Beyond the Guidelines: Clinical Investigator Perspectives on the Management of HER2-Positive Breast Cancer

Thursday, December 10, 2020 8:30 PM - 10:00 PM ET

Faculty

Carey K Anders, MD Mark D Pegram, MD Erika Hamilton, MD Sara M Tolaney, MD, MPH

Sara Hurvitz, MD

Moderator

Neil Love, MD

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Puma Biotechnology Inc and Seagen Inc.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following commercial interests: AbbVie Inc, Acerta Pharma — A member of the AstraZeneca Group, Adaptive Biotechnologies Corporation, Agendia Inc, Agios Pharmaceuticals Inc, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Biodesix Inc, bioTheranostics Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Daiichi Sankyo Inc, Dendreon Pharmaceuticals Inc, Eisai Inc, EMD Serono Inc, Epizyme Inc, Exelixis Inc, Foundation Medicine, Genentech, a member of the Roche Group, Genmab, Genomic Health Inc, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Guardant Health, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Infinity Pharmaceuticals Inc, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lexicon Pharmaceuticals Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Merrimack Pharmaceuticals Inc, Myriad Genetic Laboratories Inc, Natera Inc, Novartis, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Prometheus Laboratories Inc, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sandoz Inc, a Novartis Division, Sanofi Genzyme, Seagen Inc, Sirtex Medical Ltd, Spectrum Pharmaceuticals Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Oncology, Tesaro, A GSK Company, Teva Oncology, Tokai Pharmaceuticals Inc and Verastem Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Anders — Disclosures

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Eisai Inc, Elucida Oncology Inc, Genentech, a member of the Roche Group, Immunomedics Inc, Ipsen Biopharmaceuticals Inc, Novartis, Seagen Inc		
Contracted Research	G1 Therapeutics, Lilly, Merck, Nektar, Novartis, Pfizer Inc, Puma Biotechnology Inc, Seagen Inc, Tesaro, A GSK Company, The Zion Pharma		
Royalties	Jones and Bartlett Learning		

Dr Hamilton — Disclosures

Advisory Committee	Boehringer Ingelheim Pharmaceuticals Inc, Daiichi Sankyo Inc, Eisai Inc, Genentech, a member of the Roche Group, Lilly, Mersana Therapeutics, Pfizer Inc, Puma Biotechnology Inc, Seagen Inc				
Consulting Agreement	Flatiron Health				
Contracted Research	AbbVie Inc, Acerta Pharma — A member of the AstraZeneca Group, ArQule Inc, AstraZeneca Pharmaceuticals LP, BerGenBio ASA, Boehringer Ingelheim Pharmaceuticals Inc, Clovis Oncology, Curis Inc, CytomX Therapeutics, Daiichi Sankyo Inc, eFFECTOR Therapeutics Inc, Eisai Inc, EMD Serono Inc, FUJIFILM Pharmaceuticals USA Inc, Genentech, a member of the Roche Group, H3 Biomedicine, Hutchison MediPharma, Immunomedics Inc, InventisBio, Kadmon Corporation, Leap Therapeutics Inc, Lilly, Lycera, MacroGenics Inc, Mallinckrodt Pharmaceuticals, Marker Therapeutics Inc, Medivation Inc, a Pfizer Company, Mersana Therapeutics, Merus BV, Novartis, NuCana, OncoMed Pharmaceuticals Inc, Pfizer Inc, PharmaMar, Radius Health Inc, Regeneron Pharmaceuticals Inc, Rgenix, Seagen Inc, Stemcentrx, Syndax Pharmaceuticals Inc, Syros Pharmaceuticals Inc, Taiho Oncology Inc, Takeda Oncology, Tesaro, A GSK Company, TetraLogic Pharmaceuticals, Verastem Inc, Zymeworks				
Travel/Accommodations/ Expenses (payment or reimbursement of actual expenses)	Amgen Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb Company, Clovis Oncology, Eisai Inc, Foundation Medicine, Genentech, a member of the Roche Group, Genzyme Corporation, Guardant Health, Helsinn Healthcare SA, Heron Therapeutics, Lexicon Pharmaceuticals Inc, Lilly, Medivation Inc, a Pfizer Company, Merck, Novartis, Pfizer Inc, Roche Laboratories Inc, Sysmex Corporation, Tesaro, A GSK Company				

Dr Hurvitz — **Disclosures**

Consulting Agreement (Stock Investment)	NKMax America			
Contracted Research	Ambryx Inc, Amgen Inc, Arvinas, Bayer HealthCare Pharmaceuticals, Daiichi Sankyo Inc, Dignitana, Genentech, a member of the Roche Group, GlaxoSmithKline, Immunomedics Inc, Lilly, MacroGenics Inc, Novartis, OBI Pharma Inc, Pfizer Inc, Pieris Pharmaceuticals Inc, Puma Biotechnology Inc, Radius Health Inc, Sanofi Genzyme, Seagen Inc, Zymeworks			
Paid Travel	Lilly			
Stocks (Spouse)	IDEAL IMPLANT, ROMTech			

Dr Pegram — Disclosures

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, MacroGenics Inc, Merck, Novartis, Odonate Therapeutics, Pfizer Inc, Puma Biotechnology Inc, Samsung Bioepis, Seagen Inc, Zymeworks			
Contracted Research	AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Pfizer Inc, Zymeworks			
Data and Safety Monitoring Board/Committee	Roche Laboratories Inc			
Employment (Spouse)	Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company			

Dr Tolaney — Disclosures

Consulting Agreements	AbbVie Inc, AstraZeneca Pharmaceuticals LP, Athenex, Bristol-Myers Squibb Company, Celldex Therapeutics, CytomX Therapeutics, Daiichi Sankyo Inc, Eisai Inc, G1 Therapeutics, Genentech, a member of the Roche Group, Gilead Sciences Inc, Immunomedics Inc, Kyowa Kirin Co Ltd, Lilly, Merck, NanoString Technologies, Nektar, Novartis, Odonate Therapeutics, OncoPep, Pfizer Inc, Puma Biotechnology Inc, Samsung Bioepis, Sanofi Genzyme, Seagen Inc, Silverback Therapeutics		
Contracted Research	AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Cyclacel Pharmaceuticals Inc, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group, Immunomedics Inc, Lilly, Merck, NanoString Technologies, Nektar, Novartis, Odonate Therapeutics, Pfizer Inc, Sanofi Genzyme, Seagen Inc		
Data and Safety Monitoring Board/Committee	Odonate Therapeutics		

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface How to answer poll questions

		PANNSCH CO		## Gallery View 1:	v Participant	:s (10)
					Q Search	
					JS John Smith	₽ 🗅
		treatment recomn			MM Mary Major	• Q 🖂
	ient with MM	Quick Poll	lowed by ASCT		RM Richard Miles	. 🗀
	d maintenance	Carfilzomib +/- dexamethasone	years who then		Richard Miles	· Ci
exp	periences an asy	Pomalidomide +/- dexamethasone	ical relapse?		John Noakes	₽ 🖂
1.	Carfilzomib +/-	Carfizonib + pomalidonide +/- dexamethasone Boturumab + lenalidomide +/- dexamethasone			AS Alice Suarez	% T/s
2.	Pomalidomide	Elotuzumab + pomalidomide +/- dexamethasone			Jane Perez	¾ □1
3.	Carfilzomib + p	Derstumumab + lenalidomide +/- dexamethasone Diaratumumab + pomalidomide +/- dexamethasone	methasone		RS Robert Stiles	% □1
4.	Elotuzumab + I	Daratumumaib + bortezomib +/- dexamethasone	nethasone		Juan Fernandez	% □1
5.	Elotuzumab + p	txazomib + Rd	ımethasone		AK Ashok Kumar	¾ □1
6.	Daratumumab	Submit	camethasone		JS Jeremy Smith	<i>¾</i> □1
7.	Daratumumab + pomalidomide +/- dexamethasone					
8.	Daratumumab + bortezomib +/- dexamethasone					
9.	Ixazomib + Rd					
10	. Other		6			
13	. Other	Co provi	ded by USFHealth Research To Practice			
		-	deaby soft floater for active			
^ ^ / ^	. La	10		Leave Meeting		
Join Audio Start Video	Invite Par	ticipants Share	Chat Record		Mute Me	Raise Hand

When a poll question pops up, click your answer choice from the available options.

Results will be shown after everyone has answered.

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Triple-Negative Breast Cancer

Friday, December 11, 2020 8:30 PM – 10:00 PM ET

Faculty

P Kelly Marcom, MD
Joyce O'Shaughnessy, MD

Hope S Rugo, MD

Professor Peter Schmid, MD, PhD

Moderator

Neil Love, MD

Year in Review: Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology Hepatobiliary and Pancreatic Cancers

Tuesday, December 15, 2020 5:00 PM - 6:00 PM ET

Faculty

Tanios Bekaii-Saab, MD Lipika Goyal, MD, MPhil

> Moderator Neil Love, MD

Meet The Professor Multiple Myeloma

Wednesday, December 16, 2020 12:00 PM - 1:00 PM ET

Faculty
Peter Voorhees, MD

Moderator Neil Love, MD

Meet The Professor Chronic Lymphocytic Leukemia

Wednesday, December 16, 2020 2:00 PM – 3:00 PM ET

Faculty
Nitin Jain, MD

Moderator Neil Love, MD

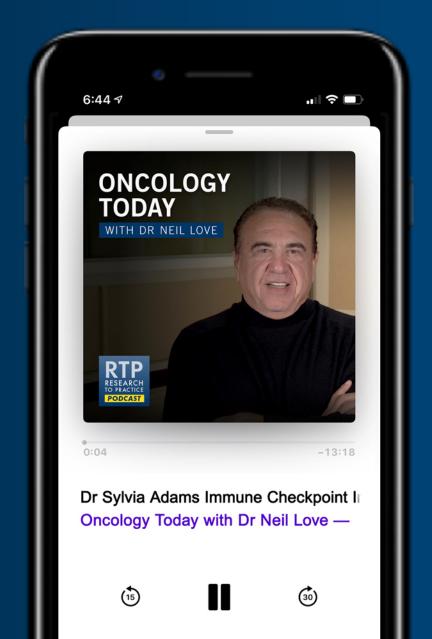
Thank you for joining us!

CME credit information will be emailed to each participant within 3 business days.

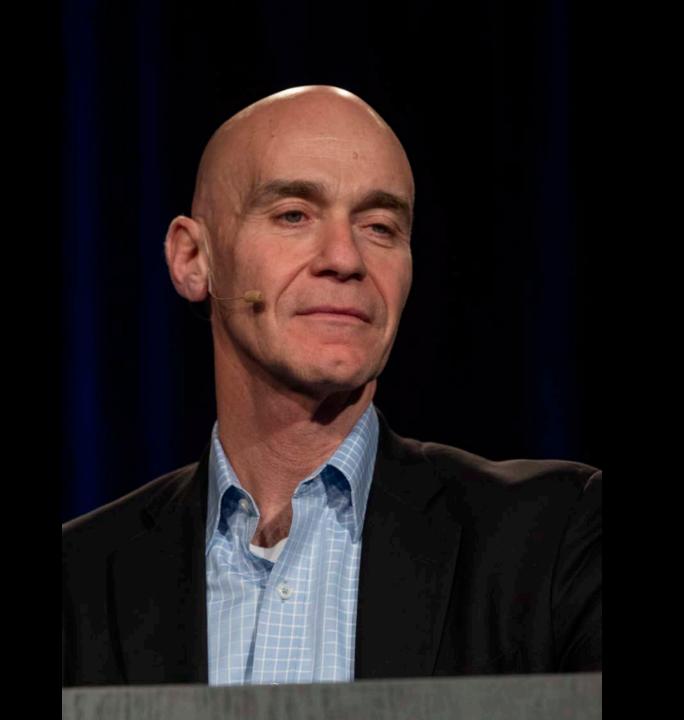
ONCOLOGY TODAY

WITH DR NEIL LOVE

IMMUNE CHECKPOINT INHIBITION IN BREAST CANCER



DR SYLVIA ADAMS
PERLMUTTER CANCER CENTER



Beyond the Guidelines: Clinical Investigator Perspectives on the Management of HER2-Positive Breast Cancer

Thursday, December 10, 2020 8:30 PM - 10:00 PM ET

Faculty

Carey K Anders, MD Mark D Pegram, MD Erika Hamilton, MD Sara M Tolaney, MD, MPH

Sara Hurvitz, MD

Moderator

Neil Love, MD

Faculty

Carey K Anders, MD
Professor of Medicine
Medical Director of the Duke Center
for Brain and Spine Metastases
Duke Cancer Institute
Durham, North Carolina

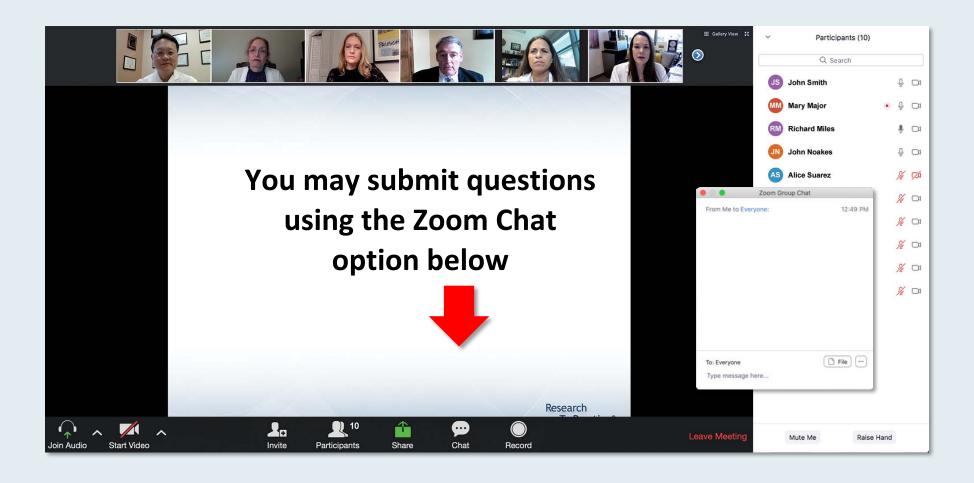
Sara Hurvitz, MD
Professor of Medicine
David Geffen School of Medicine at UCLA
Director, Breast Cancer Clinical Research Program
Co-Director, Santa Monica-UCLA Outpatient
Oncology Practice
Santa Monica, California

Erika Hamilton, MD
Director, Breast and Gynecologic
Research Program
Sarah Cannon Research Institute
Nashville, Tennessee

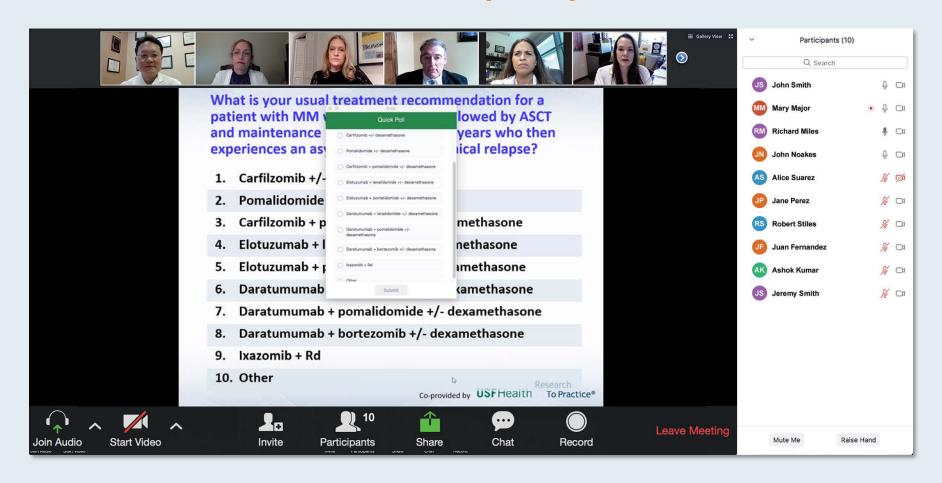
Susy Yuan-Huey Hung Endowed Professor of Oncology
Director, Clinical and Translational Research Unit Associate Dean for Clinical Research Quality Stanford University School of Medicine Associate Director for Clinical Research Stanford Comprehensive Cancer Institute Stanford, California

Faculty

Sara M Tolaney, MD, MPH
Associate Director, Susan F Smith Center for Women's Cancers
Director of Clinical Trials, Breast Oncology
Director of Breast Immunotherapy Clinical Research
Senior Physician
Breast Oncology Program
Dana-Farber Cancer Institute
Associate Professor of Medicine
Harvard Medical School


Boston, Massachusetts

Moderator
Neil Love, MD
Research To Practice
Miami, Florida


We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

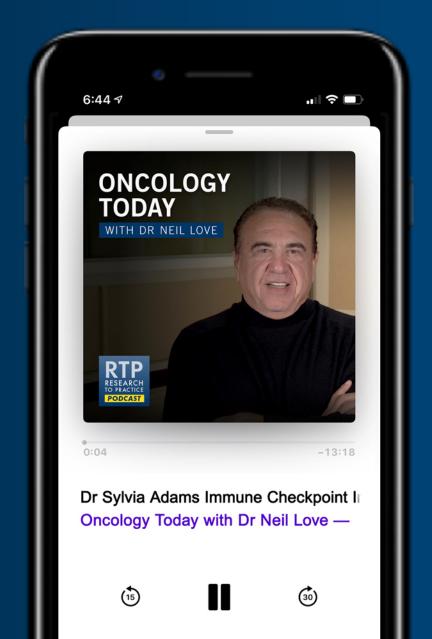
Familiarizing Yourself with the Zoom Interface How to answer poll questions

When a poll question pops up, click your answer choice from the available options. Results will be shown after everyone has answered.

