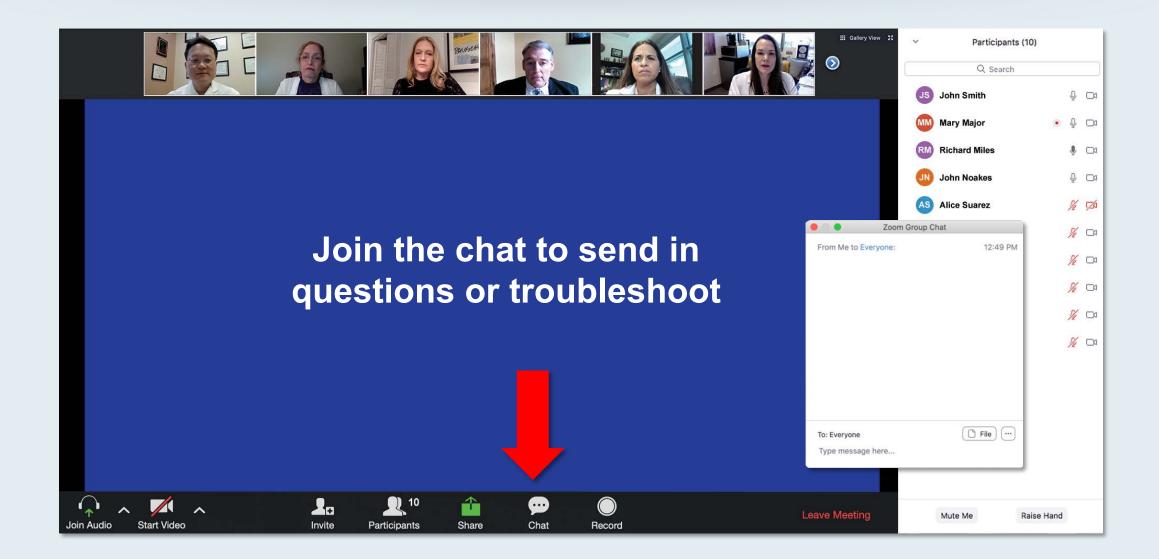
Oncology Grand Rounds

New Agents and Strategies in Chimeric Antigen Receptor T-Cell Therapy

Tuesday, June 23, 2020 5:00 PM – 6:30 PM ET


Faculty

Krishna Komanduri, MD Nikhil C Munshi, MD Sattva S Neelapu, MD Tiffany Richards, PhD, ANP-BC, AOCNP Elizabeth Zerante, MS, AGACNP-BC

Moderator Neil Love, MD

Familiarizing yourself with the Zoom interface How to participate in the chat

RTP Live Webinar Nursing Series

Monday	Tuesday	Wednesday	Thursday	Friday
25	Breast Ca 5:00 PM	27	²⁸ GI Ca 5:00 PM	29
Jun 1	Lymphoma 5:00 PM	3	4 CLL 5:00 PM	5
8	9 GYN 5:00 PM	10	Metastatic Lung Ca 5:00 PM	12
15	Locally Advanced Lung Ca 5:00 PM	17	¹⁸ Bladder Ca 5:00 PM	19
22	²³ CAR-T 5:00 PM	24	25 PARP 5:00 PM	26
29	³⁰ Prostate Ca 5:00 PM	Jul 1 B AM B 8	2	3

About the Enduring Program

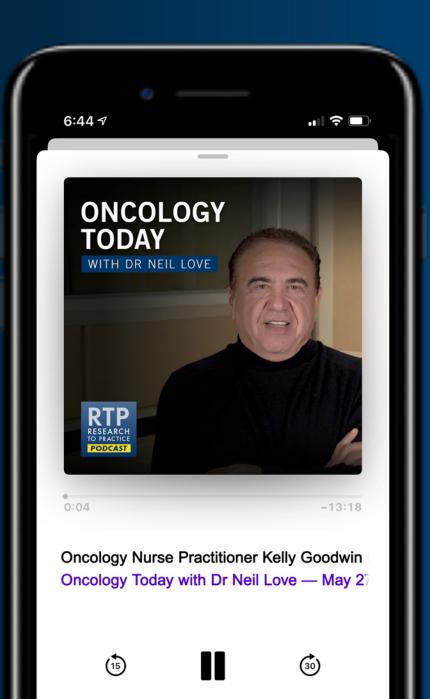
- This webinar is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

- An email will be sent to all attendees when the activity is available.
- To learn more about our education programs visit our website, www.ResearchToPractice.com

Make the Meeting Even More Relevant to You

Download the RTP Live app on your smartphone or tablet to access program information, including slides being presented during the program:

www.ResearchToPractice.com/RTPLiveApp



ONCOLOGY TODAY WITH DR NEIL LOVE

Chronic Lymphocytic Leukemia and Follicular Lymphoma

Wednesday, June 24, 2020 5:00 PM – 6:00 PM ET

Faculty

Jeff Sharman, MD

Julie M Vose, MD, MBA

Moderator Neil Love, MD

Acute Myeloid Leukemia and the General Medical Oncologist: New Agents and Treatment Strategies, Particularly for Older Patients An Interactive Meet The Professor Series

Thursday, June 25, 2020 12:00 PM – 1:00 PM

Richard M Stone, MD Chief of Staff Director, Translational Research Leukemia Division Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School Boston, Massachusetts

Oncology Grand Rounds

New Agents and Strategies in PARP Inhibition in the Management of Common Cancers

Thursday, June 25, 2020 5:00 PM – 6:30 PM ET

Faculty					
Emmanuel S Antonarakis, MD	Joyce O'Shaughnessy, MD				
Gretchen Santos Fulgencio, MSN, FNP-BC	Michael J Pishvaian, MD, PhD				
Erika Meneely, APRN, BC	Deborah Wright, MSN, APRN, CNS				
Kathleen Moore, MD					
Moderator Research					

Neil Love, MD

Research To Practice® Clinical Investigator Perspectives on the Current and Future Management of Multiple Myeloma A Meet The Professor Series

Friday, June 26, 2020 12:00 PM – 1:00 PM

Nikhil C Munshi, MD

Professor of Medicine Harvard Medical School Director of Basic and Correlative Science Associate Director, Jerome Lipper Multiple Myeloma Center Department of Medical Oncology Dana-Farber Cancer Institute Boston, Massachusetts

Co-provided by **USF**Health

DATA + PERSPECTIVES Clinical Investigators Explore the Biology Underlying the Role of PARP Inhibition in the Management of Common Cancers

Tuesday, June 23, 2020 7:00 PM – 8:00 PM ET

Faculty

Maha Hussain, MD, FACP, FASCO Ursula Matulonis, MD Philip A Philip, MD, PhD, FRCP Hope S Rugo, MD

Moderator Neil Love, MD

Do you miss our music?

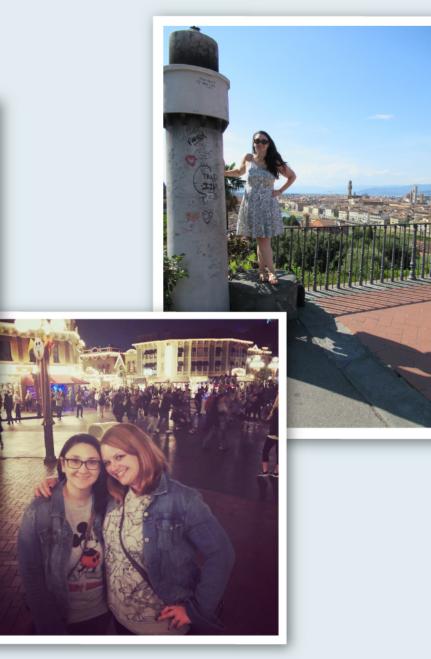
- a. Very much
- b. Not that much
- c. I don't know what you are talking about

Krishna Komanduri, MD University of Miami Health System Miami, Florida

Nikhil C Munshi, MD Dana-Farber Cancer Institute Boston, Massachusetts

Sattva S Neelapu, MD The University of Texas MD Anderson Cancer Center Houston, Texas

Tiffany Richards, PhD, ANP-BC, AOCNP The University of Texas MD Anderson Cancer Center Houston, Texas



Elizabeth Zerante, MS, AGACNP-BC University of Chicago Medicine Chicago, Illinois

Agenda

Module 1: Overview of Chimeric Antigen Receptor (CAR) T-Cell Therapy

• Case Presentation: Ms Zerante — 73-year-old woman with DLBCL

Module 2: Side Effects Associated with CAR T-Cell Therapy

• Case Presentation: Ms Zerante — 23-year-old woman with ALL

Module 3: Anti-BCMA CAR T-Cell Therapy in Multiple Myeloma (MM)

