8. RVD/daratumumab
- 9. KRd/daratumumab
- 10. Other

Currently, what pretransplant induction regimen would you recommend for a <u>65-year-old</u> patient with multiple myeloma (MM)?


	Standard risk	Del(17p)	
RAFAEL FONSECA, MD	KRd	RVD	
SHAJI K KUMAR, MD	RVD	RVD/daratumumab	
OLA LANDGREN, MD, PHD	KRd	KRd	
SAGAR LONIAL, MD	RVD/daratumumab	KRd	
NIKHIL C MUNSHI, MD	RVD	RVD/daratumumab	
ROBERT Z ORLOWSKI, MD, PHD	KRd	KRd	
NOOPUR RAJE, MD	RVD	KRd ± daratumumab	
NINA SHAH, MD	RVD	KRd	

GRIFFIN Randomized Phase II Study Design



Primary endpoint: Stringent CR by end of consolidation

GRIFFIN Primary Endpoint: sCR at the End of Consolidation

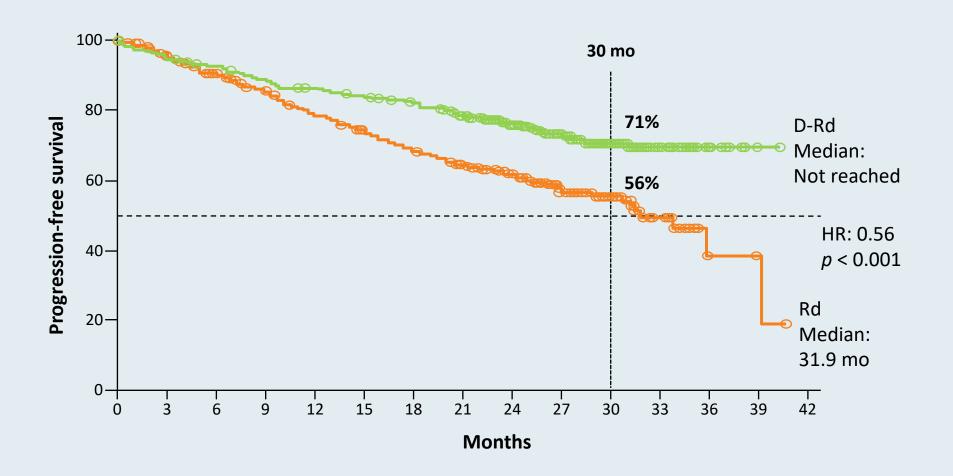
GRIFFIN: Depth of Response Over Time

Regulatory and reimbursement issues aside, what is your preferred induction regimen for an <u>85-year-old</u> patient with ISS Stage II MM who is transplant ineligible?

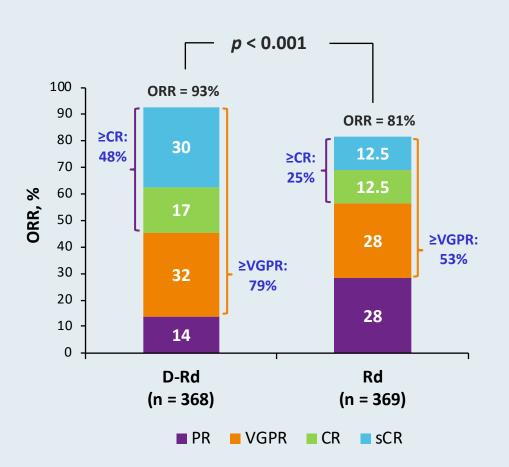
	Standard risk, normal renal function	Del(17p)	
RAFAEL FONSECA, MD	Rd/dara	RVD	
SHAJI K KUMAR, MD	Rd/dara	RVD lite	
OLA LANDGREN, MD, PHD	Rd/dara	RVD lite	
SAGAR LONIAL, MD	Rd/dara	RVD lite	
NIKHIL C MUNSHI, MD	Rd	RVD lite	
ROBERT Z ORLOWSKI, MD, PHD	RVD or RVD lite	RVD lite	
NOOPUR RAJE, MD	RVD or RVD lite or Rd/dara	RVD lite	
NINA SHAH, MD	RVD or RVD lite or Rd/dara	RVD lite or KRd	

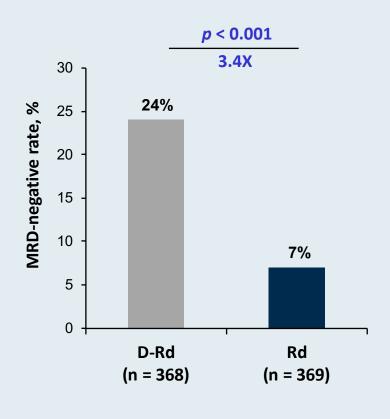
The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE


Daratumumab plus Lenalidomide and Dexamethasone for Untreated Myeloma

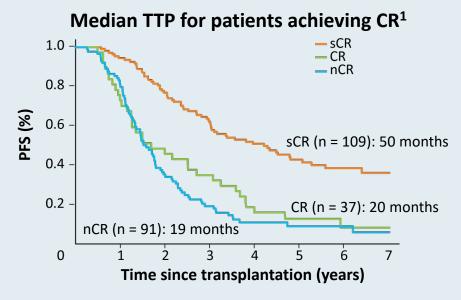
T. Facon, S. Kumar, T. Plesner, R.Z. Orlowski, P. Moreau, N. Bahlis, S. Basu, H. Nahi, C. Hulin, H. Quach, H. Goldschmidt, M. O'Dwyer, A. Perrot, C.P. Venner, K. Weisel, J.R. Mace, N. Raje, M. Attal, M. Tiab, M. Macro, L. Frenzel, X. Leleu, T. Ahmadi, C. Chiu, J. Wang, R. Van Rampelbergh, C.M. Uhlar, R. Kobos, M. Qi, and S.Z. Usmani, for the MAIA Trial Investigators*

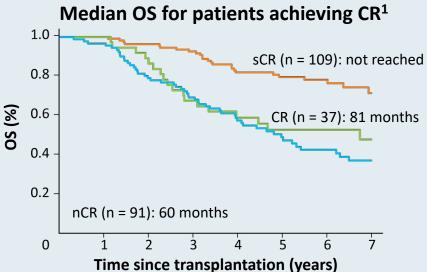

N Engl J Med 2019;380(22):2104-15.

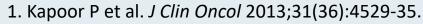

MAIA Primary Endpoint: Progression-Free Survival

NDMM Transplant Ineligible

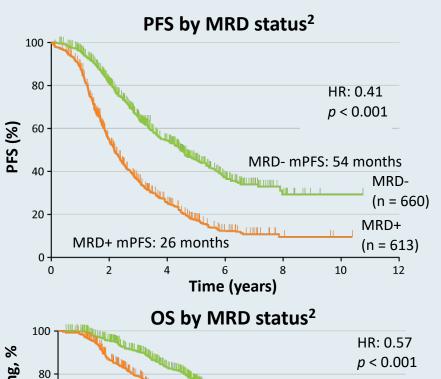
MAIA: Overall Response Rate and MRD (NGS; 10⁻⁵ Sensitivity Threshold) Rate

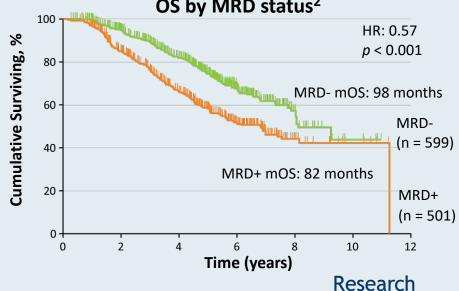





Are there situations in which you believe community-based oncologists/hematologists should be ordering minimal residual disease (MRD) assessment to guide treatment decision-making for patients with MM?

RAFAEL FONSECA, MD	Yes – Pts in long-term CR or with plasmacytomas; monitoring amyloidosis
SHAJI K KUMAR, MD	Yes – Pts with high-risk disease
OLA LANDGREN, MD, PHD	Yes – After combination therapy; if MRD-negative, collect and store stem cells. Then go straight to maintenance
SAGAR LONIAL, MD	No
NIKHIL C MUNSHI, MD	Yes – Post-transplant, at CR, before and during maintenance
ROBERT Z ORLOWSKI, MD, PHD	Yes, timing the number of induction cycles prior to stem cell collection for patients in CR
NOOPUR RAJE, MD	No
NINA SHAH, MD	No, I don't believe this test should be ordered in the community to make clinical decisions


Stringent Complete Response (sCR) and MRD as a Surrogate Endpoint for PFS and OS



2. Munshi NC et al. JAMA Oncol 2017:3(1):28-35.

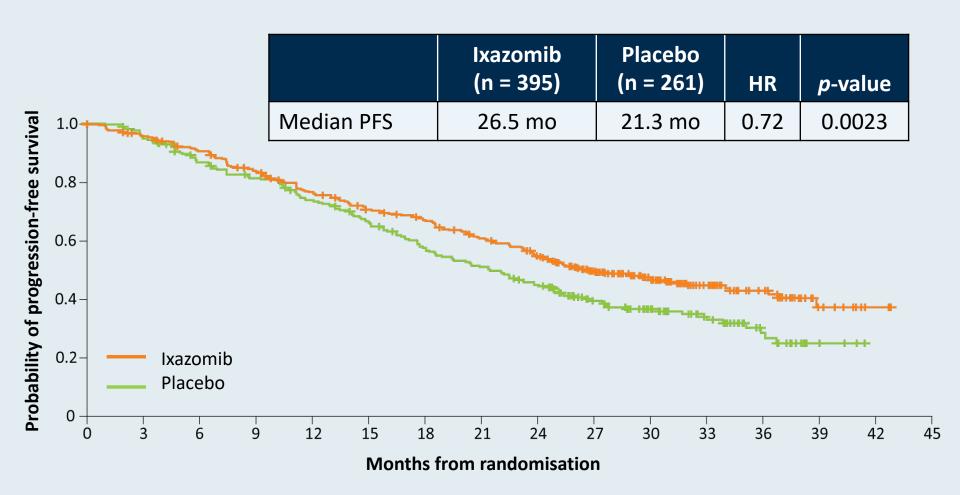
Co-provided by **USF**Health

To Practice®

What is your usual recommendation for post-ASCT maintenance therapy for patients with MM who received RVD induction therapy?