ONCOLOGY TODAY

WITH DR NEIL LOVE

IMMUNE CHECKPOINT INHIBITION IN BREAST CANCER



DR SYLVIA ADAMS
PERLMUTTER CANCER CENTER

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Triple-Negative Breast Cancer

Friday, December 11, 2020 8:30 PM – 10:00 PM ET

Faculty

P Kelly Marcom, MD
Joyce O'Shaughnessy, MD

Hope S Rugo, MD

Professor Peter Schmid, MD, PhD

Moderator

Neil Love, MD

Year in Review: Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology Hepatobiliary and Pancreatic Cancers

Tuesday, December 15, 2020 5:00 PM - 6:00 PM ET

Faculty

Tanios Bekaii-Saab, MD Lipika Goyal, MD, MPhil

> Moderator Neil Love, MD

Meet The Professor Multiple Myeloma

Wednesday, December 16, 2020 12:00 PM - 1:00 PM ET

Faculty
Peter Voorhees, MD

Moderator Neil Love, MD

Meet The Professor Chronic Lymphocytic Leukemia

Wednesday, December 16, 2020 2:00 PM – 3:00 PM ET

Faculty
Nitin Jain, MD

Moderator Neil Love, MD

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of HER2-Positive Breast Cancer

Thursday, December 10, 2020 8:30 PM - 10:00 PM ET

Faculty

Carey K Anders, MD Mark D Pegram, MD Erika Hamilton, MD Sara M Tolaney, MD, MPH

Sara Hurvitz, MD

Moderator

Neil Love, MD

Presentation Library

HER2-Positive Breast Cancer, Thursday, December 10, 2020

Considerations in the Care of Patients with Localized HER2-Positive Breast Cancer (BC) Receiving Neoadjuvant Systemic Therapy Mark D Pegram, MD

Download Slides

Adjuvant and Extended-Adjuvant Therapy for Patients with Localized HER2-Positive BC Sara M Tolaney, MD, MPH

Download Slides

Optimizing the Management of HER2-Positive Metastatic BC (mBC) Sara Hurvitz, MD

Download Slides

Treatment of HER2-Positive Brain Metastases
Carey K Anders, MD

Download Slides

Incidence and Management of Adverse Events Associated with HER2-Targeted Therapy Erika Hamilton, MD

Download Slides

HER2-Positive Breast Cancer Survey Participants

- 1. Carey K Anders, MD
- 2. Aditya Bardia, MD, MPH
- 3. Joanne L Blum, MD
- 4. Adam M Brufsky, MD, PhD
- 5. Howard A Burris III, MD
- 6. Harold J Burstein, MD, PhD
- 7. Lisa A Carey, MD
- 8. Charles E Geyer Jr, MD
- 9. Matthew Goetz, MD
- 10. Erika Hamilton, MD
- 11. Sara Hurvitz, MD
- 12. Virginia Kaklamani, MD, DSc
- 13. Hannah M Linden, MD

- 14. Eleftherios P Mamounas, MD, MPH
- 15. P Kelly Marcom, MD
- 16. Jennifer M Matro, MD
- 17. Kathy D Miller, MD
- 18. Rita Nanda, MD
- 19. Ruth O'Regan, MD
- 20. Joyce O'Shaughnessy, MD
- 21. Mark D Pegram, MD
- 22. Lajos Pusztai, MD, DPhil
- 23. Joseph Sparano, MD
- 24. Sandra M Swain, MD
- 25. Sara M Tolaney, MD, MPH

Agenda

Module 1: Considerations in the Care of Patients with Localized HER2-Positive Breast Cancer (BC) Receiving Neoadjuvant Systemic Therapy — Dr Pegram

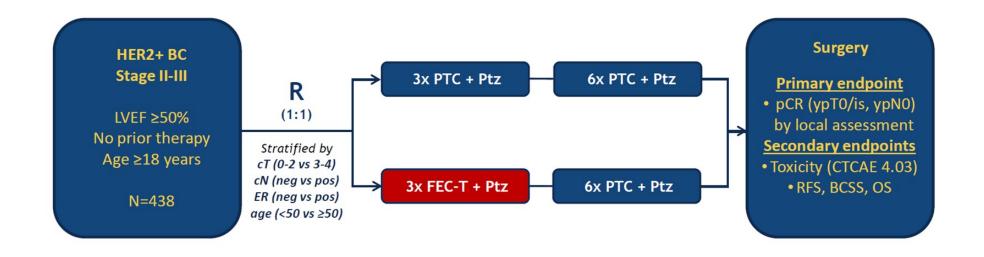
Module 2: Adjuvant and Extended-Adjuvant Therapy for Patients with Localized HER2-Positive BC — Dr Tolaney

Module 3: Optimizing the Management of HER2-Positive Metastatic BC (mBC) — Dr Hurvitz

Module 4: Treatment of HER2-Positive Brain Metastases — Dr Anders

Module 5: Incidence and Management of Adverse Events Associated with HER2-Targeted Therapy — Dr Hamilton

Considerations in the Care of Patients with Localized HER2-Positive Breast Cancer Receiving Neoadjuvant Systemic Therapy


Mark D. Pegram, M.D.

Susy Yuan-Huey Hung Professor of Oncology Associate Director for Clinical Research Associate Dean for Clinical Research Quality Director, Clinical/Translational Research Unit Stanford University School of Medicine

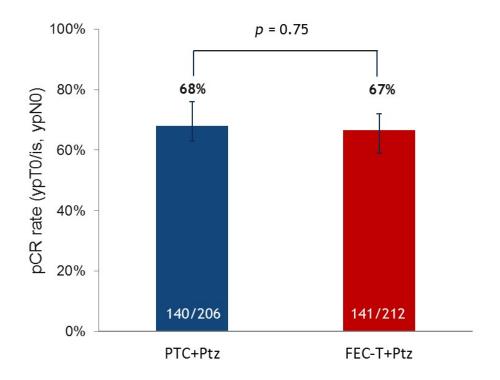
Three year follow-up of neoadjuvant chemotherapy with or without anthracyclines with dual HER2 antibody blockade

TRAIN-2: study design

- PTC+Ptz cycle of 3 weeks, day 1 PTC+Ptz, day 8 only P: P = paclitaxel 80mg/m²; T = trastuzumab 6mg/kg (loading dose 8mg/kg); C = carboplatin AUC = 6mg·min/ml; Ptz = pertuzumab, 420mg (loading dose 840mg)
- FEC-T+Ptz cycle of 3 weeks: F = 5-fluorouracil 500mg/m²; E = epirubicin 90mg/m²; C = cyclophosphamide 500mg/m²; T = trastuzumab 6mg/kg (loading dose 8mg/kg); Ptz = pertuzumab, 420mg (loading dose 840mg)
- Adjuvant trastuzumab to complete one year of treatment and endocrine therapy for ER+ and/or PR+ tumors

van Ramshorst et al, Lancet Oncol 2018; van Ramshorst et al, Eur J Cancer 2017

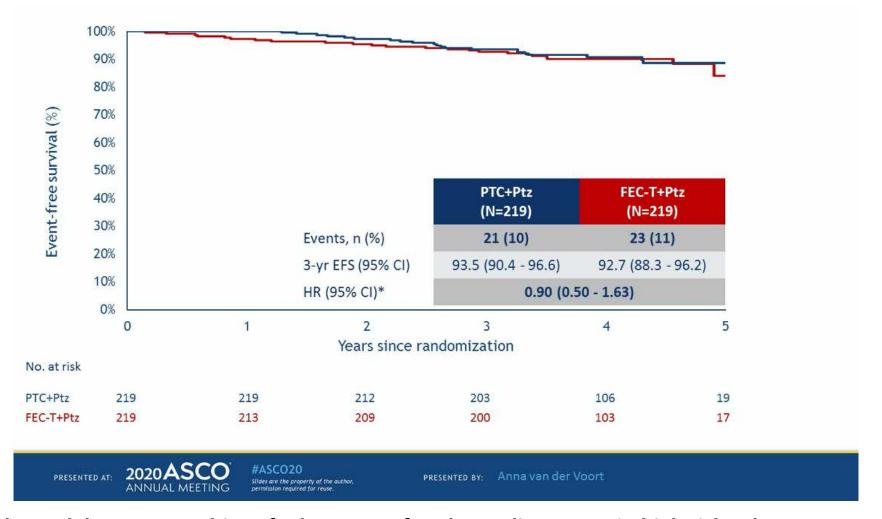
ClinicalTrials.gov identifier: NCT01996267


AT: 2020 ASCO ANNUAL MEETING

#ASCO20 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Anna van der Voort

TRAIN-2: primary endpoint pCR


- High pathological complete response rates with and without anthracyclines
- Main outcome was consistent across levels of prespecified subgroups
 - cT (0-2 vs 3-4)
 - cN (negative vs positive)
 - HR (negative vs positive)
 - age (<50 vs ≥50)

van Ramshorst et al, Lancet Oncol 2018

ASCO 2020 Update time-to-event analysis (EFS)

EFS by nodal status – no hint of advantage of anthracyclines even in high risk subgroups (cN2/3; HR=0.75 w/ trend favoring non-anthracycline)

*HR <1 favors PTC+Ptz

Safety: cardiotoxicity

	PTC+Ptz (n=218) n (%)	FEC-T+Ptz (n=220*) n (%)	p-value
LVEF decrease ≥10% or LVEF <50%	49# (22%)	80 (36%)	0.0016
LVEF decrease ≥10% and LVEF <50%	7 (3%)	17 (8%)	0.044

LVEF was measured every 3 months for 1 year

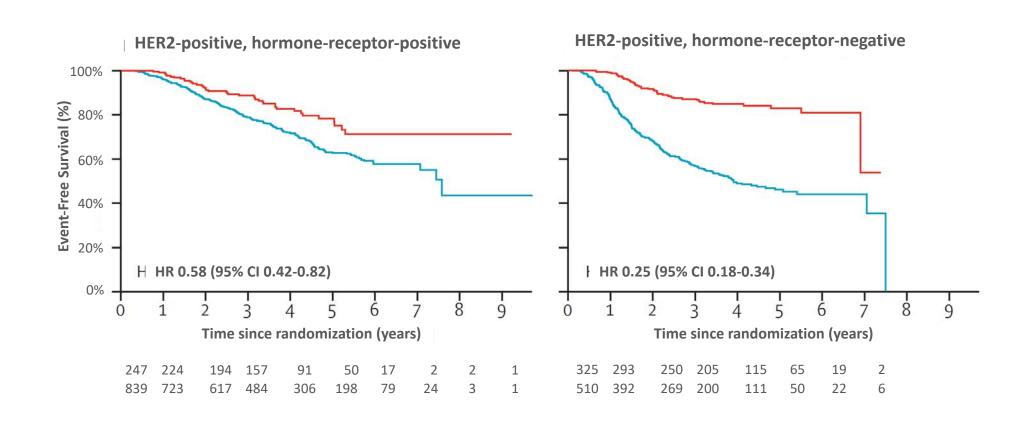
LVEF decline did not recover to normal during follow-up in about one third of the patients

^{*} one patient was allocated to PTC+Ptz but received neoadjuvant FEC-T+PTZ

[#] one patient developed grade 2 LVEF decline during adjuvant treatment with anthracyclines

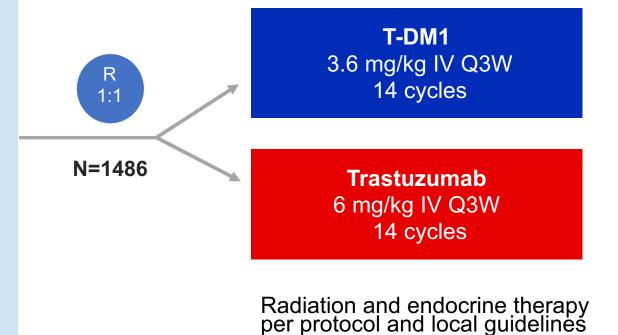
Safety: new malignancies

	PTC+Ptz (n=218*) n (%)	FEC-T+Ptz (n=220#)
Acute leukemia [†]	0	2 (1%)
Female genital cancer	0	2 (1%)
Lung carcinoma	1 (<1%)	0
Melanoma	1 (<1%)	0
Papillary thyroid carcinoma	0	2 (1%)
Tongue carcinoma	1 (<1%)	0
Non-melanoma skin cancer	2 (1%)	5 (2%)
Total	5 (2%)	11 (5%)


^{*} two patients in the PTC+Ptz arm received adjuvant adjuvant anthracyclines

[†] acute leukemia was chemotherapy associated in both patients

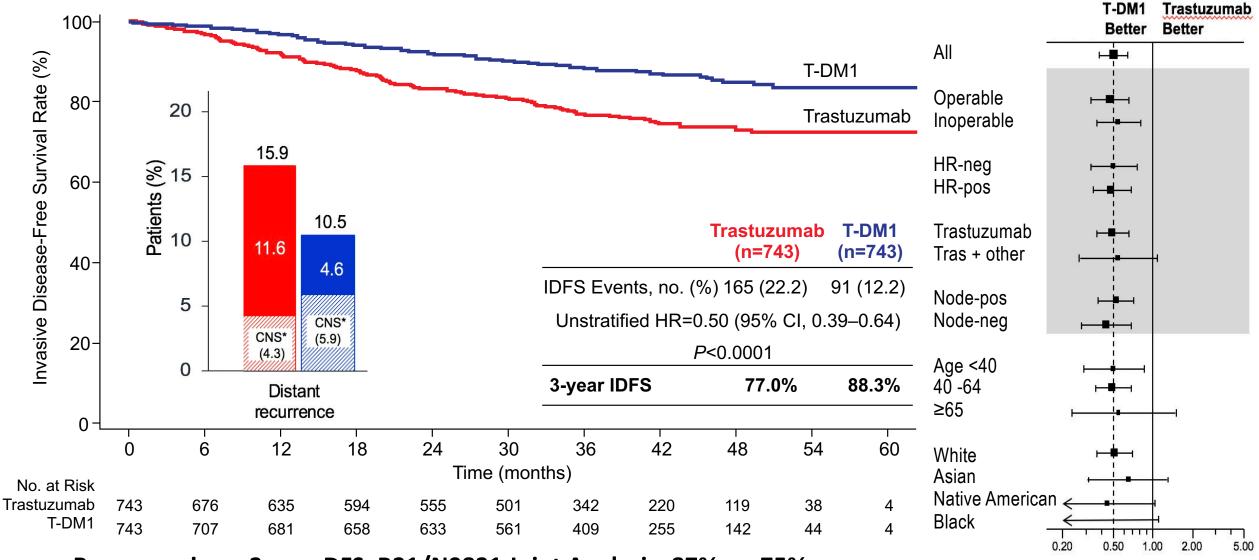
[#] one patient was allocated to PTC+Ptz but received FEC-T+Ptz