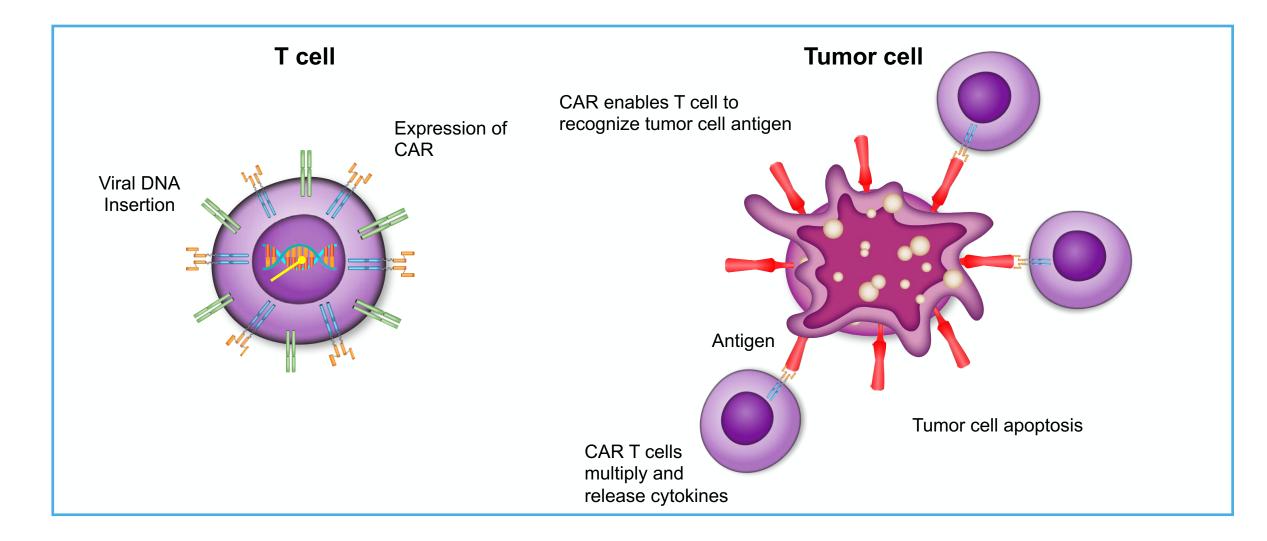
- Case Presentation: Dr Richards 58-year-old woman with MM
- Case Presentation: Dr Richards 62-year-old man with MM

Module 4: CD19-Directed CAR T-Cell Therapy for Aggressive Lymphomas

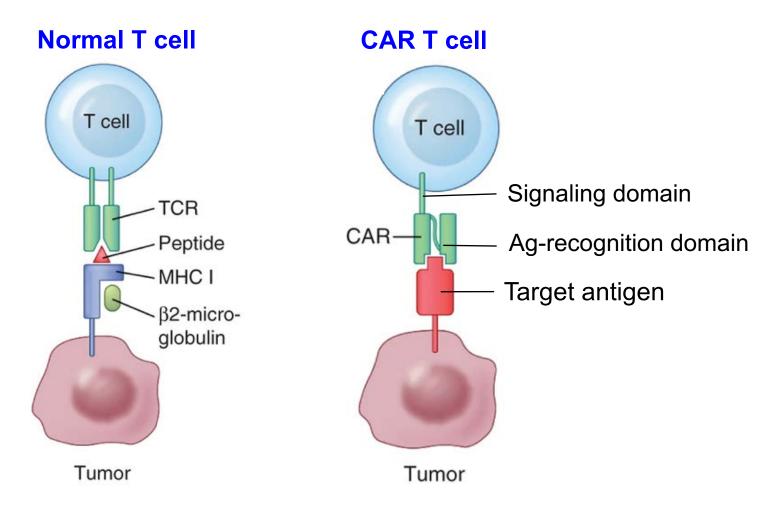
• Case Presentation: Ms Zerante — 79-year-old man with DLBCL

Module 5: CAR T-Cell Therapy in Acute Lymphoblastic Leukemia (ALL)

Case Presentation: Ms Zerante — 41-year-old woman with ALL

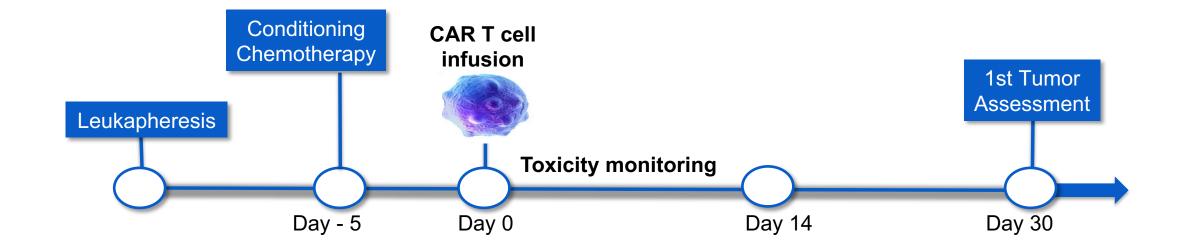

Module 1: Overview of Chimeric Antigen Receptor (CAR) T-Cell Therapy

- Immune mechanisms and therapies in oncology
 - Allogeneic transplant
 - Checkpoint inhibitors
 - Vaccines (eg, sipuleucel-T)
- Biology of CAR-modified T cells
- Production and administration of CAR T cells
- Available CAR-T products
- Overview of efficacy of CAR-T therapy

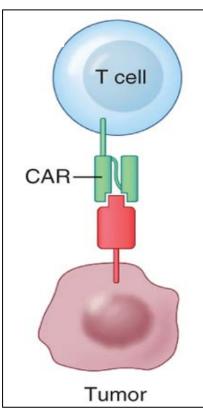

When is the last time a patient in your practice or care died of large cell lymphoma, multiple myeloma or acute lymphoblastic lymphoma?

- a. Within the past week
- b. Between 1 week and 1 month ago
- c. Between 1 month and 6 months ago
- d. Between 6 months and 1 year ago
- e. More than 1 year ago
- f. I have not encountered a patient death by these causes