	Standard-risk	Del(17p)
RAFAEL FONSECA, MD	Lenalidomide	Len∕ixa ± dex
SHAJI K KUMAR, MD	Lenalidomide	Len/bortez 土 dex
OLA LANDGREN, MD, PHD	Lenalidomide	Lenalidomide
SAGAR LONIAL, MD	Lenalidomide	Len/bortez 土 dex
NIKHIL C MUNSHI, MD	Lenalidomide + dex	Len/bortez 土 dex
ROBERT Z ORLOWSKI, MD, PHD	Lenalidomide	Len∕ixa ± dex
NOOPUR RAJE, MD	Lenalidomide	Len/ixa 士 dex or Len/bortez 士 dex
NINA SHAH, MD	Lenalidomide	Len/K ± dex

Len = lenalidomide; ixa = ixazomib; dex = dexamethasone; bortez = bortezomib; K = carfilzomib



Oral ixazomib maintenance following autologous stem cell transplantation (TOURMALINE-MM3): a double-blind, randomised, placebo-controlled phase 3 trial

Meletios A Dimopoulos, Francesca Gay, Fredrik Schjesvold, Meral Beksac, Roman Hajek, Katja Christina Weisel, Hartmut Goldschmidt, Vladimir Maisnar, Philippe Moreau, Chang Ki Min, Agnieszka Pluta, Wee-Joo Chng, Martin Kaiser, Sonja Zweegman, Maria-Victoria Mateos, Andrew Spencer, Shinsuke Iida, Gareth Morgan, Kaveri Suryanarayan, Zhaoyang Teng, Tomas Skacel, Antonio Palumbo, Ajeeta B Dash, Neeraj Gupta, Richard Labotka, S Vincent Rajkumar, on behalf of the TOURMALINE-MM3 study group*

Lancet 2019;393(10168):253-64.

TOURMALINE-MM3 Primary Endpoint: Progression-Free Survival (ITT)

Case Presentation

Case (from the practice of Ehsan Malek, MD)

- Adding monoclonal antibody to induction triplet, SWOG (Elo/VRD), German trial (ISA/KRD), GRIFFIN Dara/VRD, Cassiopeia (DaraVTD)
- 58 y/o newly diagnosed 17p stage III myeloma, transplanteligible, normal renal function

Management of Multiple Myeloma (MM)

Module 1: Clinical Decision-Making for Patients with Newly Diagnosed MM (NDMM)

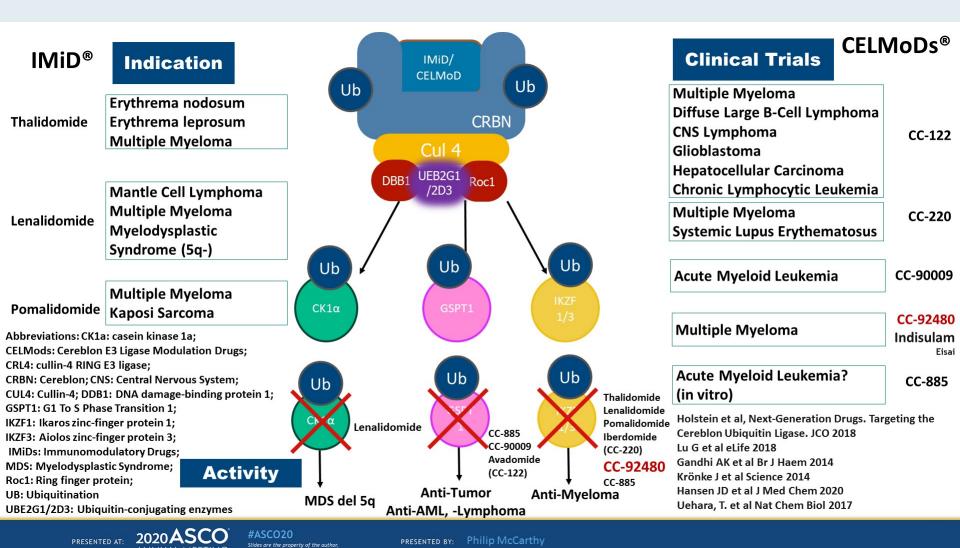
- Daratumumab-containing front-line therapy (CASSIOPEIA, MAIA, GRIFFIN)
- Minimal residual disease (MRD) testing and use in treatment decision-making
- Consolidation and maintenance therapy; emerging data with ixazomib (TOURMALINE-MM3, TOURMALINE-MM4)
- Recent relevant datasets

Module 2: Contemporary Management of Relapsed/Refractory MM

- Data with daratumumab-containing regimens; split dosing
- Combination regimens with ixazomib (TOURMALINE-MM1)
- Recent FDA approval of selinexor and pivotal data from STORM
- Recent FDA approval of anti-CD38 isatuximab plus pomalidomide/low-dose dexamethasone and pivotal data from ICARIA-MM
- Recent relevant datasets

Module 3: Novel Agents in Late-Stage Development

- Belantamab mafodotin (DREAMM-2)
- Clinical development of other anti-BCMA agents
- Recent relevant datasets

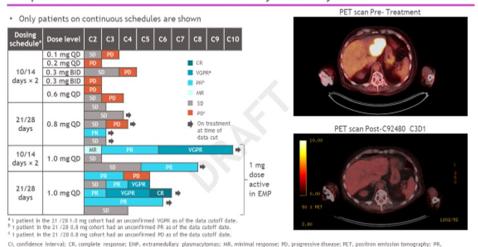


Recent Relevant Datasets

First-in-Human Phase I Study of the Novel CELMoD Agent CC-92480 Combined with Dexamethasone (DEX) in Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM)

Richardson PG et al. ASCO 2020; Abstract 8500.