Among neoadjuvant-treated HER2+ patients, even though pCR portends a more favorable prognosis, risk of relapse still exists

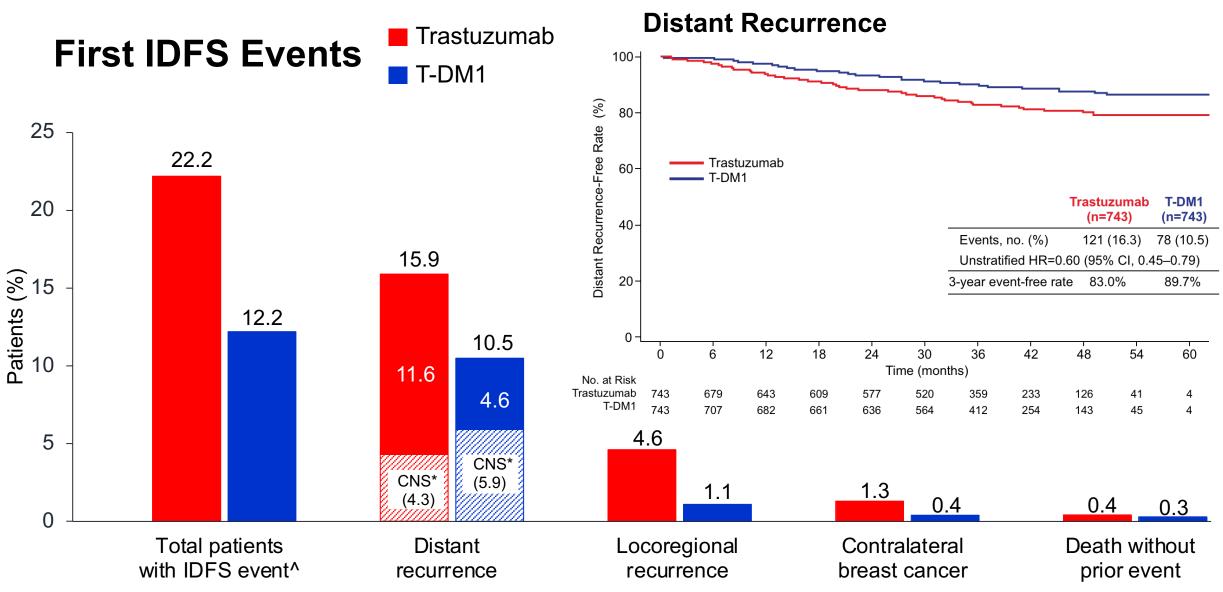
Red line: pCR Blue line: non-pCR

KATHERINE Study Design

- cT1-4/N0-3/M0 at presentation (cT1a-b/N0 excluded)
- Centrally confirmed HER2-positive breast cancer
- Neoadjuvant therapy must have consisted of
 - Minimum of 6 cycles of chemotherapy
 - Minimum of 9 weeks of taxane
 - Anthracyclines and alkylating agents allowed
 - All chemotherapy prior to surgery
 - Minimum of 9 weeks of trastuzumab
 - Second HER2-targeted agent allowed
- Residual invasive tumor in breast or axillary nodes
- Randomization within 12 weeks of surgery



rtandonnization within 12 wooks of sargery


Stratification factors:

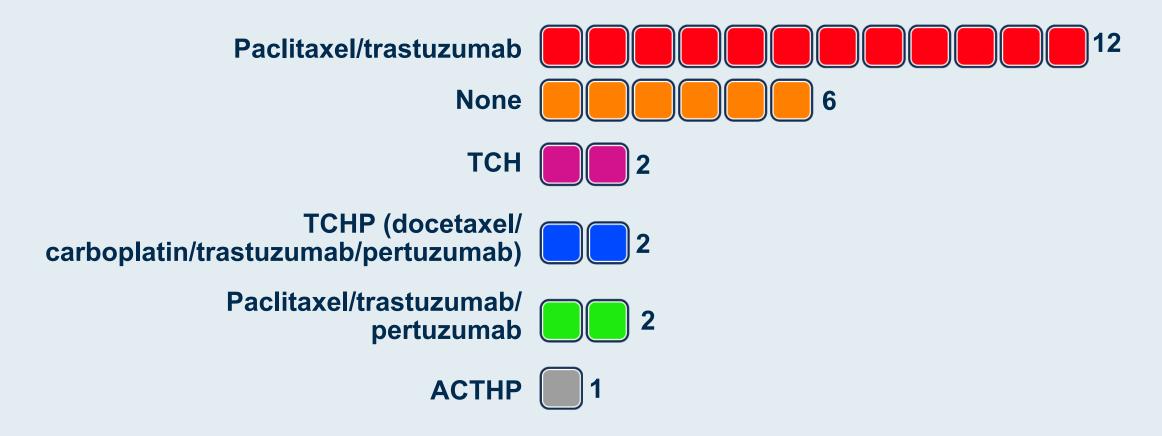
- Clinical presentation: Inoperable (stage cT4 or cN2-3) vs operable (stages cT1-3N0-1)
- Hormone receptor: ER or PR positive vs ER negative and PR negative/unknown
- Preoperative therapy: Trastuzumab vs trastuzumab plus other HER2-targeted therapy
- Pathological nodal status after neoadjuvant therapy: Positive vs negative/not done

Invasive Disease-Free Survival

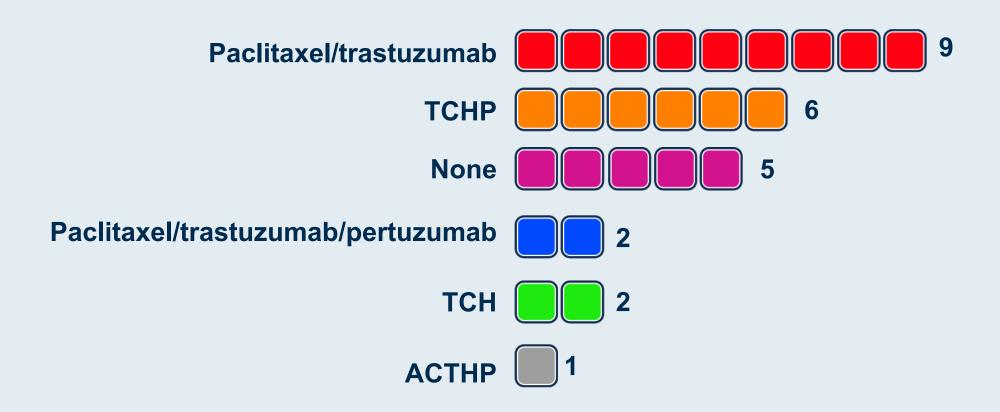
By comparison, 3 year DFS, B31/N9831 Joint Analysis: 87% vs. 75% Echoes of "The results are simply stunning"? -- Gabriel N. Hortobagyi, N Engl J Med 2005; 353:1734-1736

[^]Patients who experience additional IDFS event(s) within 61 days of their first IDFS event are reported in the category according to the following hierarchy: [1] Distant recurrence; [2] Locoregional recurrence; [3] Contralateral breast cancer; [4] Death without prior event.

^{*}CNS metastases as component of distant recurrence (isolated or with other sites). 💹 Trastuzumab 💹 T-DM1


Which neoadjuvant systemic therapy, if any, would you generally recommend for a 65-year-old patient with a 1.5-cm, ER-negative, HER2-positive, node-negative infiltrating ductal carcinoma (IDC)?

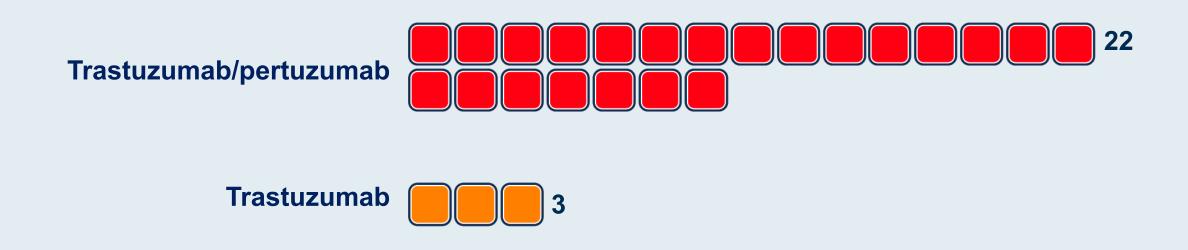
- 1. None
- 2. Paclitaxel/trastuzumab
- 3. Paclitaxel/trastuzumab/pertuzumab
- 4. ACTH (doxorubicin/cyclophosphamide/paclitaxel/trastuzumab)
- 5. ACTHP (ACTH/pertuzumab)
- 6. TCH (docetaxel/carboplatin/trastuzumab)
- 7. TCHP (docetaxel/carboplatin/trastuzumab/pertuzumab)
- 8. Other


Which neoadjuvant systemic therapy, if any, would you generally recommend for a patient with an ER-negative, HER2-positive IDC with the following characteristics?

Age: 65, Tumor size: 1.5 cm, Nodal status: Node-negative

Which neoadjuvant systemic therapy, if any, would you generally recommend for a patient with an ER-negative, HER2-positive IDC with the following characteristics?

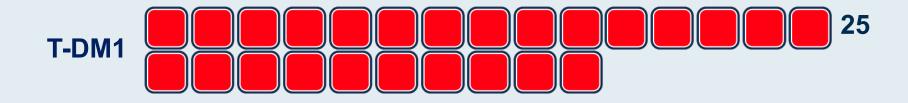
Age: 35, Tumor size: 1.5 cm, Nodal status: Node-negative



A 65-year-old woman presents with a 3.4-cm, ER-negative, HER2-positive IDC with biopsy-proven axillary nodes and receives neoadjuvant TCHP. Regulatory and reimbursement issues aside, what adjuvant anti-HER2 therapy would you recommend if at surgery the patient were found to have a pathologic complete response?

- 1. Trastuzumab
- 2. Trastuzumab/pertuzumab
- 3. T-DM1
- 4. Trastuzumab → neratinib
- 5. Trastuzumab/pertuzumab → neratinib
- 6. T-DM1 \rightarrow neratinib
- 7. Other

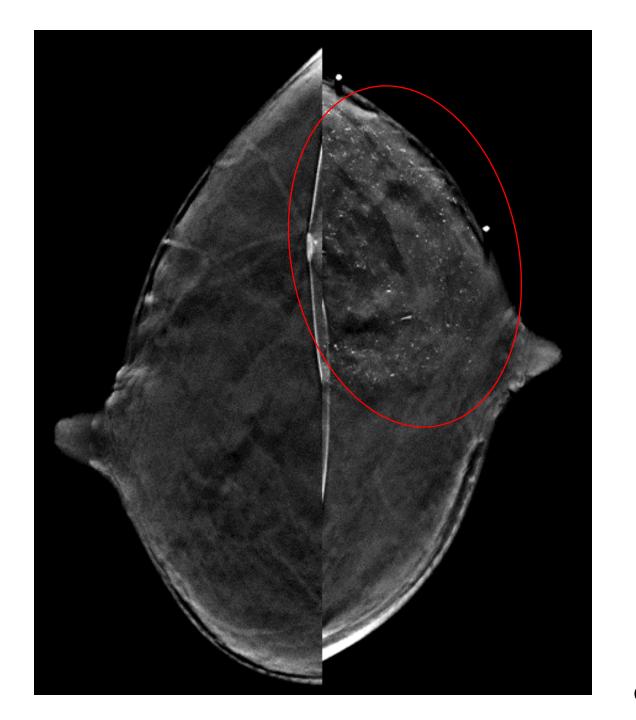
A 65-year-old woman presents with a 3.4-cm, ER-negative, HER2-positive IDC with biopsy-proven axillary nodes and receives neoadjuvant TCHP. Regulatory and reimbursement issues aside, what adjuvant anti-HER2 therapy would you recommend if at surgery the patient were found to have a pathologic complete response?



A 65-year-old woman presents with a 3.4-cm, ER-negative, HER2-positive IDC with biopsy-proven axillary nodes, receives neoadjuvant TCHP and at surgery is found to have 0.5 cm of residual tumor in the breast and no disease in the nodes. Regulatory and reimbursement issues aside, what adjuvant anti-HER2 therapy would you recommend?

- 1. Trastuzumab
- 2. Trastuzumab/pertuzumab
- 3. T-DM1
- 4. Trastuzumab → neratinib
- 5. Trastuzumab/pertuzumab \rightarrow neratinib
- 6. T-DM1 \rightarrow neratinib
- 7. Other

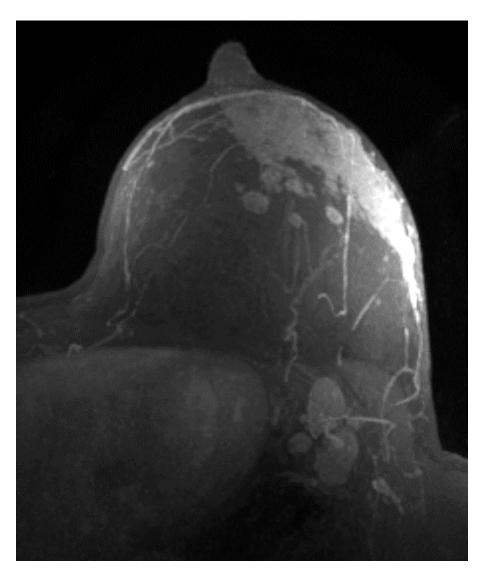
A 65-year-old woman presents with a 3.4-cm, ER-negative, HER2-positive IDC with biopsy-proven axillary nodes and receives neoadjuvant TCHP. Regulatory and reimbursement issues aside, what adjuvant anti-HER2 therapy would you recommend if at surgery the patient were found to have <u>0.5 cm of residual tumor in</u> the breast and no disease in the nodes?



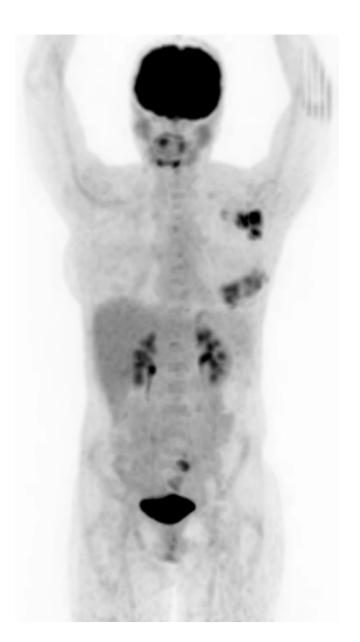
A 65-year-old woman presents with a 3.5-cm, ER-negative, HER2-positive, node-negative IDC, receives neoadjuvant TCHP and at surgery is found to have 2 cm of scattered residual disease in the breast. She begins adjuvant T-DM1, but after 6 cycles her platelet count drops to 70,000/mm³. What would you recommend?