CAR T Cells: Mechanism of Action

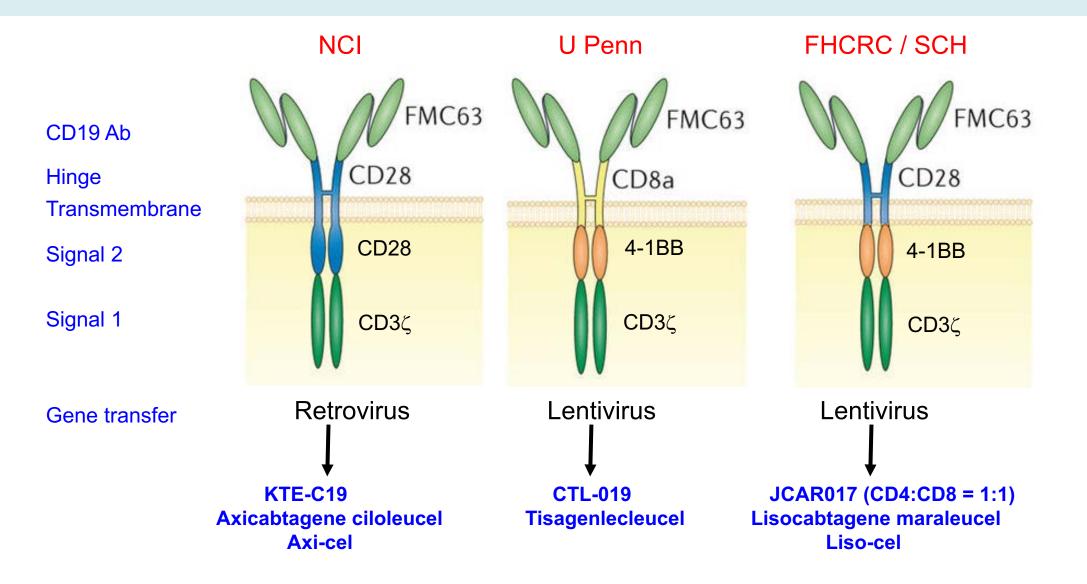

Chimeric Antigen Receptor (CAR) Modified T cells

 Genetically engineered T cells altered to express an artificial receptor, CAR


Courtesy of Sattva S Neelapu, MD

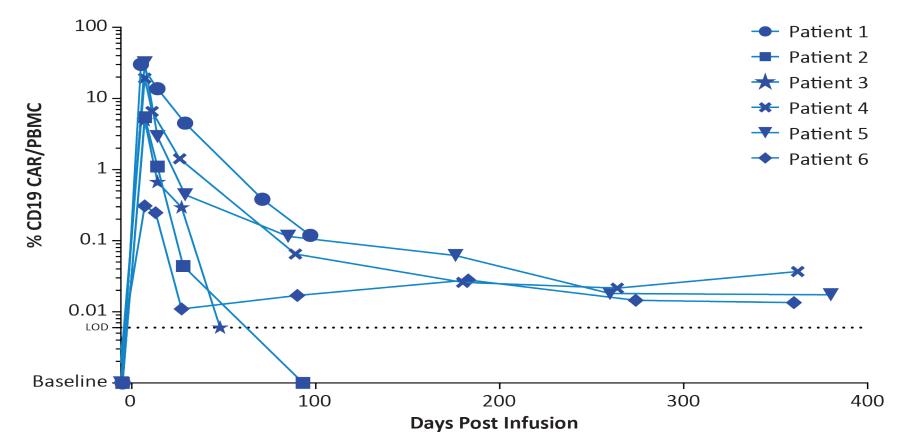
Treatment schema for CAR T-cell therapy

CAR T cell response to antigen


CAR T cell

- Proliferate
- Make cytokines
- Kill the target cells

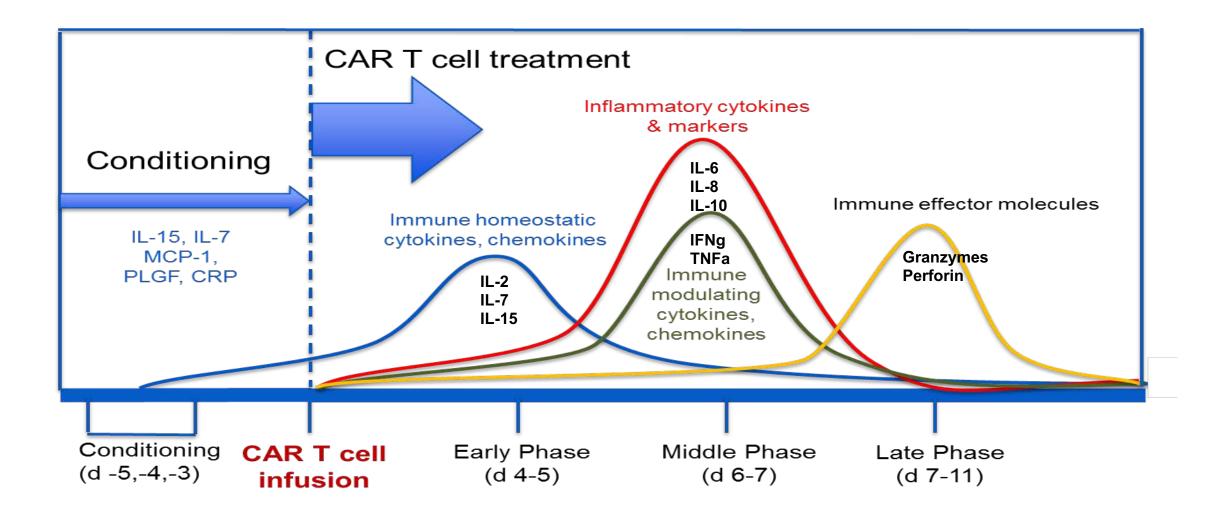
Courtesy of Sattva S Neelapu, MD


CD19 CAR T products in pivotal trials in NHL

Courtesy of Sattva S Neelapu, MD

Adapted from van der Steegen et al. Nat Rev Drug Discov, 2015

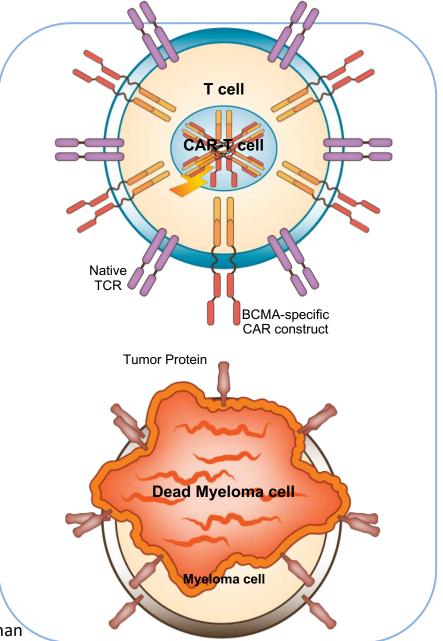
CAR T-cell expansion and persistence after axi-cel infusion



- Peak expansion observed within 2 weeks
- CAR T cells detectable beyond two years after infusion
- Each infused CAR T cell can proliferate to >10,000 cells in the body

Courtesy of Sattva S Neelapu, MD

Locke, Neelapu et al, Mol Ther, 2017

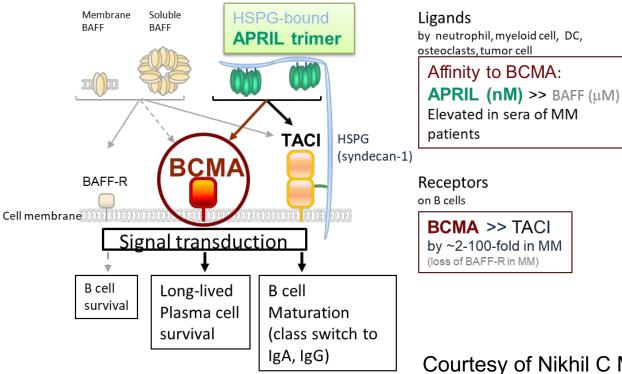

Cytokine pattern after axi-cel CAR T infusion

Courtesy of Sattva S Neelapu, MD

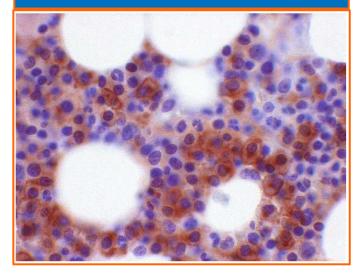
Chimeric Antigen Receptor T cells (CAR T Cells)

- Exploit <u>native antibody or T cell</u> <u>recognition</u> and signaling pathways
- Introduction of unique genes through <u>viral</u> <u>vectors</u> to allow recognition of tumor cells
- Dramatic expansion after infusion, and effective tumor cell killing
- After initial trials proving the efficacy in B cell malignancies, <u>other targets, cancers</u> <u>and molecular constructs</u> are being explored

Courtesy of Nikhil C Munshi, MD


Image courtesy of Stephan Grupp, UPenn

BCMA – A Promising Target in Multiple Myeloma


BCMA is member of the TNF receptor superfamily

- Expressed nearly universally on MM cells
- Expression largely restricted to plasma cells and some mature B cells

BCMA Is A Selective Plasma Cell Antigen

Multiple myeloma cells expressing BCMA

(brown color = BCMA protein)

Courtesy of Nikhil C Munshi, MD

Tai & Anderson Immunotherapy 2015; 7: 1187-99.

73-year-old woman with DLBCL (from the practice of Ms Zerante)

- 2015: Diagnosed with follicular lymphoma \rightarrow multiple treatments (outside oncologist)
- Presents with refractory, transformed DLBCL, with a significant disease burden
- During COVID-19 pandemic: Fludarabine/cyclophosphamide lymphodepleting chemotherapy
 - Robust fever no identifiable cause, including COVID-19, after extensive infectious work up → resolves
- CAR T cell infusion
 - D+2-3 persistent fever \rightarrow tocilizumab + dexamethasone
 - D+10 double vision
 - Recurrent diarrhea, significant elevation of inflammatory markers
 - D+13 discharged
 - D+30 PET: CR
- Currently, discharged and at home, with recurrent infections
 - CMV viremia, with pancytopenia, bacteremia, recurrent clostridioides difficile

Agenda

Module 1: Overview of Chimeric Antigen Receptor (CAR) T-Cell Therapy

• Case Presentation: Ms Zerante — 73-year-old woman with DLBCL

Module 2: Side Effects Associated with CAR T-Cell Therapy

• Case Presentation: Ms Zerante — 23-year-old woman with ALL

Module 3: Anti-BCMA CAR T-Cell Therapy in Multiple Myeloma (MM)

- Case Presentation: Dr Richards 58-year-old woman with MM
- Case Presentation: Dr Richards 62-year-old man with MM

Module 4: CD19-Directed CAR T-Cell Therapy for Aggressive Lymphomas

• Case Presentation: Ms Zerante — 79-year-old man with DLBCL

Module 5: CAR T-Cell Therapy in Acute Lymphoblastic Leukemia (ALL)

Case Presentation: Ms Zerante — 41-year-old woman with ALL

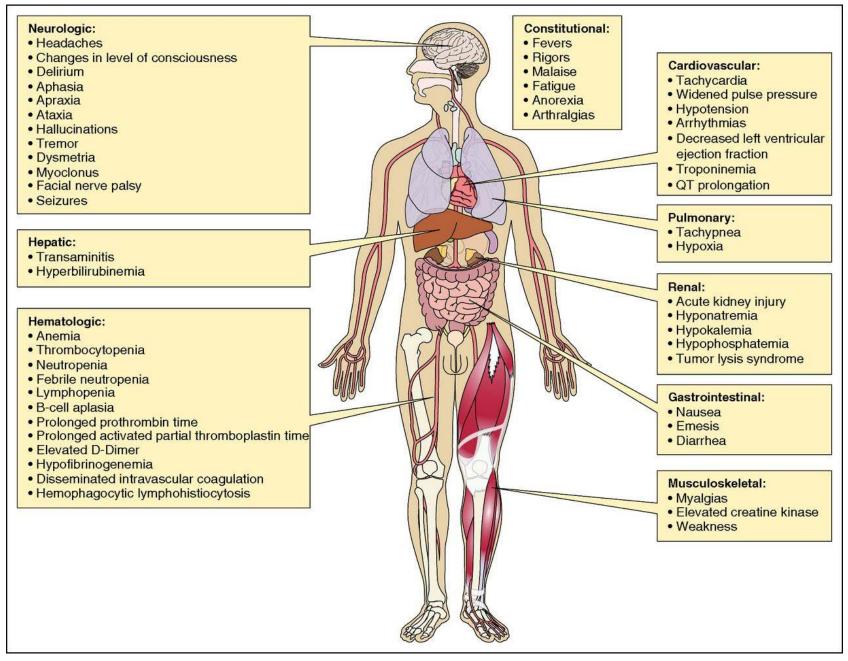
Module 2: Side Effects Associated with CAR T-Cell Therapy

- Overall performance criteria to receive CAR-T therapy
- Cytokine release syndrome (CRS)
 Clinical manifestations and management
- Neurotoxicity: Immune effector cell-associated neurotoxicity syndrome (ICANS)
- Apps and guidelines (eg, MD Anderson Cancer Center CARTOX app)

The "cytokine storm" observed with CAR T-cell therapy shares some characteristics with a similar syndrome in patients with COVID-19.

- a. Agree
- b. Disagree
- c. I don't know

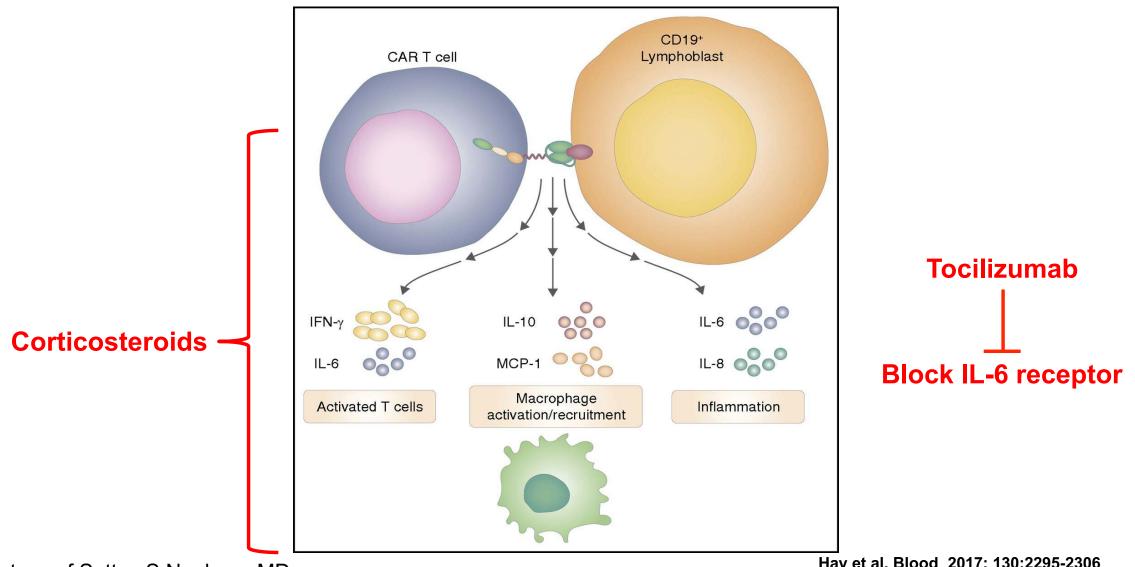
ICANS is a formalized hierarchy of neurologic sequelae of CAR T-cell therapy.