CC-92480/Dexamethasone Combined with **Bortezomib or Daratumumab or Carfilzomib**



CC-92480/Dexamethasone Combined with Bortezomib or Daratumumab or Carfilzomib

Response ORRª 21.1% ORRª 40.0% ORR* 54.5% 2 (20.0) CBR 2 (18.2) CBR 80 CBR 26.3% 4 (5.3) ■ VGPR^b 50.0% 63.6% 60 1 (10.0) DCR 100% 75.0% 40 1 (9.1) III SD ■ PD 20 ■ NE 15 (19.7) All Evaluable 10/14 days × 2 21/28 days $(n = 76^d)$ 1.0 mg QD 1.0 mg QD (n = 10)(n = 11)

At the RP2D 1.0 mg QD 21/28 days, 7 out of 11 patients were triple class-refractory^o
 1 patient had CR, 1 VGPR, 2 PR, and 1 MR

Responses in Patients With Extramedullary Plasmacytomas

- Future:
- NDMM and RRMM: Phase 1/2 of CC-92480 with dexamethasone in combination with bortezomib or daratumumab or carfilzomib NCT03989414
- Mitigating hematologic toxicity
- Role in the context of lenalidomide, pomalidomide, iberdomide

Optimal combination therapy

Induction, maintenance, salvage

DLTs by Dose Level

Dosing schedule	Dose level	Patients, n	DLTs
10/14 days × 2	0.1 mg QD	3	
	0.2 mg QD	4	1 patient (neutropenia)
	0.3 mg QD	4	, .
	0.6 mg QD	8	1 patient (pneumonitis)
	1.0 mg QD	10	2 patients (neutropenia; febrile neutropenia)
21/28 days	0.8 mg QD	12	
	1.0 mg QD	11	3 patients (neutropenia; febrile neutropenia; sepsis)
3/14 days × 2	0.2 mg BID	4	A V .
	0.4 mg BID	3	
	0.8 mg BID	4	
7/14 days × 2	0.8 mg BID	3	
	1.6 mg QD	5	1 patient (febrile neutropenia)
	2.0 md QD	5	2 patients (pneumonitis; increased ALT, neutropenia, and thrombocytopenia

• MTD was determined at 1.0 mg QD for both 10/14 days × 2 and 21/28 days schedules

ALT, alanine transaminase: BID, twice daily: DLT, dose-limiting toxicity: MTD, maximum tolerated dose; QD, once daily

10

PRESENTED AT: 2

#ASCO20
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Philip McCarthy

Weekly Selinexor, Bortezomib, and Dexamethasone (SVd) versus Twice Weekly Bortezomib and Dexamethasone (Vd) in Patients with Multiple Myeloma (MM) After One to Three Prior Therapies: Initial Results of the Phase III BOSTON Study

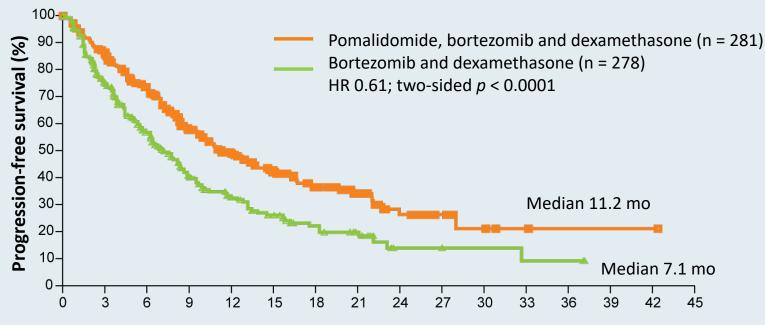
Dimopoulos MA et al. ASCO 2020; Abstract 8501.

Audience Polling

What is your usual treatment recommendation for a patient with MM who receives RVD followed by ASCT and maintenance lenalidomide for 1.5 years who then experiences an asymptomatic biochemical relapse?

- 1. Carfilzomib +/- dexamethasone
- 2. Pomalidomide +/- dexamethasone
- 3. Carfilzomib + pomalidomide +/- dexamethasone
- 4. Elotuzumab + lenalidomide +/- dexamethasone
- 5. Elotuzumab + pomalidomide +/- dexamethasone
- 6. Daratumumab + lenalidomide +/- dexamethasone
- 7. Daratumumab + pomalidomide +/- dexamethasone
- 8. Daratumumab + bortezomib +/- dexamethasone
- 9. Ixazomib + Rd
- 10. Other

What is your usual treatment recommendation for a patient with MM who receives RVD followed by ASCT, who experiences asymptomatic biochemical relapse after ...