Hold treatment until platelet count has recovered and resume T-DM1 at a reduced dose Hold treatment until platelet count has recovered and resume T-DM1 at the same dose Continue T-DM1 at the same dose Continue T-DM1 at a reduced dose

Case Presentation – Dr Pegram: 42-year-old woman

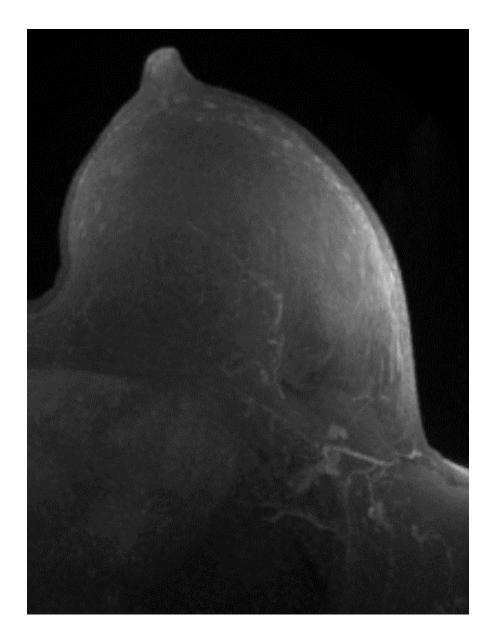

 42-year-old female noticed diffuse palpable abnormalities in lateral left breast and left axilla over 6-month period while breastfeeding

Courtesy of Mark D Pegram, MD


MRI shows abnormal clumped NME spanning the upper outer and entire lower outer quadrant, abnormal lymph nodes

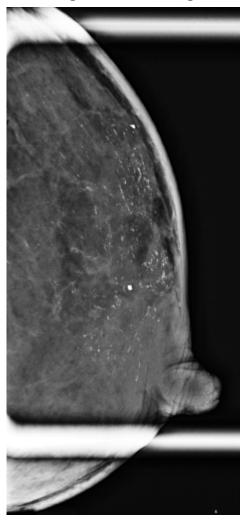
5/25/18 MRI

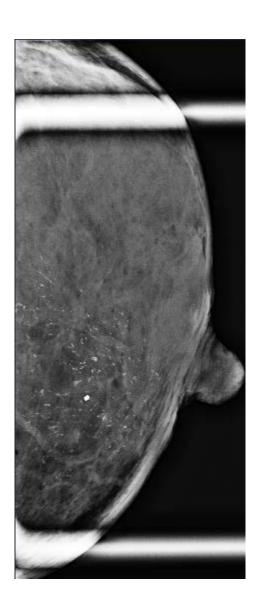
FDG PET/CT shows axillary nodal and breast disease, no distant disease


Case Presentation – Dr Pegram: 42-year-old woman (cont)

9/11/18 to 12/26/18: Completed neoadjuvant TCHP x 6 cycles

3/25/19: Left breast nipple sparing mastectomy, left SLN, TE/ADM reconstruction


post NACT MRI shows resolution of disease


1/4/19 post NACT MRI

2/14/19 diagnostic mammogram shows stable distribution and extent of calcs

2/14/19 diagnostic mammogram

Case Presentation – Dr Pegram: 42-year-old woman (cont)

Left breast, mastectomy

- Residual invasive ductal carcinoma with treatment effect, 7.8 cm, 5% tumor cellularity
- Residual DCIS
- Extensive lymphovascular invasion
- Invasive carcinoma present at posterior margins, other close margins

Left axillary sentinel lymph nodes

Metastatic carcinoma in two of three lymph nodes (2/3)

Left axillary lymph nodes

Metastatic carcinoma in three of eleven lymph nodes (3/11)

Pathologic Stage: ypT3 N2a

Case Presentation – Dr Pegram: 42-year-old woman (cont)

- 5/6/19: Revision of left mastectomy flap
- Received T-DM1 X 14 cycles post-op
- Final reconstruction 12/2019

Agenda

Module 1: Considerations in the Care of Patients with Localized HER2-Positive Breast Cancer (BC) Receiving Neoadjuvant Systemic Therapy — Dr Pegram

Module 2: Adjuvant and Extended-Adjuvant Therapy for Patients with Localized HER2-Positive BC — Dr Tolaney

Module 3: Optimizing the Management of HER2-Positive Metastatic BC (mBC) — Dr Hurvitz

Module 4: Treatment of HER2-Positive Brain Metastases — Dr Anders

Module 5: Incidence and Management of Adverse Events Associated with HER2-Targeted Therapy — Dr Hamilton

ADJUVANT AND EXTENDED-ADJUVANT THERAPY FOR PATIENTS WITH LOCALIZED HER2+ BREAST CANCER

Sara M. Tolaney

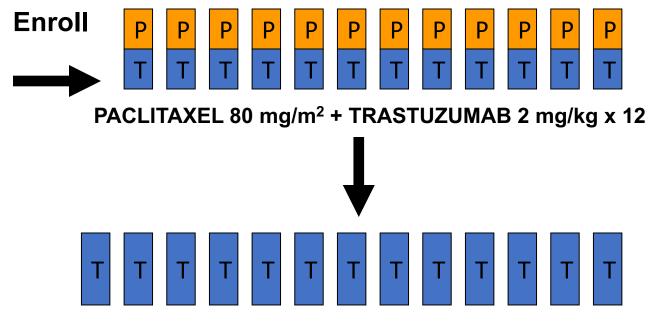
Dana-Farber Cancer Institute

APHINITY UPDATED ANALYSIS: IDFS BY SUBGROUPS 74.1 MONTHS MEDIAN FU

	PERTUZUMAB	PLACEBO	DIFFERENCE	HAZARD RATIO
ITT	90.6%	87.8%	2.8%	0.76
HR+	91.2%	88.2%	3.0%	0.73
HR-	89.5%	87.0%	2.5%	0.83
Node +	87.9%	83.4%	4.5%	0.72
Node -	95.0%	94.9%	0.1%	1.02

BENEFIT SEEN IN HR+/HR- AND NODE POSITIVE

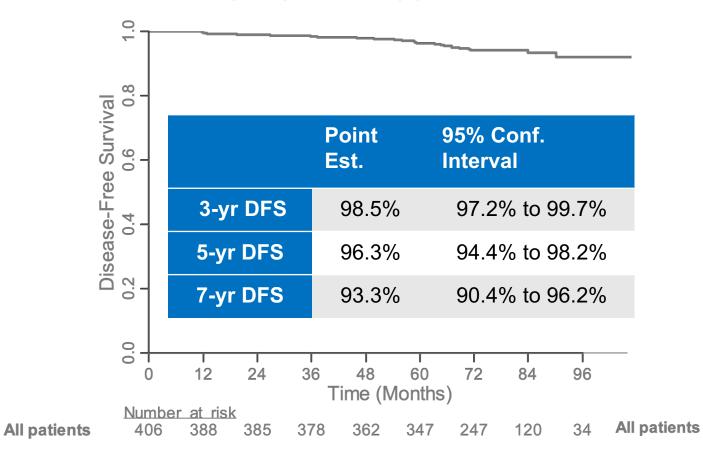
- NO BENEFIT IN NODE NEGATIVE
 - NO OS BENEFITS YET SEEN

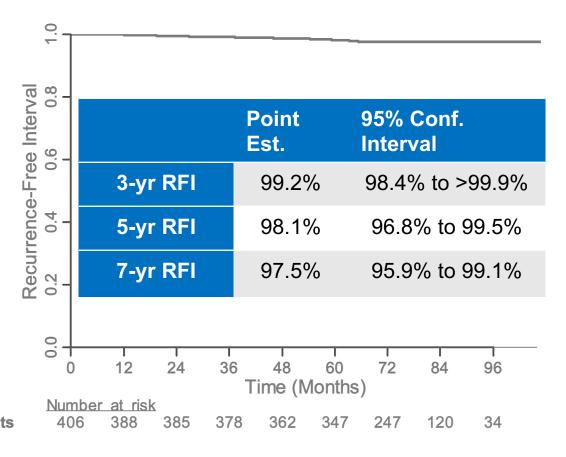

WHEN DO WE THEN GIVE PERTUZUMAB?

- Most patients with HER2+ tumors >2cm or clinically node positive disease receive preoperative therapy
- The addition of pertuzumab improves pCR but will not improve DFS in *all* patients (ie. not node negative patients)
- Administration of preoperative pertuzumab to all patients may result in some overtreatment, but challenging to discern which patients need pertuzumab upfront

WHAT ABOUT STAGE 1 HER2+ PATIENTS? APT TRIAL: STUDY DESIGN

HER2+
ER+ or ERNode Negative
< 3 cm

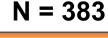

Planned N=400


FOLLOWED BY 13 EVERY 3 WEEK DOSES
OF TRASTUZUMAB (6 mg/kg)

APT: OUTCOMES AT 7 YRS

DISEASE-FREE SURVIVAL

RECURRENCE-FREE INTERVAL


RFI Events=

- •Invasive Local/Regional Recurrence
- Distant Recurrence
- Death from Breast Cancer

Does T-DM1 have a role for Stage I HER2+ Disease? ATEMPT Trial

Key Eligibility Criteria

- Stage 1 HER2+ breast cancer
 - HER2 centrally tested (ASCO CAP 2013 guidelines)
- N0 or N1mic
- Left Ventricular EF ≥ 50%
- No prior invasive breast cancer
- ≤90 days from last surgery

T-DM1

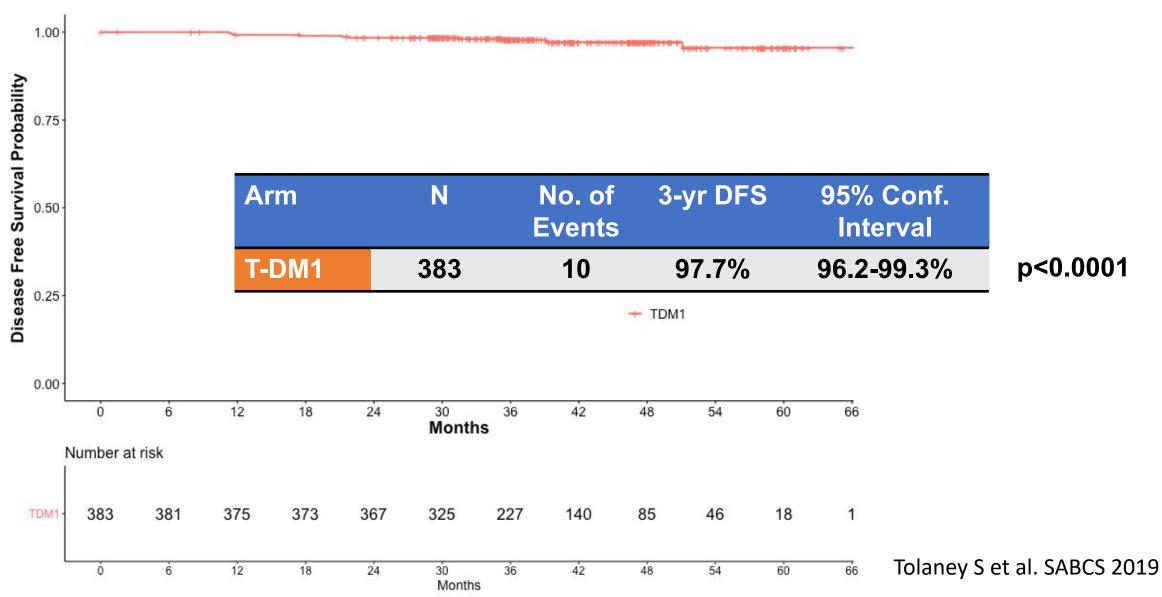
3.6 mg/kg IV q3 wks x 17

$$N = 114$$

TH

Paclitaxel 80 mg/m² IV + Trastuzumab 2 mg/kg IV wkly x12 → Trastuzumab 6 mg/kg every 3 wks x13

Stratification factors:

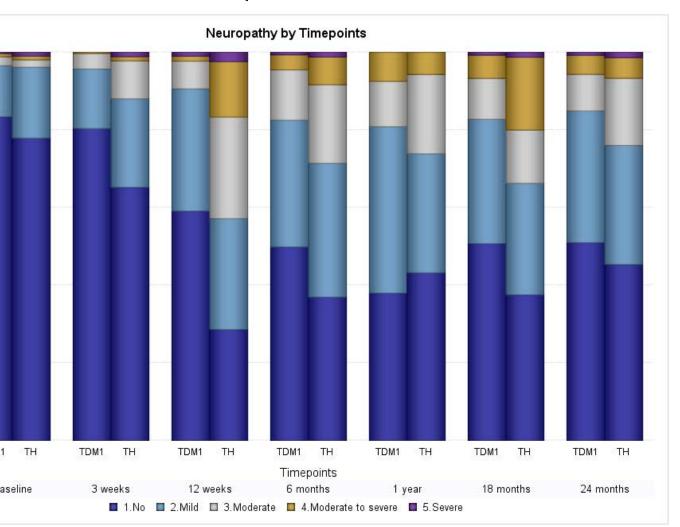

- Age (<55, ≥55)
- Planned radiation (Yes/No)
- Planned hormonal therapy (Yes/No)

N = 497

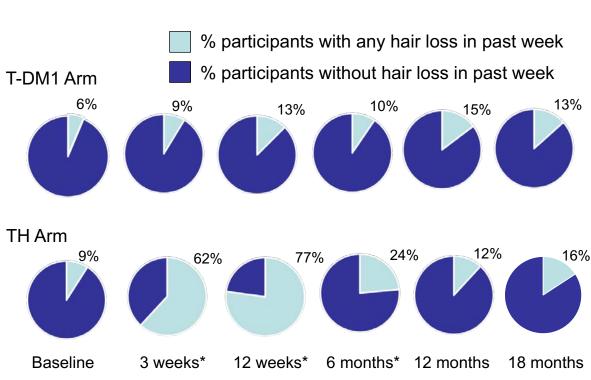
Tolaney S et al. SABCS 2019

^{*}Radiation and endocrine therapy could be initiated after 12 weeks on study therapy

ATEMPT: DISEASE-FREE SURVIVAL FOR T-DM1


Courtesy of Sara M Tolaney, MD, MPH

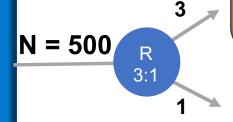
ATEMPT: CLINICALLY RELEVANT TOXICITY


Clinically Relevant Toxicity	T-DM1 (n = 383) N (%)	TH (n = 114) N (%)
Grade ≥3 non-hematologic toxicity	37 (10%)	13 (11%)
Grade ≥ 2 neurotoxicity	42 (11%)	26 (23%)
Grade ≥4 hematologic toxicity	4 (1%)	0 (0%)
Febrile neutropenia	0 (0%)	2 (2%)
Any toxicity requiring dose delay	106 (28%)	30 (26%)
Any toxicity requiring early discontinuation	67 (17%)	7 (6%)
Total	176 (46%)	53 (46%) _{0.91}

ATEMPT TRIAL: PROS

QUALITY OF LIFE

Alopecia


 * Indicates statistically significantly (p<0.05) greater hair loss at timepoint for TH vs. T-DM1

PLANNED STUDY: ATEMPT 2.0

Key Eligibility Criteria

- Stage 1 HER2+ breast cancer
 - HER2 centrally tested (ASCO CAP 2013 guidelines)

 HER2 3+
- N0 or N1mic
- Left Ventricular EF ≥ 50%
- No prior invasive breast cancer
- ≤90 days from last surgery

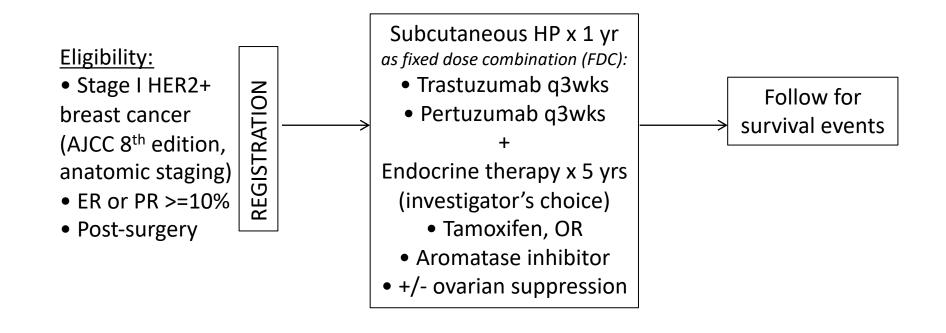
N = 375

T-DM1→ H

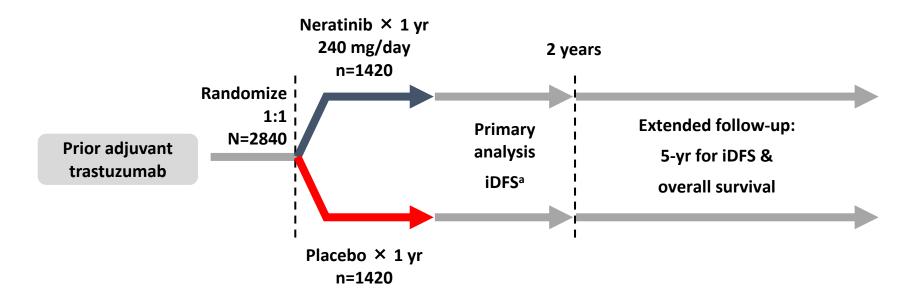
3.6 mg/kg IV q3 wks x 6 cycles → SQ Trastuzumab every 3 wks x 11