- a. Agree
- b. Disagree
- c. I don't know

CD-19-directed CAR T-cell therapy can deplete normal B cells but seems to have minimal adverse consequences.

- a. Agree
- b. Disagree
- c. I don't know

Cytokine release syndrome (CRS)


 Systemic inflammatory response caused by cytokines released by CAR T cells and other immune cells and results in reversible organ dysfunction

Courtesy of Sattva S Neelapu, MD

Brudno and Kochenderfer, Blood 2016; 127:3321-3330

Cytokines are produced by T cells and bystander immune cells and may be inhibited by corticosteroids

Courtesy of Sattva S Neelapu, MD

Hay et al. Blood 2017; 130:2295-2306 Maude SL. *Blood* 2017;130:2238-2240

Neurotoxicity or ICANS

(Immune effector Cell-Associated Neurotoxicity Syndrome)

- Typically manifests as a toxic encephalopathy
 - CRES CAR-Related Encephalopathy Syndrome
 - Word finding difficulty, confusion, disorientation, agitation, dysphasia, aphasia, somnolence, tremors, and impaired handwriting
 - In more severe cases, seizures, motor weakness, incontinence, increased intracranial pressure, papilledema, and cerebral edema may also occur
- Onset may be during CRS or after CRS symptoms have subsided
- May last few hours to several days
- Generally reversible with no permanent neurological deficits

Handwriting Samples and MMSE After CAR T-Cell Therapy

Day 4, MMSE 29/30

Day 5, MMSE 27/30

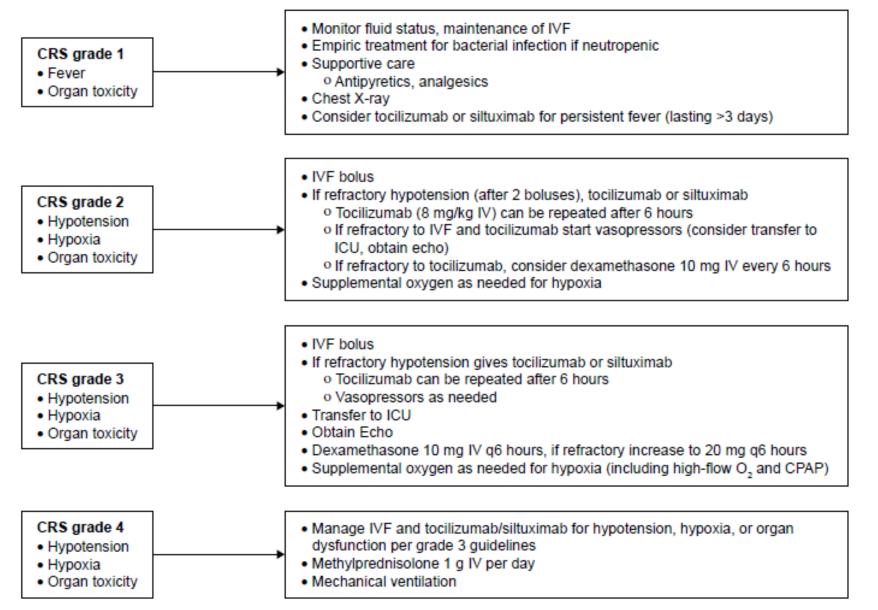
Day 6, MMSE 29/30

- Handwriting samples and mini mental status exam (MMSE) scores obtained on days 4, 5, and 6 after CAR T-cell therapy
- Note how the patient's handwriting was markedly impaired on day 5, despite only a small decrease in their MMSE score.

Neelapu SS et al. Nat Rev Clin Oncol 2018;15(1):47-62.

CARTOX App for Grading and Management of CRS and ICANS

Smart phone app available free on both App Store (iPhone) and Google Play (Android)


CARTOX Toxicity Assessment and Management	CRS Grading	\bigcirc	Has the patient recently ① received antipyretics, anti-cytokine therapy or Yes No	RS GRADE CRS Cytokine Release Syndrome	(
	CRS Reference Table	\bigcirc	Does the patient have any of the following related to Cell	1 ICANS Immune effector Cell-Associated Neurotoxicity Syndrome	(
kicity Grading Toxicity Management	ICANS Grading	\bigcirc	Fever temperature ≥ 38.0 °C Yes No	HLH/MAS Hemophagocytic Lymphohistiocytosis Macrophage Activation Syndrome	(
	Calculate ICE Score	0	Hypotension not attributable to any other cause Ves No	Status Epilepticus	(
		\bigcirc			
			Hypoxia not attributable to any other cause	Increased Intracranial Pressure	(
			Hypoxia not attributable to any other cause	Increased Intracranial Pressure	(
			Hypoxia not attributable to any other cause	Increased Intracranial Pressure	(
			Hypoxia not attributable to any other cause	Increased Intracranial Pressure	(
			Hypoxia not attributable to any other cause Ves No	Increased Intracranial Pressure	

Sherry Adkins

Courtesy of Sattva S Neelapu, MD

Neelapu et al. *Nat Rev Clin Oncol,* Jan 2018 Lee et al. *Biol Blood Marrow Transplant,* 2019 Apr;25 (4):625-638

CARTOX Working Group

Riegler et al, Ther Clin Risk Manage 2019 (adapted from Neelapu et al, Nat Rev Clin Onc 2017)

Courtesy of Nikhil C Munshi, MD

Patient Education Regarding Car T Cell Therapy

CRS	Neurotoxicity	Management of Toxicities
 Fever Hypotension Tachycardia Hypoxia Chills 	 Tremors Dizziness Delirium Confusion Agitation Cerebral Edema 	 Tocilizumab Steroids

Adkins, S. (2019). Car T cell therapy: adverse events and management. J. Adv Pract Onco Supple3. 21-28..

Patient Education Regarding Car T Cell Therapy

Logistics

- Stay locally for 30 days
- Inpatient vs outpatient
- Frequent visits to hospital
- Local Oncologist to coordinate care
- Caregiver 24 hours a day

Pancytopenia

- Decreased blood counts
- Blood and Platelet Transfusions
- Growth Factor Support
- Infections
- Prophylactic Antibiotics

Other

- When to come to ER
- When to call the clinic
- Ensure caregivers are present
- Contact local oncologist

Adkins, S. (2019). Car T cell therapy: adverse events and management. J. Adv Pract Onco Supple3. 21-28..

23-year-old woman whose treatment is complicated by psychiatric issues (from the practice of Ms Zerante)

- 2017: Ph-negative ALL (normal cytogenetics) → Treated per CALGB protocol → Relapsed → Blinatumomab
- Mental status change due to dissociative amnesia, conversion disorder \rightarrow resolved
- AlloSCT → POMP maintenance
- Inotuzumab x 2 + steroids as bridging treatment
- 11/2019: tisagenlecleucel (tisa-cel) CAR T
 - Renal, cardiac and hepatic dysfunction; Fungemia
 - CRS D+1, ICANS D+13, HLH, DIC requiring transfusion support
 - Adjustment disorder, with depressed mood, anxiety, PTSD
 - D+28 bone marrow biopsy: NED
 - Discharged ~D+55-60
 - 2/2020: D+84 BMBx: NED
- 3-4/2020: Relapsed disease \rightarrow Inotuzumab + dexamethasone \rightarrow BMBx: Residual disease
- 4/2020: Dexamethasone/venetoclax/vincristine pulses
- 5/2020: S/p lymphodepleting chemo \rightarrow CD22 CAR product \rightarrow no response \rightarrow PD \rightarrow Home hospice

Agenda

Module 1: Overview of Chimeric Antigen Receptor (CAR) T-Cell Therapy

• Case Presentation: Ms Zerante — 73-year-old woman with DLBCL

Module 2: Side Effects Associated with CAR T-Cell Therapy

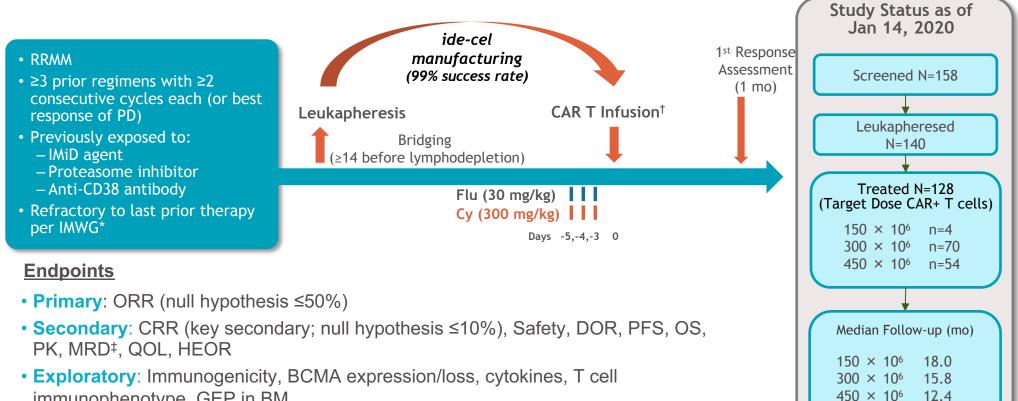
• Case Presentation: Ms Zerante — 23-year-old woman with ALL