	1.5 years of maintenance lenalidomide	3 years of maintenance lenalidomide
RAFAEL FONSECA, MD	Dara/pom ± dex	Dara/pom ± dex
SHAJI K KUMAR, MD	Dara/pom ± dex	Dara/pom ± dex
OLA LANDGREN, MD, PHD	Dara/pom ± dex	Dara/pom ± dex
SAGAR LONIAL, MD	Dara/pom ± dex	Dara/pom ± dex
NIKHIL C MUNSHI, MD	Dara/pom ± dex	Elo/pom ± dex
ROBERT Z ORLOWSKI, MD, PHD	Dara/pom ± dex	lxazomib + Rd
NOOPUR RAJE, MD	Dara/pom \pm dex Carfilzomib/pom \pm dex if high risk	Pom \pm dex or dara/pom \pm dex
NINA SHAH, MD	Dara/pom ± dex	Dara/pom ± dex

Dara = daratumumab; pom = pomalidomide; Elo = elotuzumab

OPTIMISMM: Phase III Trial of Pomalidomide with Bortezomib and Dexamethasone in Relapsed/Refractory MM

All patients with 1-3 prior lines of therapy (including 2 or more cycles of lenalidomide)

Time since randomization (months)

Median PFS	Pom-bort/dex	Bort/dex	HR (<i>p</i> -value)
Refractory to lenalidomide (n = 200; 191)	9.5 mo	5.6 mo	0.65 (0.0008)
Refractory to lenalidomide and 1 prior line of treatment (n = 64; 65)	17.8 mo	9.5 mo	0.55 (0.03)

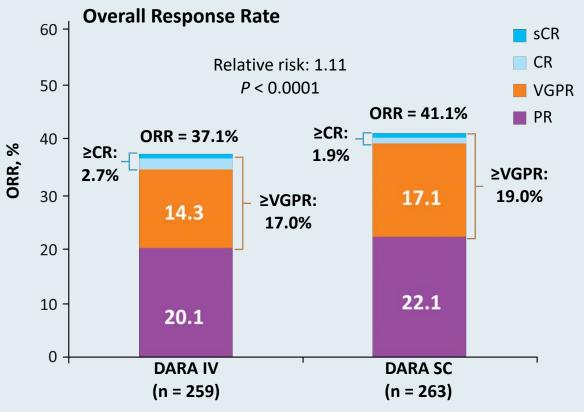
Daratumumab-Based Regimens for Relapsed and/or Refractory MM

	POLLUX ¹ Dara-Rd vs Rd	CASTOR ² Dara-Vd vs Vd
Prior therapies	Bortezomib: 84% Len/Thal: 18%/43% IMiD + PI: 44%	Bortezomib: 65% Len/Thal: 42%/49% IMiD + PI: 48%
Median lines prior Tx	1 (range: 1-11)	2 (range: 1-10)
Median PFS (mo) – ITT	NR vs 17.5	16.7 vs 7.1
(n = 569; 498)	HR 0.41, <i>p</i> < 0.0001	HR 0.31, <i>p</i> < 0.0001
Median PFS (mo) – prior Bort	NR vs 17.5	12.1 vs 6.7
(n = 479; 326)	HR 0.40, <i>p</i> < 0.0001	HR 0.35
Median PFS (mo) – prior Len	NR vs 18.6	9.5 vs 6.1
(n = 100; 209)	HR 0.32, <i>p</i> = 0.0008	HR 0.38

NR = not reached

¹ Dimopoulos MA et al. *Haematologica* 2018;103(12):2088-96;

² Spencer A et al. *Haematologica* 2018;103(12):2079-87.

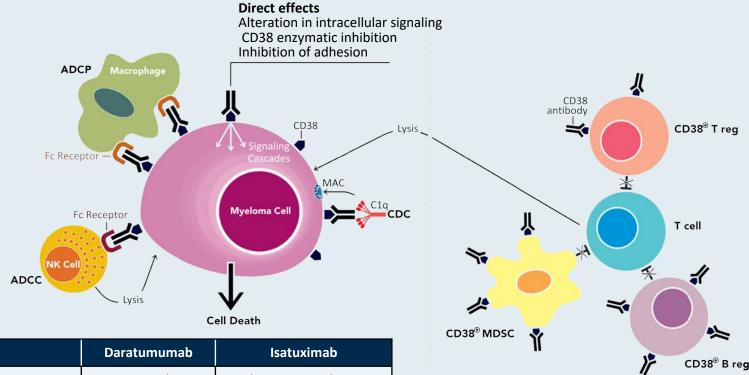

FDA Approval of Subcutaneous Daratumumab (Daratumumab and Hyaluronidase-fihj) for Newly Diagnosed or Relapsed/Refractory MM Press Release – May 1, 2020

"On May 1, 2020, the Food and Drug Administration approved daratumumab and hyaluronidase-fihj for adult patients with newly diagnosed or relapsed/refractory multiple myeloma. This new product allows for subcutaneous dosing of daratumumab."