N = 125

TH


Paclitaxel 80 mg/m² IV + Trastuzumab every 3 wks x4 → SQ Trastuzumab every 3 wks x13

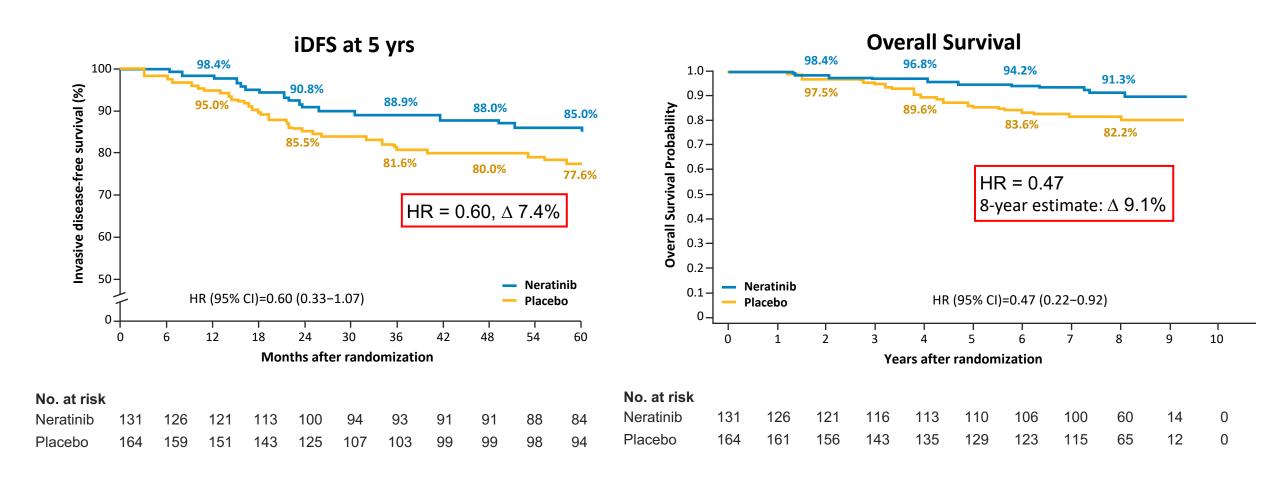
Stratification factors:


- Age (<55, ≥55)
- Planned radiation (Yes/No)
- Planned hormonal therapy (Yes/No)

^{*}Radiation and endocrine therapy could be initiated after 12 weeks on study therapy

PLANNED STUDY: A SINGLE ARM PHASE II STUDY OF <u>AD</u>JUVANT <u>E</u>NDOCRINE THERAPY, SUBCUTANEOUS <u>P</u>ERTUZUMAB, AND <u>T</u>RASTUZUMAB FIXED-DOSE COMBINATION FOR PATIENTS WITH ANATOMIC STAGE I HORMONE RECEPTOR-POSITIVE, HER2-POSITIVE BREAST CANCER (<u>ADEPT</u>)

ADDING NERATINIB: ExteNET STUDY

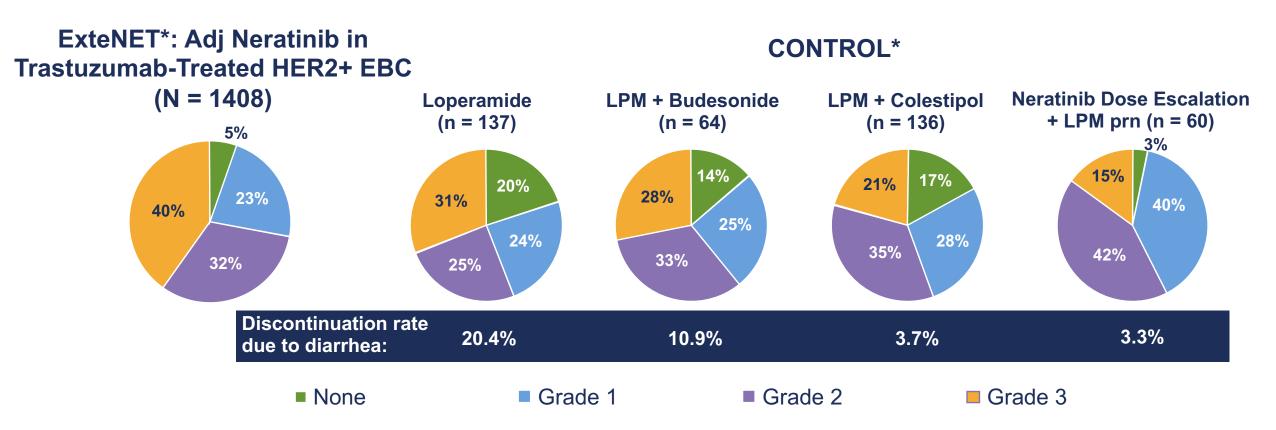

Primary endpoint: invasive disease-free survival (iDFS)^a

Secondary endpoints: overall survival, DFS-DCIS, distant DFS, time to distant recurrence, CNS metastases, safety,

Stratification: nodes 0, 1-3 vs 4+, ER/PR status, concurrent vs sequential trastuzumab

Study blinded: Until primary analysis; OS remains blinded

ExteNET: No pCR Post Neoadjuvant Therapy HR+, ≤1 Year from Trastuzumab (N=295)



Descriptive Analysis: Cumulative Incidence of CNS recurrences at <u>first</u> site of mets at 5 years HR+/≤1-year population (*n*=1334)

Subgroup	Cumulative Incidence of CNS recurrences at 5 years, %		
	Neratinib %	Placebo %	
All patients (<i>n</i> =1334)	0.7	2.1	
Prior neoadjuvant therapy			
No (<i>n</i> =980)	0.7	1.5	
Yes (<i>n</i> =354)	0.7	3.7	
pCR status ¹			
No (<i>n</i> =295)	0.8	3.6	
Yes (<i>n</i> =38)*	0	5	

^{*}Small Ns

ANTIDIARRHEAL PROPHYLAXIS REDUCES DIARRHEA WITH NERATINIB: CONTROL TRIAL

PREVENTIVE STRATEGIES REDUCED GRADE ≥3 DIARRHEA COMPARED TO EXTENET

Chan et al, SABCS 2019 Chan at al, Lancet Oncol 2016 Hurvitz S, SABCS 2017

WHEN SHOULD WE GIVE NERATINIB?

- Benefit seen in patients with high risk HR+ HER2+ disease (larger benefit in patients with residual disease after preoperative therapy)
- Challenge is lack of data in patients who have previously received pertuzumab and/or T-DM1
- Must also weigh potential benefit with toxicity (~40% grade 3/4 diarrhea)
 - All patients should receive prophylactic anti-diarrheals (OR can consider a dose escalation approach)

CAN WE IMPROVE UPON THE KATHERINE TRIAL OF T-DM1?

- 3 yr iDFS for N+ pts: 83%.
- No improvement in rates of CNS recurrence
- May want to consider further treatment escalation with future studies:
 - Add on strategies: T-DM1 + tucatinib (being explored in COMPASS-RD)
 - Substitution strategies: Trastuzumab deruxtecan (DS-8201a)

DESTINY-Breast05 (DS8201-A-U305) Study Design

DESTINY

T-DXd vs. T-DM1 in high-risk HER2-positive early breast cancer patients with residual invasive disease following neoadjuvant therapy

Key Eligibility:

- eBC with residual disease following neoadjuvant therapy
- Completion of neoadjuvant therapy* including trastuzumab followed by surgery
- High-risk** of recurrence (inoperable at presentation or node-positive)
- · Centrally confirmed HER2+ status
- ECOG PS: 0-1

Stratification:

- Operative status at presentation (operable vs inoperable)
- Post-neoadjuvant pathologic nodal status (positive vs negative)
- Tumor hormone receptor (HR) status (positive vs negative)
- HER2-targeted neoadjuvant therapy (single vs dual)

Investigational Arm:
Trastuzumab deruxtecan
(T-DXd; DS-8201)
Day 1 every 3 weeks for

Day 1 every 3 weeks for 14 cycles (N=800)

Control Arm:
Trastuzumab emtansine
(T-DM1)

Day 1 every 3 weeks for 14 cycles (N=800)

- *Neoadjuvant therapy to include at least 16 weeks of total systemic treatment in the preoperative setting, including:
- At least 9 weeks of HER2-targeted therapy including **trastuzumab** (with or without pertuzumab) and,
- At least 9 weeks of taxane therapy

**High-risk definitions:

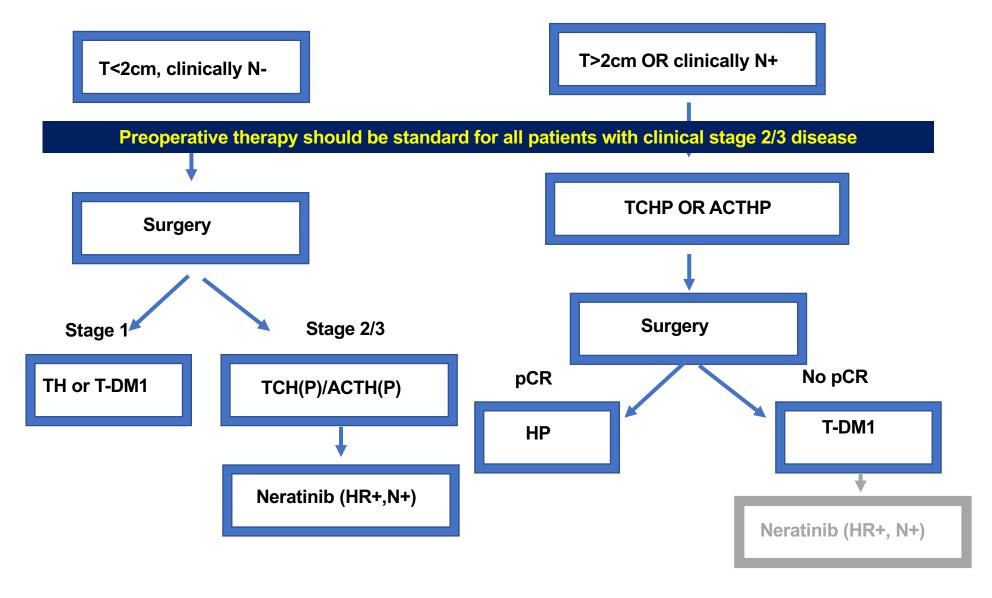
- **Inoperable:** Inoperable breast cancer at presentation with residual invasive cancer in the breast or axillary nodes following neoadjuvant therapy.
- Node-positive: Metastatic disease in axillary node(s) following neoadjuvant therapy irrespective of presence or absence of residual invasive cancer in the breast.

Additional Notes: Randomization within 12 weeks of surgery; adjuvant radiotherapy and/or endocrine therapy per protocol and local guidelines.

Endpoints:

- Primary:
 - IDFS (Invasive disease-free survival)
- Secondary:
- DFS (Disease-free survival)
- DRFI (Distant recurrence-free interval)
- BMFI (Brain metastases-free interval)
- OS (Overall survival)

R

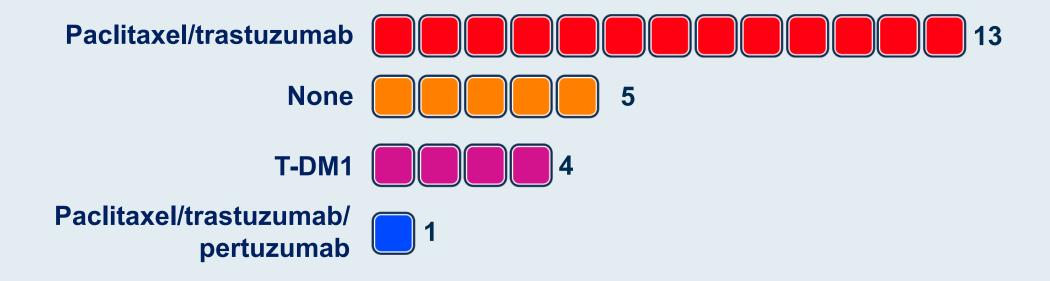

1:1

N = 1.600

- Adverse events
- **Exploratory:**
- PROs (Patient reported outcomes; QoL)
- Biomarkers associated with efficacy/safety
- PK associated with efficacy/safety

eBC=early breast cancer; ECOG PS=Eastern Cooperative Oncology Group performance status; HER2=Human epidermal growth factor receptor 2; PK=pharmacokinetics; QoL=quality of life R=randomization

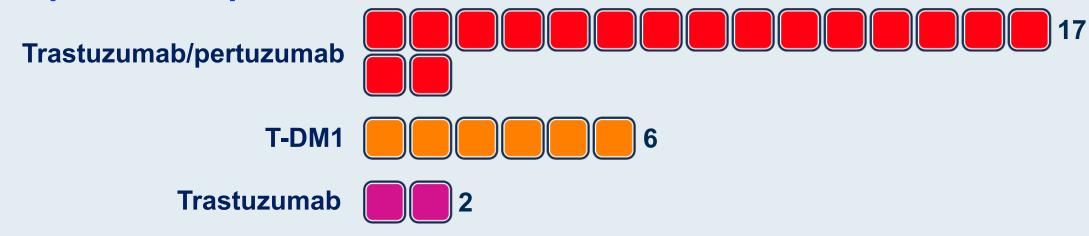
Current Approach for Treatment of HER2+ breast cancer: 2020


An <u>80-year-old</u> woman presents with a <u>0.6-cm</u>, ER-negative, HER2-positive, node-negative IDC. Regulatory and reimbursement issues aside, what adjuvant systemic therapy would you recommend?

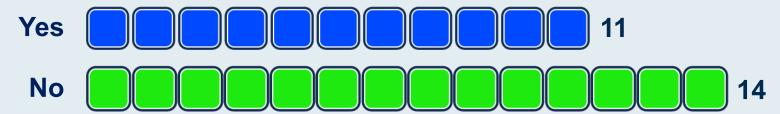
- 1. None
- 2. Paclitaxel/trastuzumab
- 3. Paclitaxel/trastuzumab/pertuzumab
- 4. TCH
- 5. TCHP
- 6. T-DM1
- 7. Other

Regulatory and reimbursement issues aside, what adjuvant systemic therapy would you recommend for a patient with an ERnegative, HER2-positive, node-negative IDC with the following characteristics?

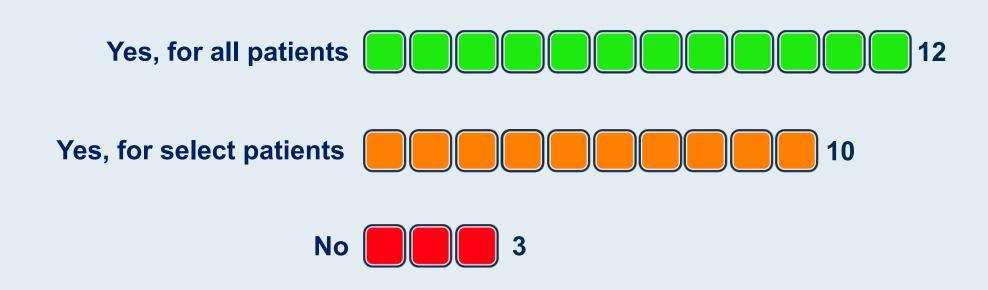
Age: 80, Tumor size: 0.6 cm

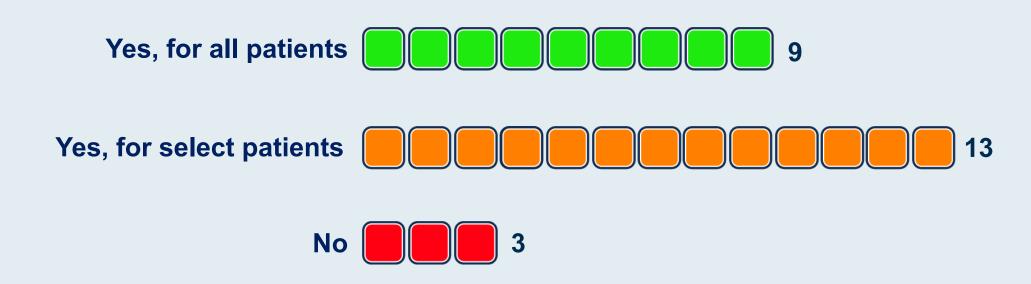

A 65-year-old woman presents with a 1.3-cm, <u>ER-positive</u>, HER2-positive IDC with <u>2 positive sentinel nodes</u>. Regulatory and reimbursement issues aside, what adjuvant anti-HER2 therapy would you recommend?