Module 3: Anti-BCMA CAR T-Cell Therapy in Multiple Myeloma (MM)

- Case Presentation: Dr Richards 58-year-old woman with MM
- Case Presentation: Dr Richards 62-year-old man with MM

Module 4: CD19-Directed CAR T-Cell Therapy for Aggressive Lymphomas

• Case Presentation: Ms Zerante — 79-year-old man with DLBCL


Module 5: CAR T-Cell Therapy in Acute Lymphoblastic Leukemia (ALL)

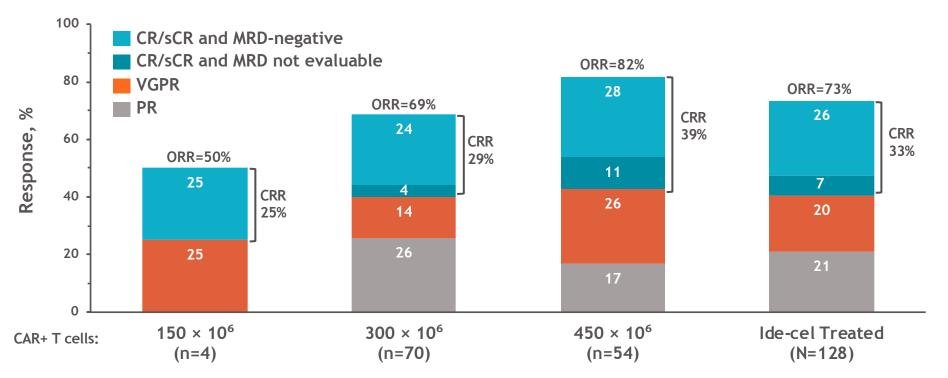
Case Presentation: Ms Zerante — 41-year-old woman with ALL

Module 3: Anti-BCMA CAR T-Cell Therapy in Multiple Myeloma (MM)

- Overview of current management of MM
 - Key current issues
 - Up-front management of MM (daratumumab)
 - Minimal residual disease (MRD)/role of transplant
 - Sequencing of therapies in relapsed disease
- BCMA and related therapies
- Key data sets: KarMMa, EVOLVE, CARTITUDE-1
- Current role for CAR-T trials and other trials of BCMA-related therapies

Phase II Pivotal KarMMa Study

immunophenotype, GEP in BM


Time since initial diagnosis, median (ra	6 (1-18)	
No. of prior anti-myeloma regimens, medi	6 (3-16)	
Prior autologous SCT, %	94 34	
Any bridging therapies for MM, %		88
Refractory status, %	Anti-CD38 Ab-refractory Triple-refractory	94 84

EudraCT: 2017-002245-29 ClinicalTrials.gov: NCT03361748

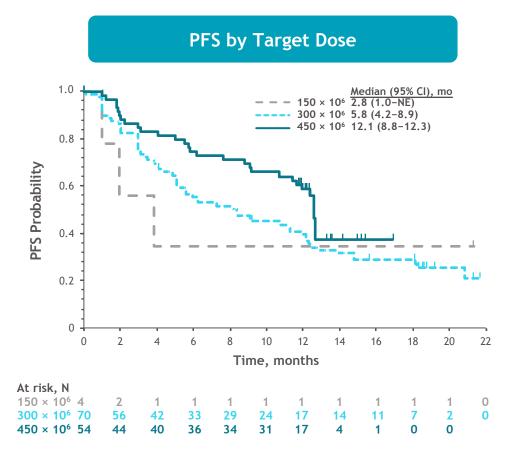
13.3

Total

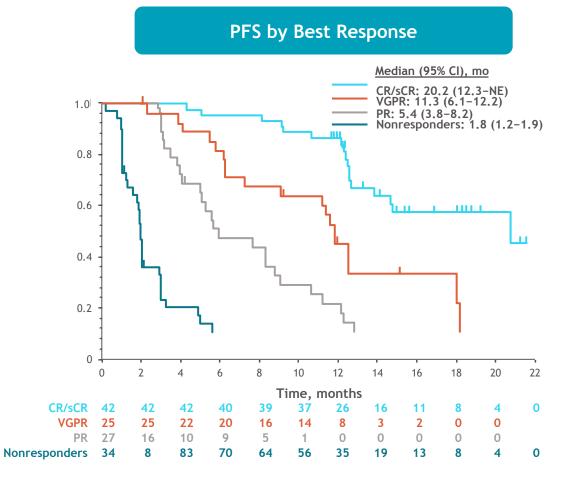
Best Overall Response

- Primary (ORR >50%) and key secondary (CRR >10%) endpoints met in the ide-cel treated population
 - ORR of 73% (95% CI, 65.8-81.1; P<0.0001*)
 - CRR (CR/sCR) of 33% (95% CI, 24.7-40.9; P<0.0001)
- Median time to first response of 1.0 mo (range, 0.5–8.8); median time to CR of 2.8 mo (range, 1.0–11.8)
- Median follow-up of 13.3 mo across target dose levels

Data cutoff: 14 Jan 2020. MRD-negative defined as <10⁻⁵ nucleated cells by next generation sequencing. Only MRD values within 3 mo of achieving CR/sCR until progression/death (exclusive) were considered. Values may not add up due to rounding.


CR/sCR, complete response/stringent CR; CRR, CR rate; MRD, minimal residual disease; ORR, overall response rate (≥PR); PR, partial response; VGPR, very good PR. *P value at the primary data cutoff with same ORR and 95% CI.

Courtesy of Nikhil C Munshi, MD


Munshi et al ASCO 2020

49

Progression-Free Survival

• PFS increased with higher target dose; median PFS was 12 mo at 450 \times 106 CAR+ T cells

 PFS increased by depth of response; median PFS was 20 mo in patients with CR/sCR

Data cutoff: 14 Jan 2020. NE, not estimable; PFS, progression-free survival. Courtesy of Nikhil C Munshi, MD 50

Recent CAR-T Studies - Characteristics

	KarMMa: idecabtagene vicleucel (n=128)	EVOLVE: orvacabtagene autoleucel (n=62)	CARTITUDE-1: JNJ-4528 (n = 29)
Age	61 (33-78)	61 (33-77)	60 (50-75)
High Risk Cytogenetics, %	35	41*	27
Tumor Burden in BM, %	>50% PC = 51		≥60% PC = 24
Extramedullary PCs, %	39	23	10
Median prior lines of therapy	6 (3-16)	6 (3-18)	5 (3-18)
Triple refractory, %	84	94	86
Bridging therapy, %	88	63	79
Unique properties	Human BCMA, 4-1BB, CD3z	Modified spacer, CD4:CD8 enriched for CM	Median cell dose 0.72x10⁶ cells/kg 2 BCMA single chain antibodies

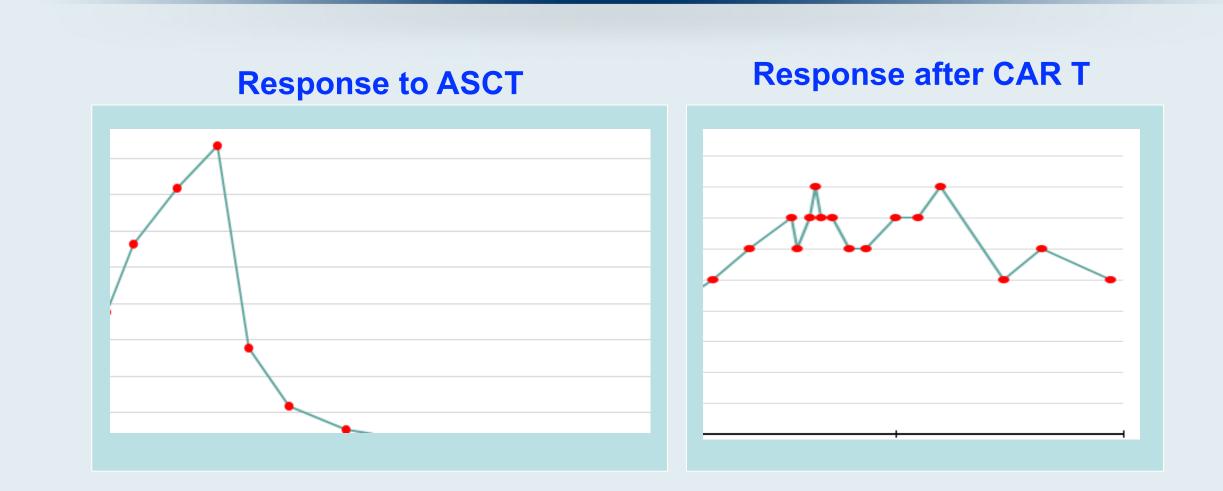

Recent CAR-T Studies – Safety and Efficacy

Safety					Efficacy			
	KarMMa	EVOLVE	CARTITUDE-1			KarMMa	EVOLVE	CARTITUDE-1
↓ ANC ≥G3, %	89	90	100			(n = 128)	(n = 62)	(n = 29)
↓ plts ≥G3, %	52	47	69		ORR, %	73 (66-81)	92	100
CRS: all, ≥G3,%	84, 6	89, 3	93, 7		sCR/CR, %	33	36	86
Med. time to CRS,	1 (1-12)	2 (1-4)	7 (2-12)		Service and the	55	50	00
duration, days	5 (1-63)	4 (1-10)	4 (2-64)		MRD neg ≥10 ⁻⁵ , % (of evaluable)	94	84	81
ICANS: all, ≥G3,%	17, 3	13, 3	10, 3		(OI EValuable)			
HLH/MAS, %		5	? 7 (lfts)		PFS/DoR, months	8.8/10.7	NR*	NR**
Infections: all, ≥G3 %	69,	40, 13	, 19		Screened	150		35
Toci/steroid/ anakinra use, %	52/15/0	76/52/ <mark>23</mark>	79/21/ <mark>21</mark>		Apheresed Treated	140 128		35 35 29