Daratumumab and hyaluronidase-fihj is approved for certain indications that intravenous daratumumab had previously received.

Efficacy of daratumumab and hyaluronidase-fihji (monotherapy) was evaluated in COLUMBA (NCT03277105), an open-label noninferiority trial randomly assigning 263 patients to daratumumab and hyaluronidase-fihj and 259 to intravenous daratumumab.

COLUMBA: Phase III Noninferiority Trial of Subcutaneous (SC) versus Intravenous (IV) Daratumumab for Relapsed or Refractory MM



	DARA IV (n = 258)	DARA SC (n = 260)	Odds ratio (<i>p</i> -value)
Rate of infusion- related reactions	34.5%	12.7%	0.28 (<0.0001)

Anti-CD38 Antibodies: Mechanism of Action, Structural and **Pharmacologic Similarities and Differences**

Fc-dependent immune effector mechanisms and direct effects

Immunomodulatory effects

Mechanism of action	Daratumumab	Isatuximab
Origin, isotype	Human IgG-kappa	Chimeric IgG1-kappa
CDC	+++	+
ADCC	++	++
ADCP	+++	Not determined
PCD direct	_	++
PCD cross linking	+++	+++
Modulation ectoenzyme function	+	+++

FDA Approves New Therapy for Patients with Previously Treated Multiple Myeloma

Press Release - March 02, 2020

Today, the US Food and Drug Administration approved isatuximab-irfc, in combination with pomalidomide and dexamethasone, for the treatment of adult patients with multiple myeloma who have received at least two prior therapies including lenalidomide and a proteasome inhibitor.

The FDA approved isatuximab-irfc based on the results of a clinical trial involving 307 patients with relapsed and refractory multiple myeloma who had received at least two prior therapies, including lenalidomide and a proteasome inhibitor.

Patients who received isatuximab-irfc in combination with pomalidomide and low-dose dexamethasone showed improvement in PFS with a 40% reduction in the risk of disease progression or death compared to patients who received pomalidomide and dexamethasone. These patients also had an overall response rate of 60.4%. In comparison, the patients who only received pomalidomide and low-dose dexamethasone had an overall response rate of 35.3%.

Case Presentation

Case (from the practice of Ehsan Malek, MD)

- Early intervention in high risk smoldering myeloma (E3A06 trial, Lonial: PI).
- 68 y/o Caucasian woman with IgG Kappa smoldering myeloma, 40% light-chain restricted plasma cells in bone marrow biopsy, 1q gain, M-spike 1.2 gr/dL, Light chain ratio: 44, normal renal function, no anemia or bony lesions. M spike through last year increased; 1.2>1.6>1.9>2.5 gr/dL and Cr: 1.2>1.3>1.3>1.4. When is the optimal time for treatment?

Management of Multiple Myeloma (MM)

Module 1: Clinical Decision-Making for Patients with Newly Diagnosed MM (NDMM)

- Daratumumab-containing front-line therapy (CASSIOPEIA, MAIA, GRIFFIN)
- Minimal residual disease (MRD) testing and use in treatment decision-making
- Consolidation and maintenance therapy; emerging data with ixazomib (TOURMALINE-MM3, TOURMALINE-MM4)
- Recent relevant datasets

Module 2: Contemporary Management of Relapsed/Refractory MM

- Data with daratumumab-containing regimens; split dosing
- Combination regimens with ixazomib (TOURMALINE-MM1)
- Recent FDA approval of selinexor and pivotal data from STORM
- Recent FDA approval of anti-CD38 isatuximab plus pomalidomide/low-dose dexamethasone and pivotal data from ICARIA-MM
- Recent relevant datasets

Module 3: Novel Agents in Late-Stage Development

- Belantamab mafodotin (DREAMM-2)
- Clinical development of other anti-BCMA agents
- Recent relevant datasets

Recent Relevant Datasets

DREAMM-6: Safety and Tolerability of Belantamab Mafodotin in Combination with Bortezomib/Dexamethasone in Relapsed/Refractory Multiple Myeloma (RRMM)

Nooka AK et al. ASCO 2020; Abstract 8502.

Idecabtagene Vicleucel (ide-cel; bb2121), A BCMA-Targeted CAR T-Cell Therapy, in Patients with Relapsed and Refractory Multiple Myeloma (RRMM): Initial KarMMa Results

Munshi NC et al. ASCO 2020; Abstract 8503.

Update of CARTITUDE-1: A Phase Ib/II Study of JNJ-4528, A B-cell Maturation Antigen (BCMA)-Directed CAR-T-Cell Therapy, in Relapsed/Refractory Multiple Myeloma

Berdeja JG et al. ASCO 2020; Abstract 8505. Orvacabtagene Autoleucel (orva-cel), A B-cell Maturation Antigen (BCMA)-Directed CAR T Cell Therapy for Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Update of the Phase 1/2 EVOLVE Study (NCT03430011)

Mailankody S et al. ASCO 2020; Abstract 8504.