- Trastuzumab
- 2. Trastuzumab/pertuzumab
- 3. T-DM1
- 4. Trastuzumab → neratinib
- 5. Trastuzumab/pertuzumab → neratinib
- 6. T-DM1 \rightarrow neratinib
- 7. Other



Regulatory and reimbursement issues aside, what adjuvant anti-HER2 therapy would you recommend for a 65-year-old patient with a 1.3-cm, HER2-positive IDC with the following characteristics?


ER-positive, 2 positive sentinel nodes


Postadjuvant neratinib?

Reimbursement issues aside, <u>would you like to substitute</u> the subcutaneous formulation of pertuzumab, trastuzumab and hyaluronidase—zzxf for standard intravenous pertuzumab and trastuzumab for patients with HER2-positive breast cancer in your practice?

Reimbursement issues aside, do you believe <u>your patients with HER2-positive breast cancer would prefer</u> to receive the subcutaneous formulation of pertuzumab, trastuzumab and hyaluronidase–zzxf rather than standard intravenous pertuzumab and trastuzumab?

Case Presentation – Dr Tolaney: 43-year-old woman with HER2-positive, ER-positive breast cancer

- 43 yo premenopausal woman presented with a palpable 4.5cm L breast mass with a palpable axillary lymph node
- Biopsy revealed grade 2 IDC, ER+, PR+, HER2 2+, FISH 3.5
- Received preop TCHP
- Underwent lumpectomy and SN biopsy: residual 2.5 cm of disease, with 2/4 SN involved; underwent completion axillary dissection with no additional positive nodes
- Received adjuvant T-DM1 x 14 cycles, and adjuvant radiation
 Started recently on neratinib with dose-escalation strategy

Agenda

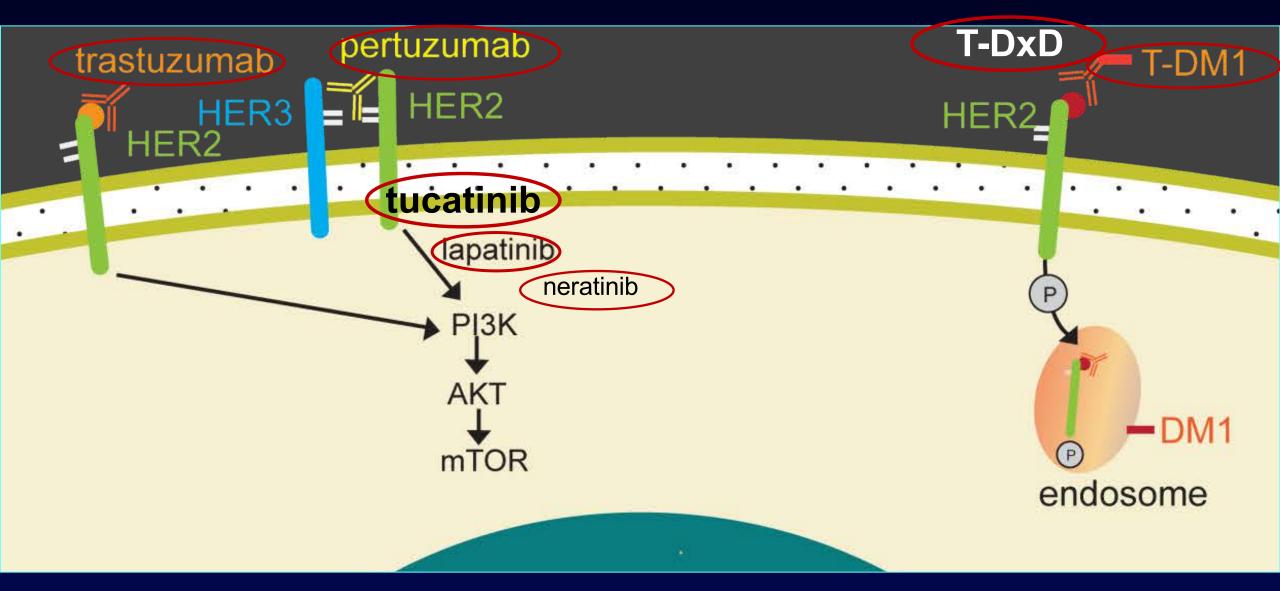
Module 1: Considerations in the Care of Patients with Localized HER2-Positive Breast Cancer (BC) Receiving Neoadjuvant Systemic Therapy — Dr Pegram

Module 2: Adjuvant and Extended-Adjuvant Therapy for Patients with Localized HER2-Positive BC — Dr Tolaney

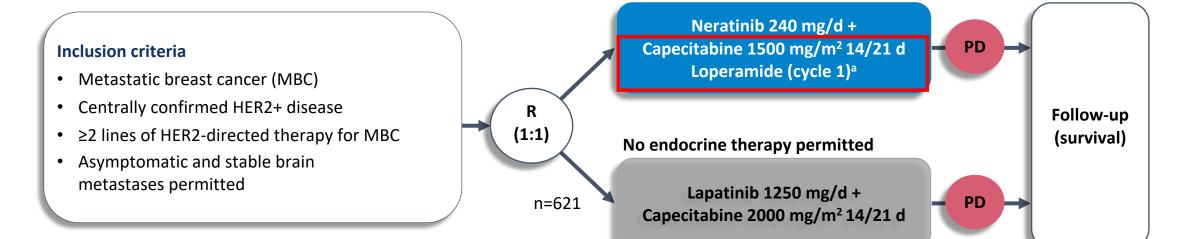
Module 3: Optimizing the Management of HER2-Positive Metastatic BC (mBC) — Dr Hurvitz

Module 4: Treatment of HER2-Positive Brain Metastases — Dr Anders

Module 5: Incidence and Management of Adverse Events Associated with HER2-Targeted Therapy — Dr Hamilton



Optimizing the Management of HER2-Positive Metastatic Breast Cancer (mBC)


Sara A Hurvitz, MD, FACP Professor of Medicine

2020: 7 FDA APPROVED HER2-DIRECTED THERAPIES

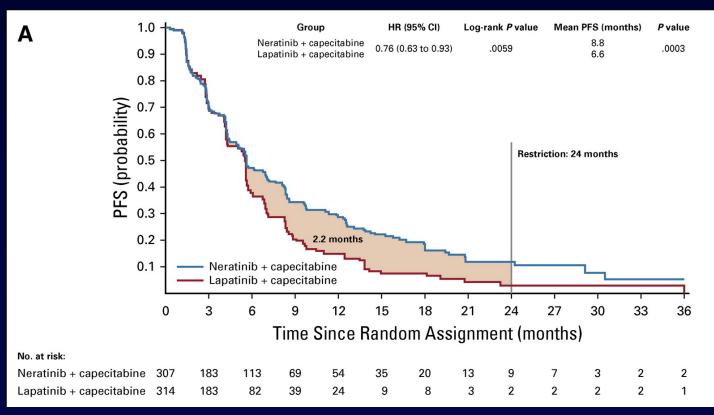
NALA Phase III trial of neratinib: study design

Stratification variables

- Number of prior HER2 therapies for MBC
- Disease location
- HR status
- Geographic location

Endpoints

- Co-primary: PFS (centrally confirmed) and OS
- Secondary: PFS (local), ORR, DoR, CBR, intervention for CNS metastases, safety, health outcomes


Loperamide 4 mg with first dose of neratinib, followed by 2 mg every 4 h for first 3 d, then loperamide 2 mg every 6-8 h until end of Cycle 1. Thereafter as needed

Saura C, et al. ASCO Annual Meeting 2019; Journal of Clinical Oncology 37, no. 15 suppl (May 20, 2019) Abs 1002

Courtesy of Sara Hurvitz, MD

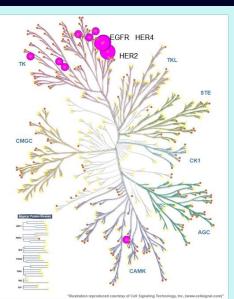
NALA Results

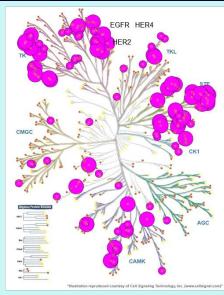
- PFS (by restricted means analysis at 24 mos)
 - 8.8 mos (neratinib) vs. 6.6 mos (lapatinib) p=0.003
- Cumulative incidence intervention CNS mets
 - 22.8% (neratinib) vs 29.2% (lapatinib); p=0.043
- Grade 3/4 diarrhea
 - 24% (neratinib) vs. 13% (lapatinib)

Saura C, et al. Journal of Clinical Oncology 2020:38(27):3138-3149.

CONTROL: Incidence of Treatment-Emergent Diarrhea by Worst Grade in ADJUVANT setting

	LOP (n=137)	LOP + budesonide (n=64)	LOP + colestipol (n=136)	LOP prn + colestipol (n=104)	LOP prn + neratinib dose escalation (n=60)
	Tre	atment-emergent di	arrhea incidence	e, N (%)	
No diarrhea	28 (20)	9 (14)	23 (17)	5 (5)	2 (3)
Gr 1	33 (24)	16 (25)	38 (28)	33 (32)	24 (40)
Gr 2	34 (25)	21 (33)	47 (35)	31 (30)	25 (42)
Gr 3	42 (31)	18 (28)	<mark>28 (21)</mark>	35 (34)	9 (15)
Gr 4	0	0	0	0	0


Budesonide 9 mg qd; colestipol 2g BID;


loperamide escalation: 120 mg x 7d \rightarrow 160 mg x 7 d then 240 mg

Neratinib Approval - 2.25.2020

Neratinib approved in combination with capecitabine for adult patients with advanced or metastatic HER2-positive breast cancer who have received two or more prior anti-HER2 based regimens in the metastatic setting.

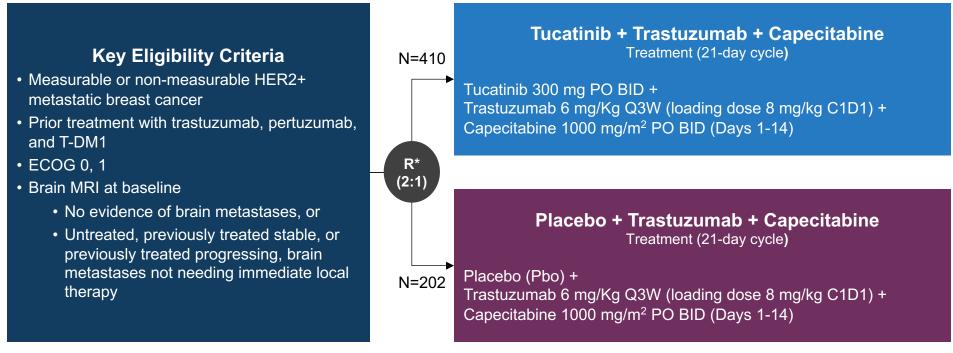
Tucatinib: HER2 Selective Kinase Inhibitor

- **Tucatinib**
- •IC50 < 1uM (large circle) •1uM < IC50 < 10uM (medium circle)
- •IC50 > 10uM (small circle)

Neratinib

Kinome scan data from the Library of Integrated Network-based Cellular Signatures

- Kinome analysis shows limited activity in a panel of 237 protein kinases at 1 or 10 μM
 - Activity is restricted to HER2 related kinases EGFR and HER4
- Tucatinib is selective for HER2 vs. EGFR in biochemical assays

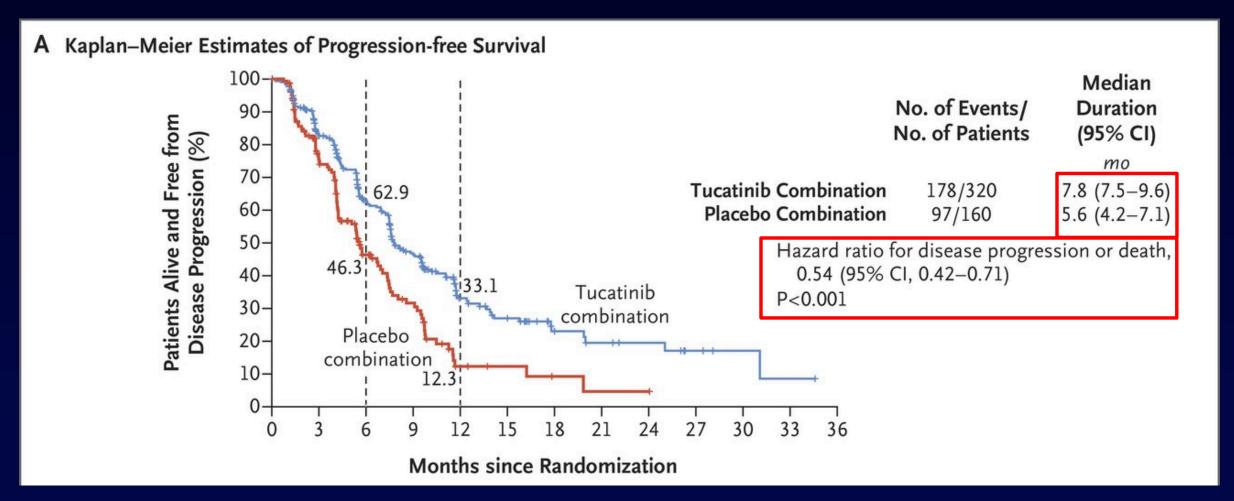

Compound	Biochemical Selectivity (Kinase Assays)			
·	HER2 IC ₅₀ (nM)	EGFR IC ₅₀ (nM)		
Tucatinib	6.9	449		
Neratinib	5.6	1.8		
Lapatinib	109	48		

 Lapatinib and neratinib inhibit EGFR and HER2 with similar potencies

- Less EGFR-associated toxicity than other HER2-targeted TKIs
- CNS penetration
- Well tolerated and active in combinations (eg, with T-DM1, capecitabine, or trastuzumab)

Agant	Cellular Selectivity, IC ₅₀ (nM)			
Agent	HER2	EGFR		
Tucatinib	8	4000		
Neratinib	7	8		
Lapatinib	49	31		