* 300 x10^6 cell dose cohort (lowest) = PFS 9.3 months, other med F/U = 8.8 and 2.3 month ** 9 mo PFS = 86%

? This was not listed at MAS/HLH, I am just speculating ightarrow could this have been early MAS

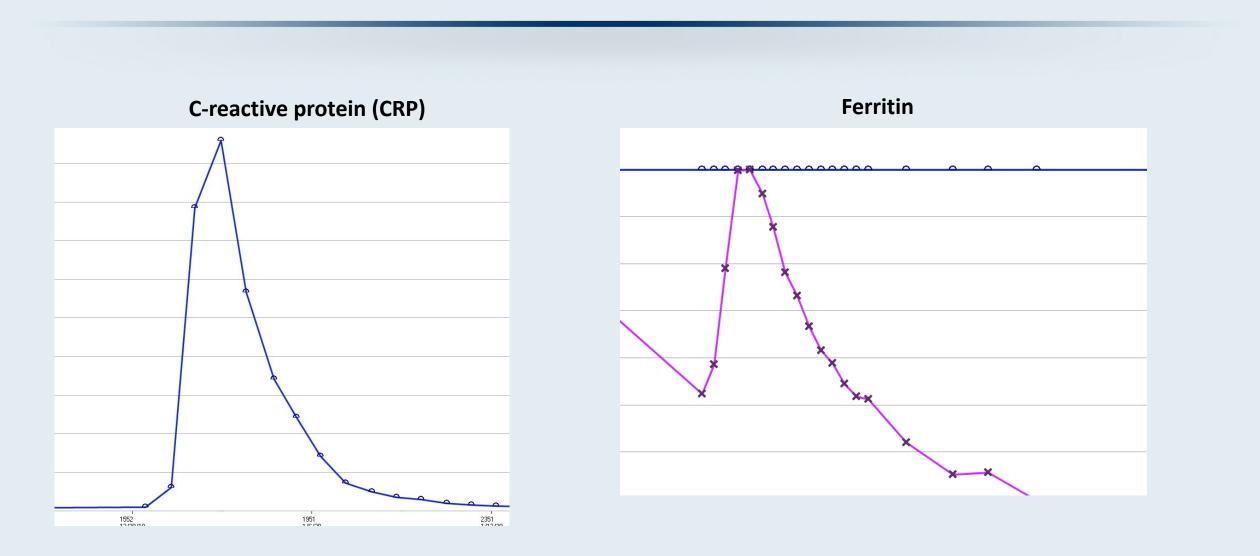
bb2121: Anti-BCMA Chimeric Antigen Receptor T-Cell in Multiple Myeloma



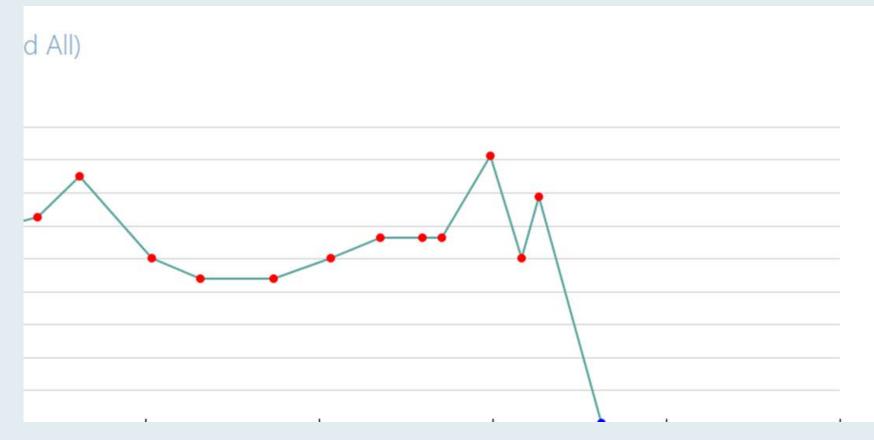
Courtesy of Nikhil C Munshi, MD

58-year-old woman with MM (from the practice of Ms Richards)

- 2012: Diagnosed with IgG lambda light chain multiple myeloma, with CKS1B amplification
- VRd x 5 with minimal response \rightarrow changed to CyBorD with PR
- Autologous cell stem cell transplant → relapsed 1 month post ASCT
- Multiple lines of therapy with initial response with quick subsequent relapse
 - Daratumumab/lenalidomide/dexamethasone
 - Daratumumab/pomalidomide/dexamethasone
 - Pomalidomide/cyclophosphamide/dexamethasone
- Clinical trial of BCMA CAR T therapy
 - Minimal Response (off therapy for 6 months)
 - Diffuse arthralgias 6 weeks post-CAR T cell infusion
- Restart daratumumab/pomalidomide/dexamethasone \rightarrow PD
- Currently, receiving cyclophosphamide/pomalidomide/dexamethasone


58-year-old woman (from the practice of Ms Richards)

62-year-old man with MM (from the practice of Ms Richards)


- 2017: Diagnosed with multiple myeloma, t(14;16)
- VRd \rightarrow 2018 ASCT \rightarrow maintenance lenalidomide x 4 months \rightarrow PD
- Daratumumab/lenalidomide/dexamethasone
- Daratumumab/bortezomib/dexamethasone with PD after 2 months
- 12/2019: Clinical trial with bb2121 \rightarrow Complete remission
 - Fever, rigors, wheezing; Required oxygen
 - Grade 2 CRS (Tylenol, Duoneb inhaler -- albuterol and ipratropium) \rightarrow resolved after 2 days
- 6/17/2020: Currently, still in CR

62-year-old man with MM (from the practice of Ms Richards)

62-year-old man with MM (from the practice of Ms Richards)

Excellent response to CAR T-cell Remains in remission 6 months post CAR T-cell therapy

Agenda

Module 1: Overview of Chimeric Antigen Receptor (CAR) T-Cell Therapy

• Case Presentation: Ms Zerante — 73-year-old woman with DLBCL

Module 2: Side Effects Associated with CAR T-Cell Therapy

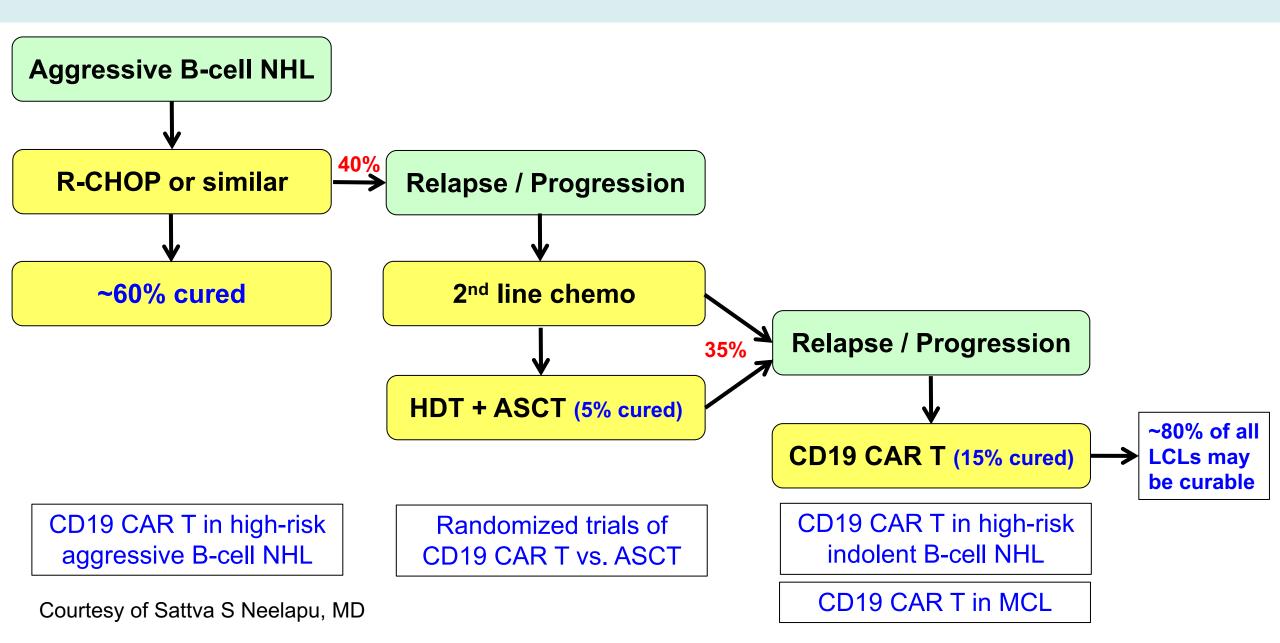
• Case Presentation: Ms Zerante — 23-year-old woman with ALL

Module 3: Anti-BCMA CAR T-Cell Therapy in Multiple Myeloma (MM)

- Case Presentation: Dr Richards 58-year-old woman with MM
- Case Presentation: Dr Richards 62-year-old man with MM

Module 4: CD19-Directed CAR T-Cell Therapy for Aggressive Lymphomas

• Case Presentation: Ms Zerante — 79-year-old man with DLBCL


Module 5: CAR T-Cell Therapy in Acute Lymphoblastic Leukemia (ALL)

Case Presentation: Ms Zerante — 41-year-old woman with ALL

Module 4: CD19-Directed CAR T-Cell Therapy for Aggressive Lymphomas

- Overview of current management of diffuse large B-cell lymphoma (DLBCL)
 - Key current issues
 - Autologous stem cell transplant for recurrent disease
 - Antibody-drug conjugates (polatuzamab vedotin)
 - Other novel agents
 - CD-19 as a target for treatment
 - Key data sets: ZUMA-1, JULIET, TRANSCEND NHL 001
- Overview of current management of mantle cell lymphoma (MCL)
 Key data sets: ZUMA-2, ZUMA-5
- Current clinical role for CAR-T therapy