ASCO 2020: 3 BCMA CAR T Studies

Characteristics Summary

	KarMMa: idecabtagene vicleucel (n=128)	EVOLVE: orvacabtagene autoleucel (n=62)	CARTITUDE-1: JNJ-4528 (n = 29)
Age	61 (33-78)	61 (33-77)	60 (50-75)
High Risk Cytogenetics, %	35	41*	27
Tumor Burden in BM, %	>50% PC = 51	_	≥60% PC = 24
Extramedullary PCs, %	39	23	10
Median prior lines of therapy	6 (3-16)	6 (3-18)	5 (3-18)
Triple refractory, %	84	94	86
Bridging therapy, %	88	63	79
Unique properties	Human BCMA, 4-1BB, CD3z	Modified spacer, CD4:CD8 enriched for CM	Median cell dose 0.72x10 ⁶ cells/kg 2 BCMA single chain antibodies

PRESENTED AT:

#ASCO20
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Krina Patel MD MSc

* Included +1q21

ASCO 2020: 3 BCMA CAR T Studies

Safety

Efficacy

	KarMMa	EVOLVE	CARTITUDE-1
↓ ANC ≥G3, %	89	90	100
↓ plts ≥G3, %	52	47	69
CRS: all, ≥G3,%	84, 6	89, 3	93, 7
Med. time to CRS, duration, days	1 (1-12) 5 (1-63)	2 (1-4) 4 (1-10)	7 (2-12) 4 (2-64)
ICANS: all, ≥G3,%	17, 3	13, 3	10, 3
HLH/MAS, %	22	5	? 7 (lfts)
Infections: all, ≥G3 %	69,	40, 13	, 19
Toci/steroid/ anakinra use, %	52/15/0	76/52/ <mark>23</mark>	79/21/ <mark>21</mark>

	KarMMa (n = 128)	EVOLVE (n = 62)	CARTITUDE-1 (n = 29)
ORR, %	73 (66-81)	92	100
sCR/CR, %	33	36	86
MRD neg ≥10 ⁻⁵ , % (of evaluable)	94	84	81
PFS/DoR, months	8.8/10.7	NR*	NR**
Screened Apheresed Treated	150 140 128		35 35 29

#ASCO20 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Krina Patel MD MSc

[?] This was not listed at MAS/HLH, I am just speculating \rightarrow could this have been early MAS

^{* 300} x10^6 cell dose cohort (lowest) = PFS 9.3 months, other med F/U = 8.8 and 2.3 month ** 9 mo PFS = 86%

EVOLVE BCMA CAR T Study

Look at that waterfall!

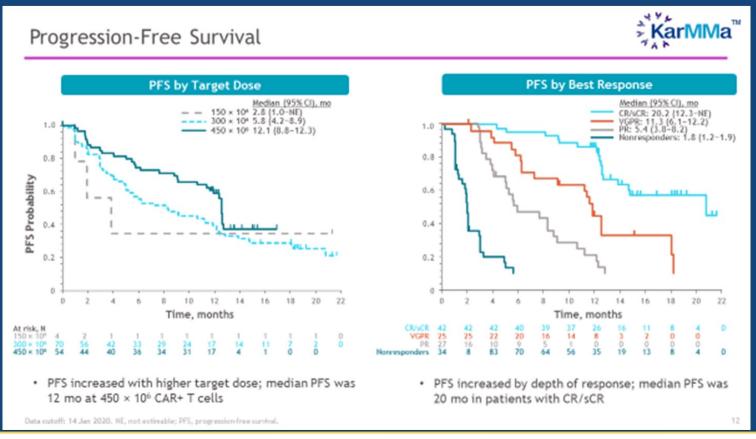
EVOLVE: Deep Tumor Burden Reduction Across Dose Levels

Serological responses* were observed in all patients treated at 450 × 106 and 600 × 106 DLs

"Involved serum or urine paraprotein, free light chains. "Patient with baseline extramedullary plasmacytoma

Data cutoff 01 May 2020

PRESENTED AT:



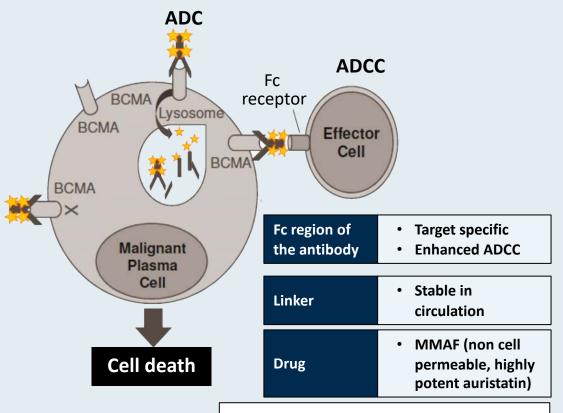
#ASCO20
Slides are the property of the author, permission required for reuse.

RESENTED BY: Krina Patel MD MSc

Idecabtagene Vicleucel BCMA CAR T Study

Progression free survival with a single cell infusion!