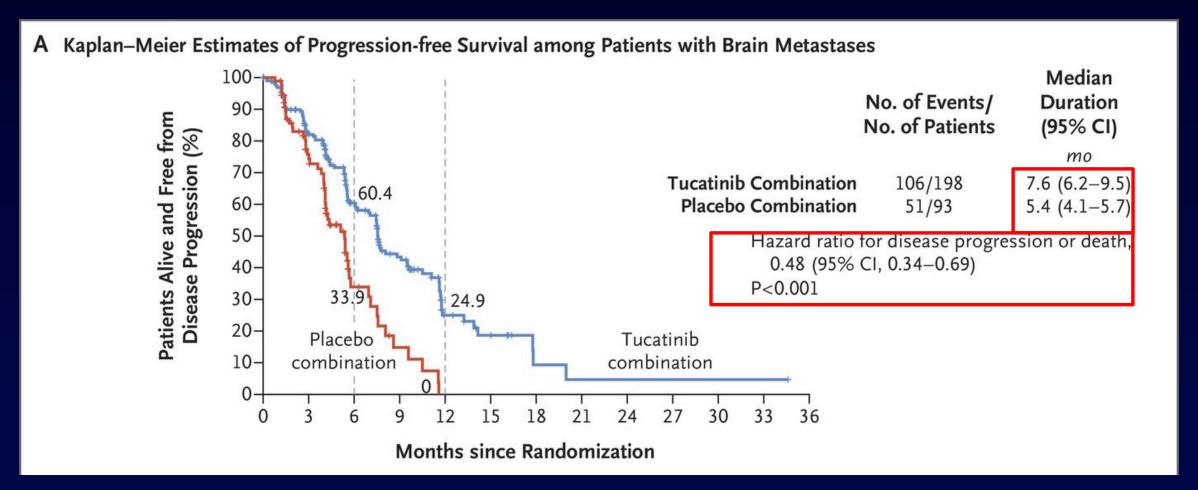
HER2CLIMB Trial Design

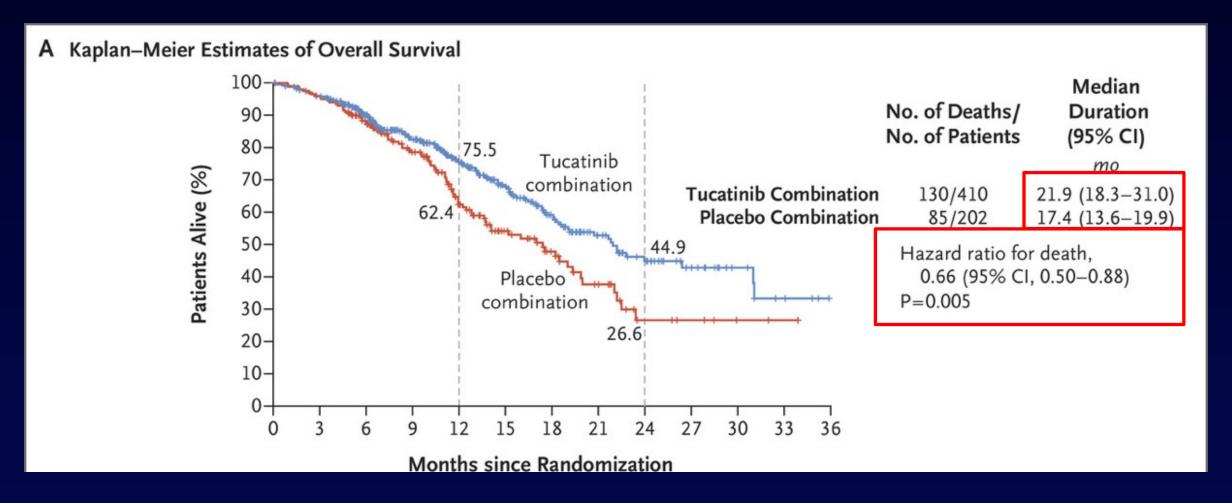

*Stratification Factors: presence of brain metastases (yes/no), ECOG status (0 or 1), and region of world (US or Canada or rest of world)

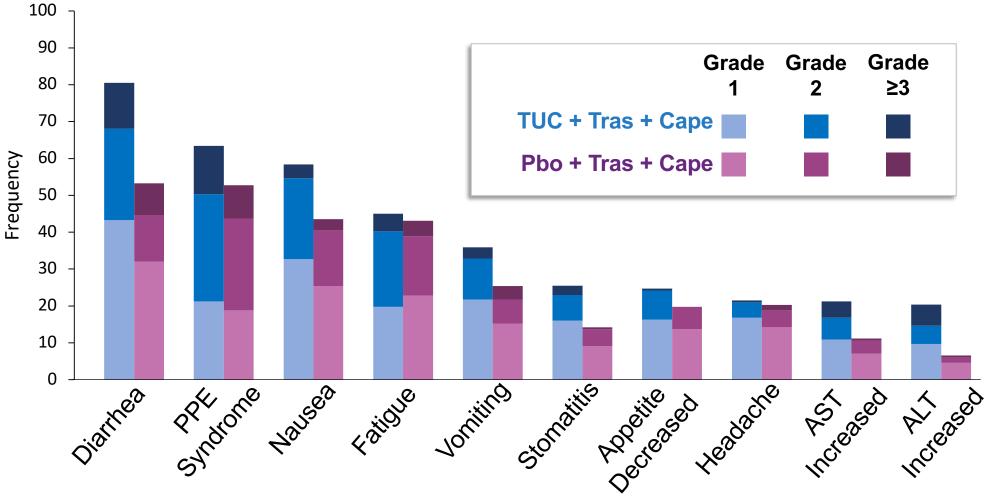
Baseline Characteristics of Note

- 60% HR positive
- 48% CNS Metastases
- 36% de novo metastatic breast cancer
- Median 3 prior lines of therapy in metastatic setting (range 1-14)

Courtesy of Sara Hurvitz, MD

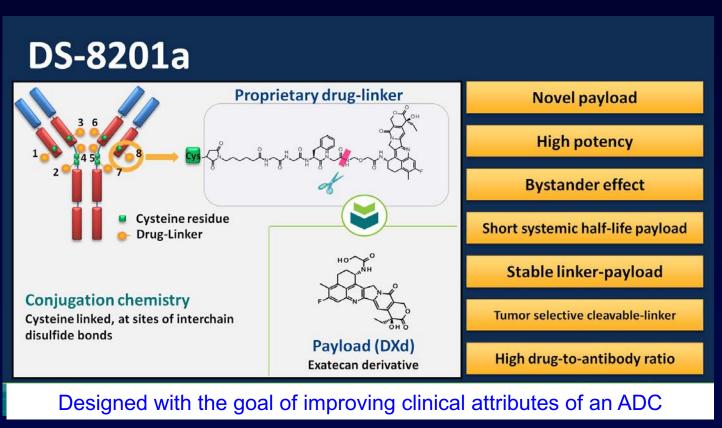

Progression-free Survival

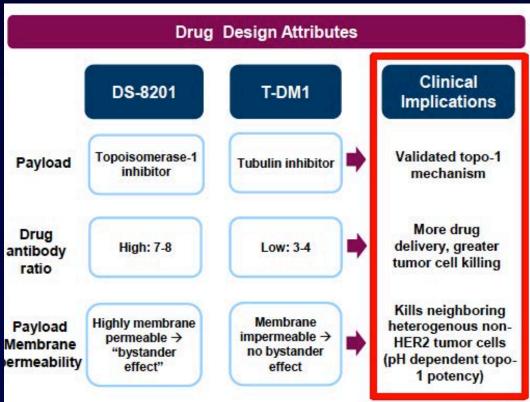



Progression-free Survival among the Patients with Brain Metastases

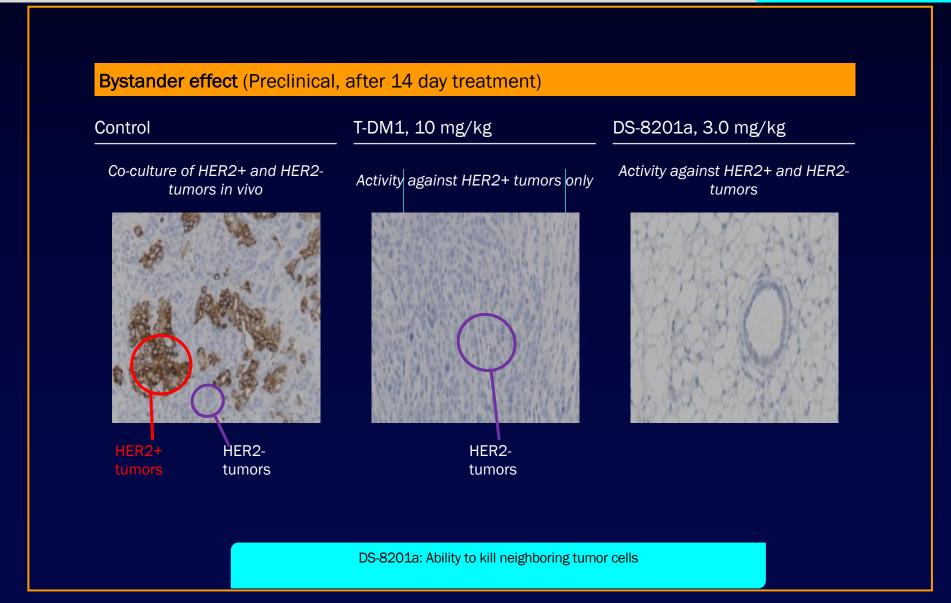
Overall Survival in the Total Population

Most Common Adverse Events (≥20% in the Tucatinib Arm)

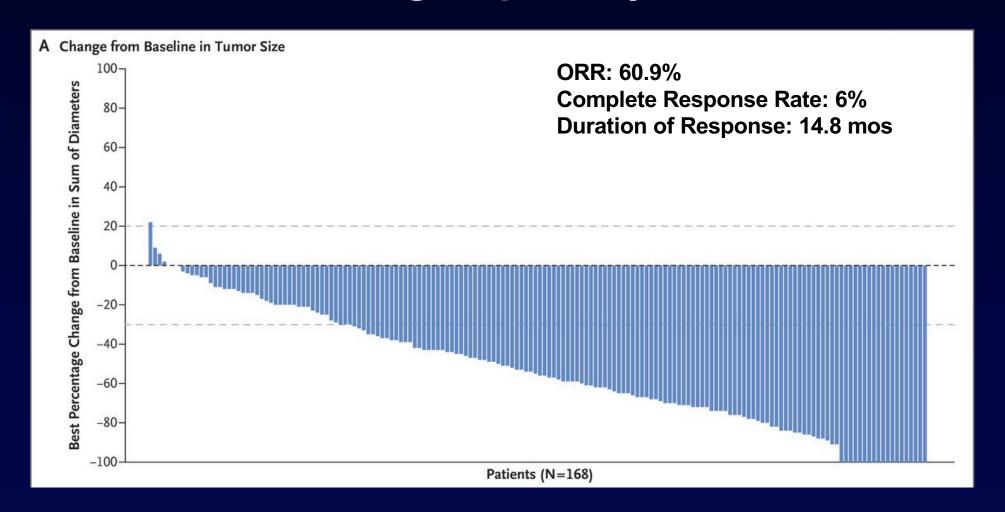

PPE: palmar-plantar erythrodysesthesia, AST: aspartate transaminase, ALT: alanine transaminase


Courtesy of Sara Hurvitz, MD

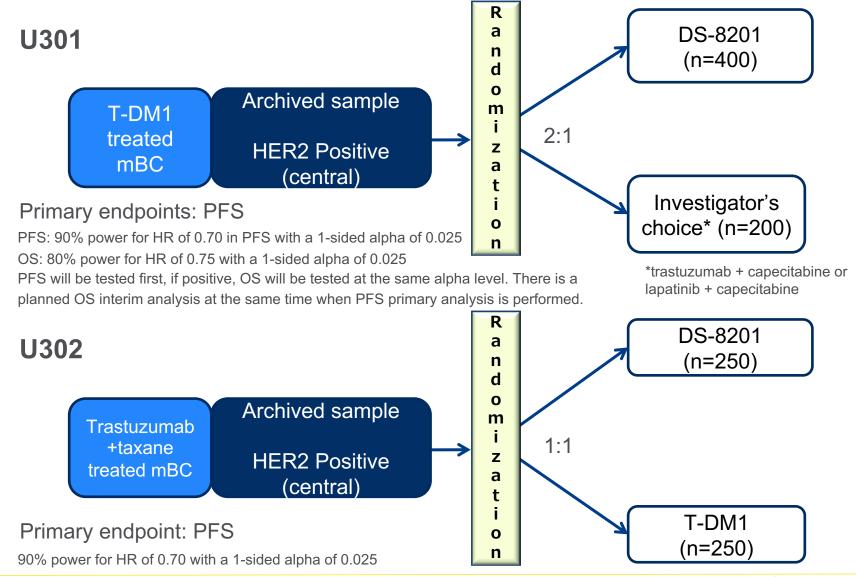
Tucatinib Approval


On April 17, 2020, the FDA approved tucatinib in combination with trastuzumab/capecitabine for treatment of advanced, unresectable or metastatic HER2+ BC, including patients with brain metastases, who have received ≥ 1 previous HER2-targeted therapy in the metastatic setting

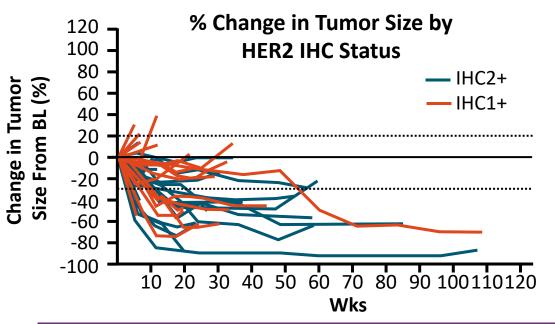
Trastuzumab Deruxtecan (DS-8201a): Structure and Mechanism of Action

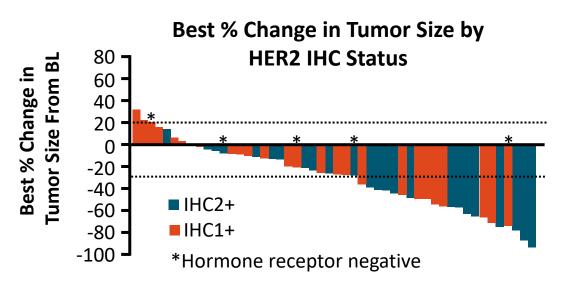


Bystander effect of T-DXd


Response to Trastuzumab Deruxtecan, According to Tumor Size and Subgroup Analyses.

DESTINY-Breast02 and -Breast03: U301 & U302

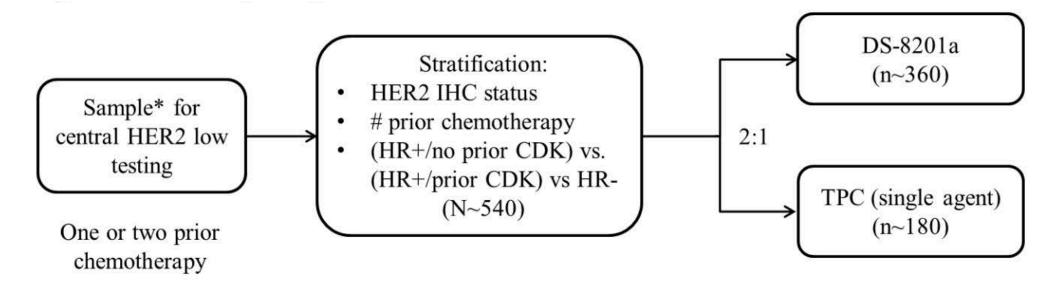

Ph III HER2+ mBC Trial Designs



How to Best Sequence New ≥3rd-Line Agents?

	Trastuzumab Deruxtecan	Tucatinib + Tras/Cape	Neratinib + Capecitabine
PROS	Very high ORR	OS and PFS benefit	PFS benefit
	Durable benefit Long PFS	Activity in both treated and progressive brain mets	Delays time to CNS Rx
	Activity maintained in pts with treated brain mets	Manageable toxicity profile	
CONS	ILD is serious potential risk	Absolute PFS benefit modest	Serious diarrhea is common
	No data on efficacy in progressive brain mets		Benefit modest

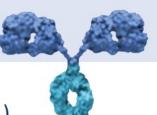
HER2-Low MBC: Use of trastuzumab deruxtecan??



Line at 20% indicates PD; line at -30% indicates PR.

Efficacy in HER2-Low MBC	Confirmed ORR, %	Median DoR, Mos	Median PFS, Mos
All (N = 51)	44.2	9.4	7.6
IHC 2+ (n = 24)	54.5	11.0	13.6
IHC 1+ (n = 27)	33.3	7.9	5.7
HR+ (n = 45)	47.4	11.0	7.9
Prior CDK4/6 inhibitor (n = 15)	33.3	NR	7.1

DESTINY-Breast04 HER2 Low (1+ or 2+ IHC)

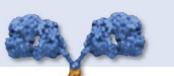

CDK = cyclin-dependent kinase, HER2 = human epidermal growth factor receptor 2, IHC = immunohistochemistry, TPC = treatment of physician's choice.