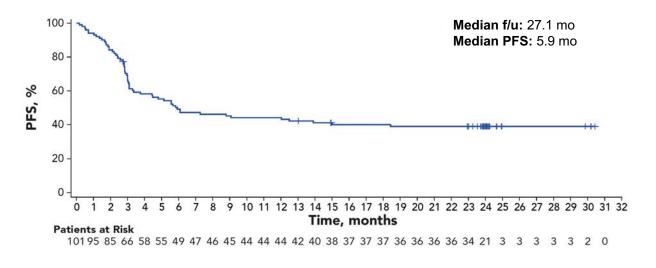
CD19 CAR T in NHL: Beginning of a paradigm shift

Multicenter CD19 CAR T-cell trials in aggressive NHL

Study	ZUMA-1	JULIET	TRANSCEND	
Reference	Neelapu et al. NEJM 2017 Locke et al. Lancet Oncol 2019	Schuster et al. NEJM 2019	Abramson et al. ASH 2019	
CAR T design	CD19/CD3ζ/ <mark>CD28</mark>	CD19/CD3ζ/ <mark>4-1BB</mark>	CD19/CD3ζ/4-1BB	
CAR T dose	2 x 10 ⁶ /kg	Up to 0.6-6 x 10 ⁸	0.5-1.5 x 10 ⁸	
Conditioning therapy	Conditioning therapy Cy/Flu		Cy/Flu	
Lymphoma subtypes Percentage	• • •		DLBCL / PMBCL / TFL / Other 64 / 6 / 22 / 8	
Relapsed/Refractory	d/Refractory Refractory		Relapsed or refractory	
Relapse post-ASCT	Relapse post-ASCT 23%		35%	
Bridging therapy	Bridging therapy None		Allowed	
Manufacturing success	Manufacturing success 99%		99%	
Treated/Enrolled 108/120 (90%)		111/165 (67%)	269/344 (78%)*	

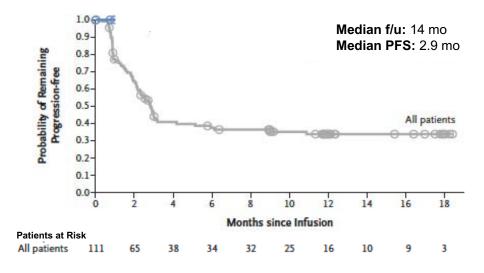
*Additional 7% received nonconforming product

Courtesy of Sattva S Neelapu, MD


Efficacy in multicenter CD19 CAR T trials in adult LBCL

			Best ı	response	PFS/OS		
Study	Product	N	Best ORR	Best CR rate	Median PFS	Median OS	Ref
ZUMA-1	CD19/CD3ζ/ <mark>CD28</mark>	108	83%	58%	5.9 mo	25.8 mo	Neelapu et al, NEJM 2017; ASH 2019 Locke et al, Lancet Oncol 2019
JULIET	CD19/CD3ζ/ <mark>4-1BB</mark>	93	52%	40%	2.9 mo	12 mo	Schuster et al, NEJM 2019
TRANSCEND	CD19/CD3ζ/ <mark>4-1BB</mark>	256	73%	53%	6.8 mo	21.1 mo	Abramson et al, ASH 2019

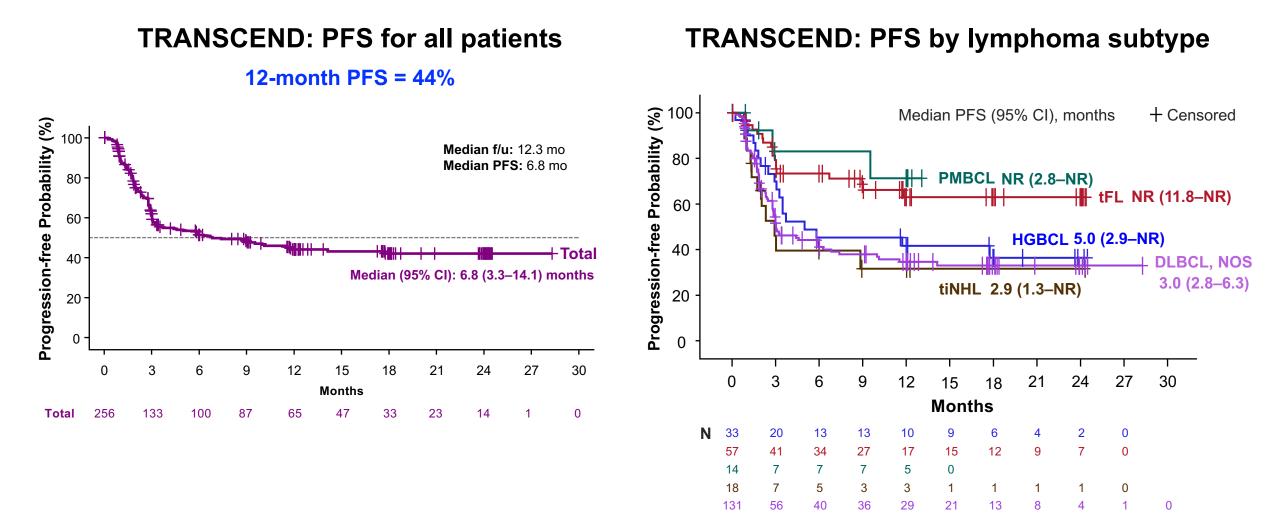
Durable responses with CAR T-cell therapy in r/r large B-cell lymphoma


ZUMA-1: PFS with axi-cel

39% progression-free at 27.1 mo

JULIET: PFS with tisagenlecleucel

34% progression-free at 14 mo[#]


[#]Calculated value from publication

Neelapu et al. *N Eng J Med* 2017 Locke et al. *Lancet Oncol* 2019

Schuster et al. N Eng J Med 2019

Courtesy of Sattva S Neelapu, MD

Durable responses with liso-cel in r/r large B-cell lymphoma

Courtesy of Sattva S Neelapu, MD

Abramson et al. ASH 2019, Abstract 241

Patients with co-morbidities have inferior PFS

Axicabtagene ciloleucel and tisagenlecleucel: Current indications in NHL

- Axicabtagene ciloleucel (CD19/CD3ζ/CD28)
 - Adult patients with relapsed or refractory large B cell lymphoma after two or more lines of systemic therapy, including DLBCL, high-grade B cell lymphoma, <u>PMBCL</u>, and transformed follicular lymphoma
- Tisagenlecleucel (CD19/CD3ζ/4-1BB)
 - Adult patients with relapsed/refractory large B cell lymphoma after two or more lines of systemic therapy including DLBCL, high-grade B cell lymphoma and transformed follicular lymphoma

Courtesy of Sattva S Neelapu, MD

ZUMA-2: Ph 2 study of KTE-X19 in r/r mantle cell lymphoma

Eligibility

- R/R MCL not responding or progressing after last therapy
- 1-5 prior therapies that must have included anthracycline/bendamustine, anti-CD20 and BTKi
- ECOG 0-1
- ALC $\geq 100/\mu L$
- Adequate organ function
- Enrolled = 74
- Manufactured = 71 (96%)
- CAR-T infused = 68 (92%)
- No chemo bridging
- Cy/Flu conditioning
- CAR-T dose = 2 x 10⁶/kg

Courtesy of Sattva S Neelapu, MD

Efficacy

- ORR = 93%
- CR rate = 67%
- Median f/u = 12.3 mo
- 57% of all patients and 78% of CR patients remain in remission
- Median PFS and OS were not reached

Safety

- CRS = 91% all grades; 15% grade \geq 3
- NEs = 63% all grades; 31% grade \geq 3

ZUMA-5: Ph 2 study of axi-cel in r/r indolent NHL

Eligibility

- R/R follicular lymphoma (FL) or marginal zone lymphoma (MZL)
- ≥ 2 prior lines of therapy must have included anti-CD20 and alkylating agent
- Enrolled = 148
- CAR-T infused = 140 (95%)
- 4 pending infusion
- Cy/Flu conditioning
- CAR-T dose = 2×10^6 /kg
- Data cut-off: Dec 16, 2019
- 140 evaluable for safety
- 96 evaluable for safety (80 FL+16 MZL)

Efficacy

- ORR = 93%
- CR rate = 80%
- Median f/u = 15.3 mo
- 68% of all FL patients and 80% of CR patients remain in remission
- Median PFS was 23. 5 mo and median OS were not reached

Safety

- CRS = 79% all grades; 8% grade \geq 3
- NEs = 58% all grades; 17% grade \geq 3

79-year-old man with DLBCL (from the practice of Ms Zerante)

- 2005: Diagnosed with CLL and high-grade B-cell lymphoma, with MYC and BCL2 rearrangements
 - Active surveillance
- 2017: B-cell lymphoma
- Multiple prior treatments for DLBCL
- Presents with a significant disease burden
- CAR T-cell therapy with axi-cell
 - Peak grade 2 CRS (hypotension and fever) day 4-5. Received Toci x1
 - Peak 0 ICANS (though noted slowed speech)
 - Developed C. Diff diarrhea during admission
- Currently, 2 years later and patient remains in CR