PRESENTED AT:



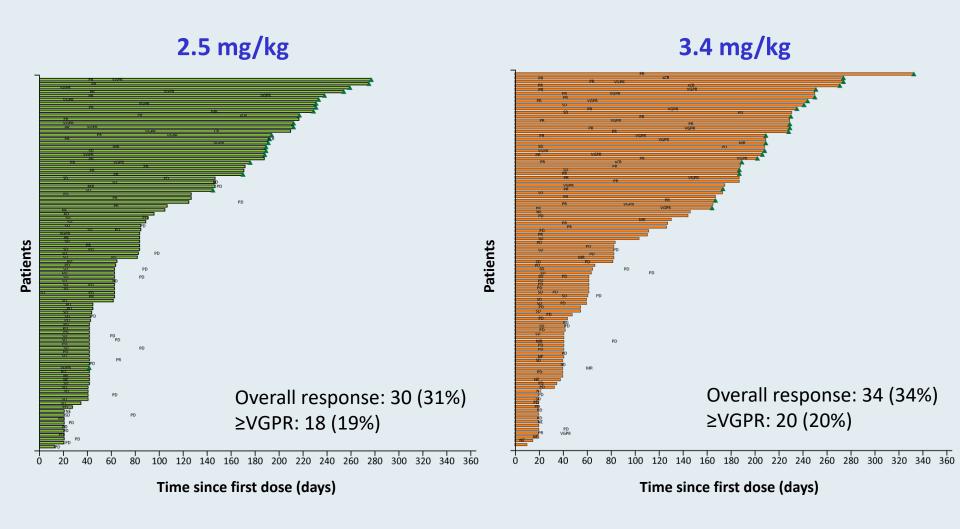
#ASCO20
Slides are the property of the author, permission required for reuse.

PRESENTED BY: Krina Patel MD MSc

Belantamab Mafodotin: Anti-BCMA Antibody-Drug Conjugate

- B-cell maturation factor (BCMA) expression is restricted to B cells at later stages of differentiation and is required for survival of plasma cells
- BCMA is broadly expressed at variable levels on malignant plasma cells
- Belantamab mafodotin is a humanized, afucosylated IgG1 anti-BCMA antibody conjugated to microtubule disrupting agent MMAF via a stable, protease-resistant maleimidocaproyl linker

Mechanisms of action:


- ADC mechanism
- ADCC mechanism
- Immunogenic cell death
- BCMA receptor signaling inhibition

DREAMM-2 Randomized Phase II Study Design

Key eligibility Belantamab mafodotin Relapsed or refractory MM 2.5 mg/kg (n = 97)• PD on at least 3 prior therapies R 1:1 Refractory to IMiDs and proteasome inhibitors **Belantamab mafodotin** Refractory and/or 3.4 mg/kg intolerant to an anti-CD38 (n = 99)antibody

Primary endpoint: Overall response in the intent-to-treat population as determined by an independent review committee

DREAMM-2: Response and Duration of Response

DREAMM-2: Select Adverse Events

Adverse events (AEs) of special interest, any grade	Belantamab mafodotin 2.5 mg/kg (n = 95)	Belantamab mafodotin 3.4 mg/kg (n = 99)
Thrombocytopenia	35%	59%
Infusion-related reactions	21%	16%
Corneal events	71%	75%
Drug-related serious AEs		
Infusion-related reactions	3%	2%
Pyrexia	6%	5%
Sepsis	2%	2%
Pneumonia	4%	12%

In general, when do you refer patients for possible inclusion in trials of BCMA-targeted CAR T-cell therapy?

RAFAEL FONSECA, MD	Refractory to all drugs
SHAJI K KUMAR, MD	Triple-class refractory
OLA LANDGREN, MD, PHD	Per protocol eligibility criteria
SAGAR LONIAL, MD	Few treatment options, slow relapse to wait the time to get cells
NIKHIL C MUNSHI, MD	Having received PI, IMiD and anti-CD38 antibody in combination and disease progressing
ROBERT Z ORLOWSKI, MD, PHD	Multiply relapsed/refractory setting; more recently in earlier settings based on trial availability
NOOPUR RAJE, MD	As early as possible
NINA SHAH, MD	After failure of 3 rd -line treatment

Case Presentation

Case (from the practice of Ehsan Malek, MD)

- Late relapse/refractory myeloma: BOSTON trial (Isatuximab/Vel/Dex), DREAM trial (Belantamab+Velcade), New generation IMiDs (CC92480), Ide-Cel BCMA CAR T, CARTITUDE
- 48 y/o Caucasian female, IgG kappa, standard risk R-ISS stage
 II Multiple Myeloma: VRD (x4) → PR, KRD (x4) → VGPR, autoSCT → CR, KR maintenance. She relapsed after 14 months of
 being on KR, Dara/Pom → VGPR, 8 months later had relapse,
 enrolled on BCMA CAR T-cell trial → CR, relapsed 11 months
 after. Normal renal function, ECOG:1, 50% plasma cell burden,
 BCMA+, CD38+ on bone marrow biopsy. What are the options?

Thank you for joining us!

CME credit information and slides will be emailed to each participant later today.

Clinical Investigator Perspectives on the Current and Future Management of Multiple Myeloma A Meet The Professor Series

Sagar Lonial, MD

Chair and Professor

Department of Hematology and Medical Oncology

Anne and Bernard Gray Family Chair in Cancer

Chief Medical Officer

Winship Cancer Institute

Emory University School of Medicine

Atlanta, Georgia

ONCOLOGY TODAY

WITH DR NEIL LOVE