Agenda

Module 1: Overview of Chimeric Antigen Receptor (CAR) T-Cell Therapy

• Case Presentation: Ms Zerante — 73-year-old woman with DLBCL

Module 2: Side Effects Associated with CAR T-Cell Therapy

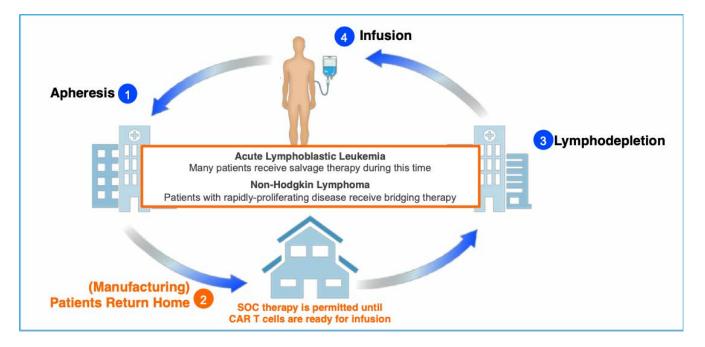
• Case Presentation: Ms Zerante — 23-year-old woman with ALL

Module 3: Anti-BCMA CAR T-Cell Therapy in Multiple Myeloma (MM)

- Case Presentation: Dr Richards 58-year-old woman with MM
- Case Presentation: Dr Richards 62-year-old man with MM

Module 4: CD19-Directed CAR T-Cell Therapy for Aggressive Lymphomas

• Case Presentation: Ms Zerante — 79-year-old man with DLBCL

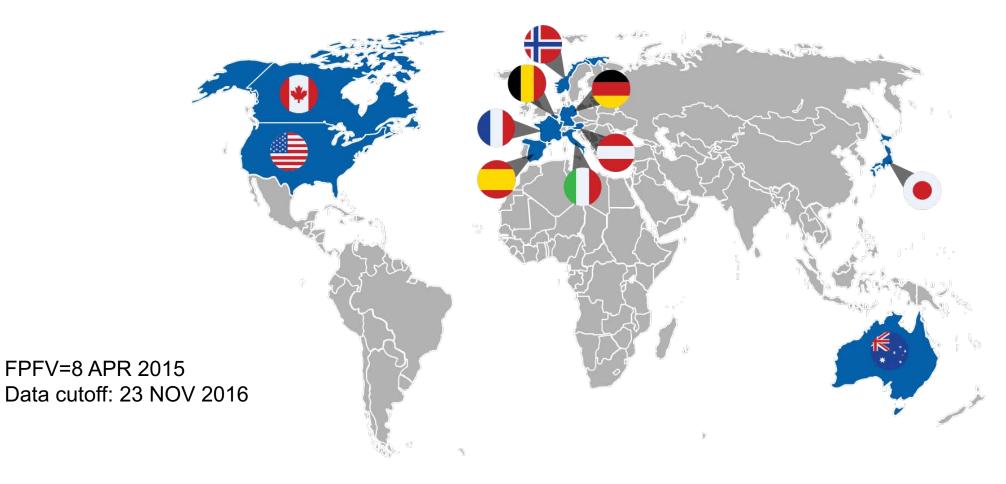

Module 5: CAR T-Cell Therapy in Acute Lymphoblastic Leukemia (ALL)


Case Presentation: Ms Zerante — 41-year-old woman with ALL

Module 5: CAR T-Cell Therapy in Acute Lymphoblastic Leukemia (ALL)

- Overview of current management of ALL
 - Blinatumumab
 - Administration/toxicity compared to CAR-T therapy
- Key data set: ELIANA
- Current clinical role for CAR-T therapy

The CAR-T journey: phases of care for patient, developer, clinician

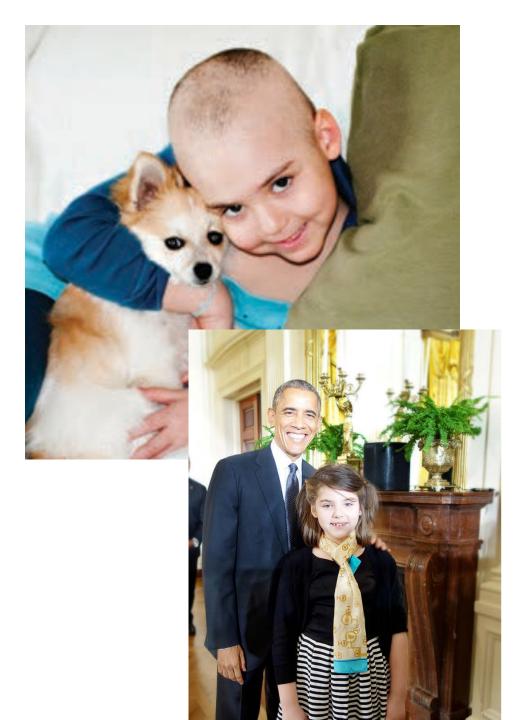


NEWDIGS Initiative • MIT Center for Biomedical Innovation

Global, Multicenter ELIANA Trial: ALL Registration Study

- ELIANA is a single arm global study with centralized manufacturing of tisagenlecleucel
- 25 sites in 11 countries across North America, Europe, Australia, and Asia

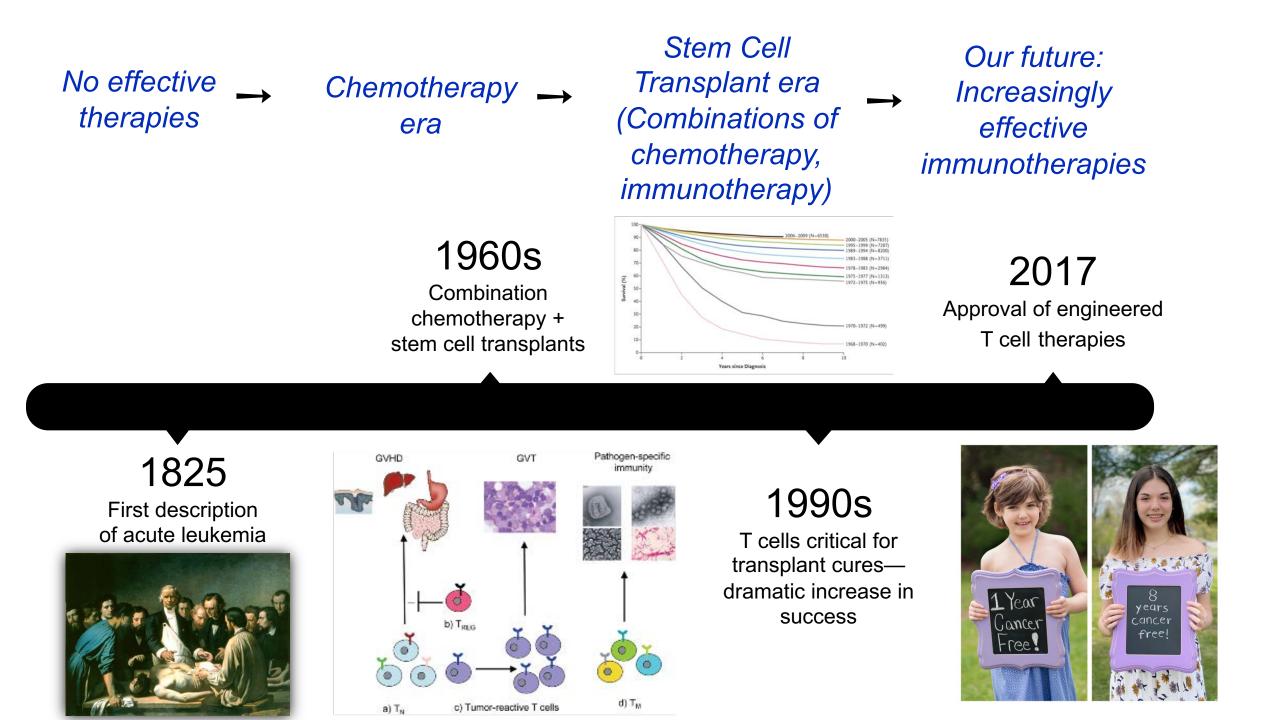
ELIANA: Primary Efficacy Analysis¹


Parameter	Efficacy Analysis Set ^a (n = 63)			
Primary endpoint	% (n/N)	95% CI	Р	
Overall remission rate (CR + CRi) within 3 months	83 (52/63)	(71-91)	< .001 ^d	
Best overall response, % ^b				
CR	63			
CRi	19			
Secondary endpoint				
Best overall response of CR or CRi within 3 months with MRD-negative ^c BM	83	(71-91)	< .001 ^d	

• Primary efficacy analysis consistent with interim analysis where primary endpoint was met

^a Patients infused with CTL019 ≥3 months prior to data cutoff. ^b The response was unknown in 6 patients. ^c MRD negative = MRD <0.01%.

^d Nominal *P* value presented to test null hypothesis of overall remission rate <20% for comparison with historical control.


1. Buechner J at al. 23rd Annual Congress of the European Hematology Association 2017 (EHA 2017). Abstract S476.

Please exance Emily from school - she uses with me!

41-year-old woman with ALL (from the practice of Ms Zerante)

- 4/2013: Pre-B-cell ALL (normal cytogenetics) → CALGB-10403 pediatric regimen, with CR → NED
- 11/2016: Relapse t(4;16)
- 2/2017: Hyper-CVAD course B with rituximab followed by course A \rightarrow Transplant
- 2/2018: Relapse
- 5/2018: Completes inotuzumab x 4 with remission
- Early 2019: Relapse, with CD22-negative B-ALL
- DOMP, intrathecal methotrexate bridging therapy to CAR-T
- CAR-T cell infusion \rightarrow D+7 fever, hypotension, tachycardia (tocilizumab)
 - Discharged home D+16
- 4/10/2020: Relapse → Inotuzumab
- 5/5/2020 Bone marrow biopsy: Hypocellular marrow with residual CD19, CD22+ disease
- 5/14/2020: Admitted for blinatumomab, escalated to full dose 5/17 and discharged
- Plan: Continue blinatumomab: If MRD-negative CR, then second TMI marrow transplant from unrelated donor

Thank you for joining us!

CNE (NCPD) credit information will be emailed to each participant tomorrow morning.