Margetuximab: Fc-engineered to Activate Immune Responses

Trastuzumab

Fab:

- Binds HER2 with high specificity
- Disrupts signaling that drives cell proliferation and survival



Fc:

- Wild-type immunoglobulin G1 (IgG1) immune effector domains
- Binds and activates immune cells

Margetuximab^{1,2}

Fab:

- Same specificity and affinity
- Similarly disrupts signaling

Fc engineering:

- ↑ Affinity for activating FcγRIIIA (CD16A)
- ↓ Affinity for inhibitory FcyRIIB (CD32B)

Margetuximab Binding to FcyR Variants:

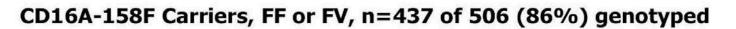
Receptor Type	Receptor	Allelic Variant	Relative Fc Binding	Affinity Fold-Change	
	CD1CA	158F	Lower	6.6x ↑	
	CD16A	158V	Higher	4.7x ↑	
Activating	CD32A	131R	Lower	6.1x ↓	
		131H	Higher	\leftrightarrow	
Inhibitory	CD32B	232I/T	Equivalent	8.4x ↓	

1. Nordstrom JL, et al. Breast Cancer Res. 2011;13(6):R123. 2. Stavenhagen JB, et al. Cancer Res. 2007;67(18):8882-8890.

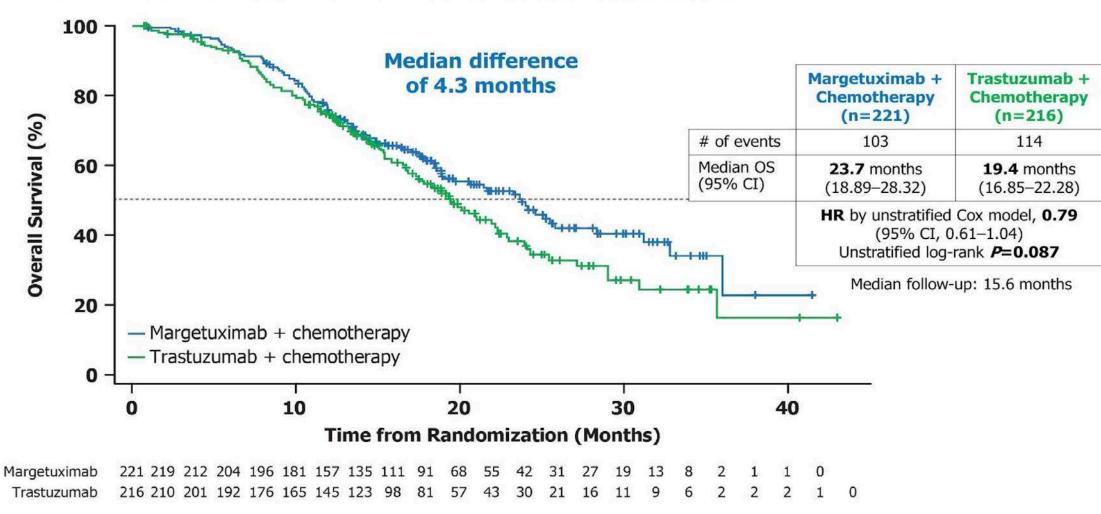
Planned* Exploratory PFS Analyses by FcyR Genotypes (CBA)

Margetuximab benefit appears to be increased in low-affinity CD16A-158F allele carriers

		Median PFS (95% CI), Months		HR by		Unstratified	
		Margetuximab + Chemotherapy	Trastuzumab + Chemotherapy		Unstratified Cox Model	95% CI	Log-Rank P Value
	All patients	5.8 (5.52-6.97)	4.9 (4.17-5.59)	H 	0.78	(0.61-0.99)	0.044
- (CD16A/F carrier (FV or FF), n=437	6.9 (5.55-8.15)	5.1 (4.14-5.59)	H O -I	0.68	(0.52-0.90)	0.005
Activating function	CD16A/FF, n=192	8.2 (5.52-10.51)	5.6 (4.50-8.31)	⊢●	0.69	(0.46-1.05)	0.080
	CD16A/FV, n=245	6.3 (5.52-7.23)	4.3 (4.01-5.59)	+←	0.71	(0.50-1.01)	0.055
	CD16A/VV, n=69	4.8 (2.46-5.65)	5.6 (2.86–11.04)	•	1.78	(0.87-3.62)	0.110
	CD32A/RR, n=122	5.7 (4.80-10.55)	5.5 (2.76-8.21)	H	0.69	(0.41-1.17)	0.166
	CD32A/RH, n=247	6.9 (5.55-8.15)	5.6 (4.17-6.67)	⊢● -I	0.74	(0.52-1.06)	0.102
	CD32A/HH, n=137	5.6 (3.29-8.28)	4.1 (2.79-5.59)	⊢	0.80	(0.49-1.30)	0.365
Inhibitory function	CD32B/II ⁺ , n=380	5.8 (5.55-7.66)	5.5 (4.17-5.65)	1	0.85	(0.64-1.13)	0.265
	CD32B/IT*, n=117	6.0 (4.14-NA)	5.5 (2.79-7.16)	H	0.63	(0.36-1.10)	0.098

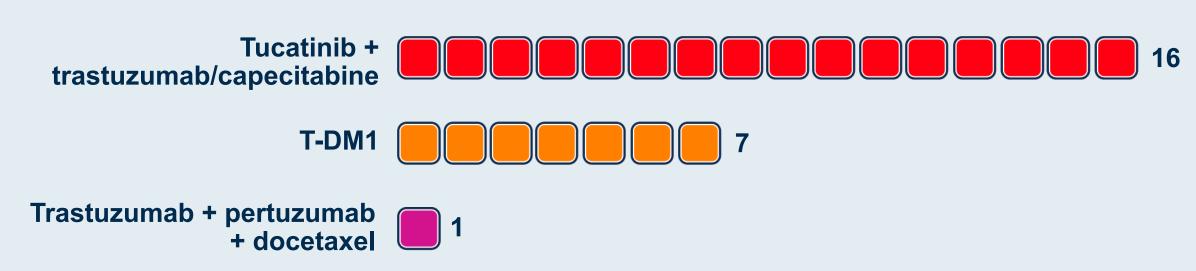

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.

Margetuximab Better Trastuzumab Better


^{*}Non-alpha allocating, exploratory analysis.

^{*}CD32B/TT not included on forest plot because n=9 is too small (5 on margetuximab, 4 on trastuzumab) to make analysis meaningful.

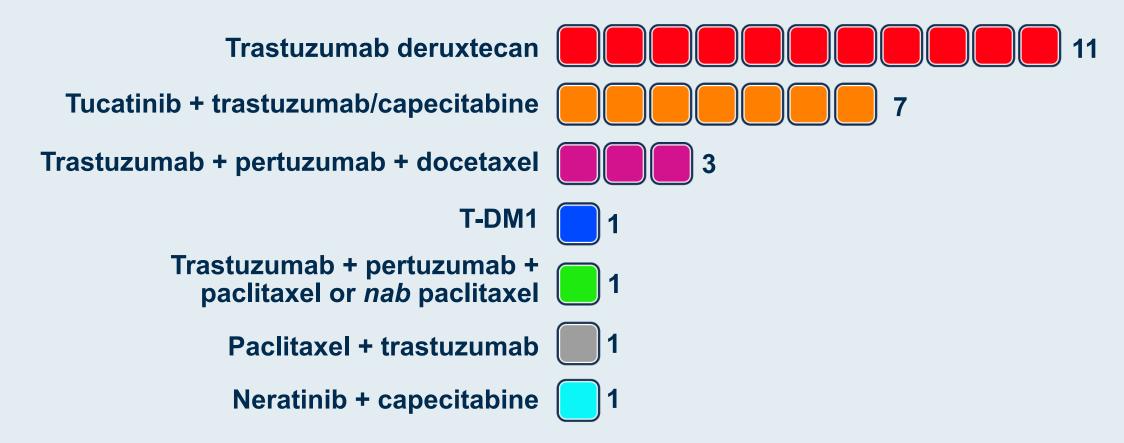
Prespecified OS in CD16A-158F carriers



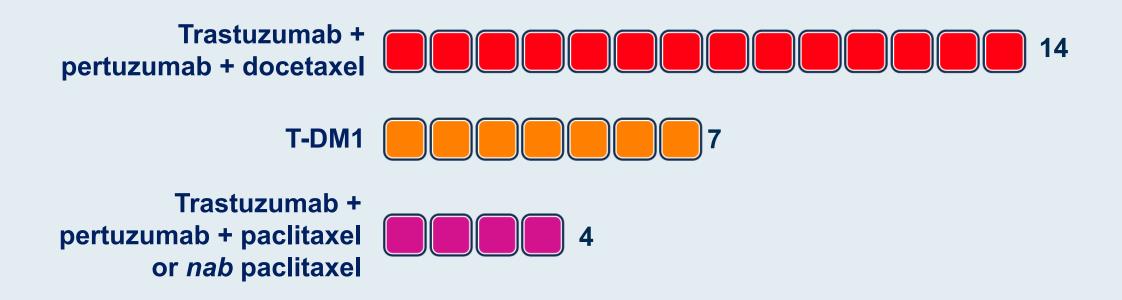
¹Sep-2019 Cutoff

This presentation is the intellectual property of the author/presenter. Contact her at hope.nego@ucsf.edu for permission to reprint and/or distribute.

A 65-year-old woman with ER-negative, HER2-positive IDC experiences disease recurrence in the liver and brain <u>6 months</u> after completing neoadjuvant TCHP followed by <u>adjuvant</u> <u>trastuzumab/pertuzumab</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

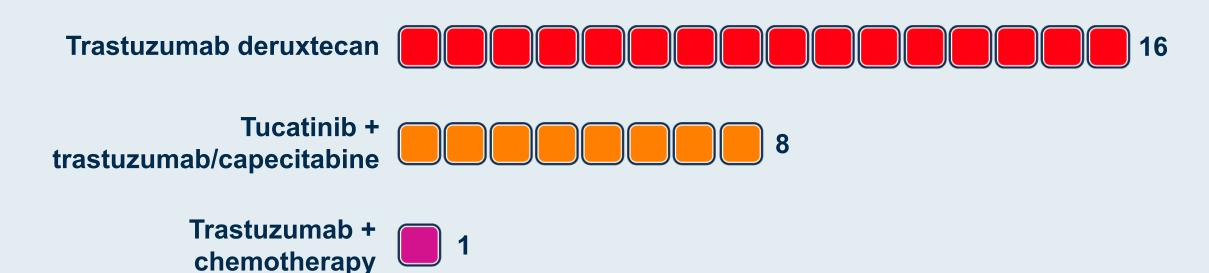


A 65-year-old woman with an ER-negative, HER2-positive IDC experiences disease recurrence in the liver <u>6 months</u> after completing neoadjuvant TCHP followed by <u>adjuvant T-DM1</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?


- 1. Trastuzumab/pertuzumab/docetaxel
- 2. T-DM1
- 3. Neratinib + paclitaxel
- 4. Neratinib + capecitabine
- 5. Tucatinib + trastuzumab/capecitabine
- 6. Trastuzumab deruxtecan
- 7. Trastuzumab + capecitabine
- 8. Other

A 65-year-old woman with ER-negative, HER2-positive IDC experiences disease recurrence in the liver <u>6 months</u> after completing neoadjuvant TCHP followed by <u>adjuvant T-DM1</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

A 65-year-old woman with ER-negative, HER2-positive IDC experiences disease recurrence in the liver 18 months after completing neoadjuvant TCHP followed by <u>adjuvant</u> <u>trastuzumab/pertuzumab</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?



A 65-year-old woman with ER-negative, HER2-positive metastatic breast cancer receives THP followed by T-DM1 on progression. She now presents with further disease progression <u>but no evidence of CNS involvement</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?


- 1. Trastuzumab + chemotherapy
- 2. Trastuzumab + lapatinib
- 3. Neratinib + paclitaxel
- 4. Neratinib + capecitabine
- 5. Tucatinib + trastuzumab/capecitabine
- 6. Trastuzumab deruxtecan
- 7. Lapatinib + capecitabine
- 8. Other

A 65-year-old woman with ER-negative, HER2-positive metastatic breast cancer receives THP followed by T-DM1 on progression. She now presents with further disease progression but no evidence of CNS involvement. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

Regulatory and reimbursement issues aside, have you administered or would you administer trastuzumab deruxtecan to a patient with HER2-low metastatic breast cancer outside of a clinical trial setting?

Case Presentation – Dr Hurvitz: 50-year-old woman with HER2-positive, ER-positive breast cancer

50 y.o. female diagnosed 2002 with stage III ER+ HER2+ BC, s/p TCH, lumpectomy with residual disease, tamoxifen. 2 years later metastases to spine. Treated with trastuzumab/endocrine therapy, lapatinib/trastuzumab/ endocrine therapy; vinorelbine/trastuzumab/pertuzumab; T-DM1, went on HER2CLIMB trial of trastuzumab/capecitabine +/- tucatinib; I thought she was getting tucatinib because she had rash, SBO, colitis, dose reduced tucatinib (or placebo), ultimately taken off study for PD 14 mos after enrolling (Later found out she was on placebo arm!). Placed on study of trastuzumab deruxtecan 9/2018. Still on study with disease control (cycle 37 now). Tolerating well but significant hair thinning. Nausea much better than at beginning of study.

Agenda

Module 1: Considerations in the Care of Patients with Localized HER2-Positive Breast Cancer (BC) Receiving Neoadjuvant Systemic Therapy — Dr Pegram

Module 2: Adjuvant and Extended-Adjuvant Therapy for Patients with Localized HER2-Positive BC — Dr Tolaney

Module 3: Optimizing the Management of HER2-Positive Metastatic BC (mBC) — Dr Hurvitz

Module 4: Treatment of HER2-Positive Brain Metastases — Dr Anders

Module 5: Incidence and Management of Adverse Events Associated with HER2-Targeted Therapy — Dr Hamilton

Treatment of HER2-Positive Breast Cancer Brain Metastases

Carey K. Anders, MD

Medical Director of the Duke Center for Brain and Spine Metastases

Duke Cancer Institute

December 2020

Case Presentation – Dr Anders: 46-year-old woman with HER2-positive breast cancer and metastases to the brain

46 yr old female presents to your clinic for systemic therapy recommendations for metastatic hormone receptor negative, HER2-positive breast cancer metastatic to brain. She was initially diagnosed with *de novo* metastatic breast cancer to the liver 2.5 years prior and initially received paclitaxel/trastuzumab pertuzumab. At her visit, she had been on T-DM1 for 8 months, and had radiosurgery to 3 brain metastases 4 months prior; T-DM1 was continued post-SRS as her liver lesions were stable. She now has intracranial progression with 5 new lesions that are all sub-cm. Her performance status remains excellent and she is hopeful to avoid additional radiation to the brain. Based on the available literature, you advise her that the next best step is:

- A. Vinorelbine/trastuzumab
- B. Tucatinib/trastuzumab/capecitabine
- C. Trastuzumab deruxtecan
- D. Abemaciclib/trastuzumab

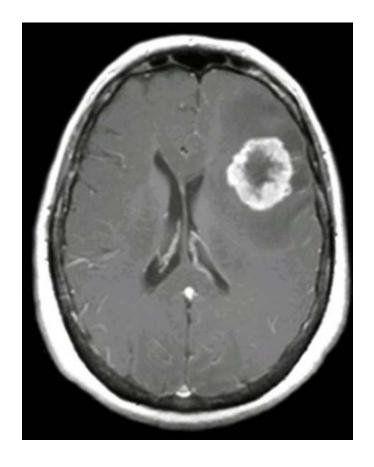
Case Presentation – Dr Anders: 47-year-old woman with HER2-positive breast cancer and metastases to the brain

47 yr old female with a known ER/PR negative, HER2-positive breast cancer to the liver who has previously progressed on taxane/trastuzumab/pertuzumab, and was on T-DM1 when she developed 3 supratentorial brain metastases that were treated with SRS. She continued on T-DM1 for 6 months following SRS when her LFT's started to rise and she developed RUQ pain. Her brain lesions remain stable. You recommend which of the following in hopes to achieving highest response in her liver metastases?

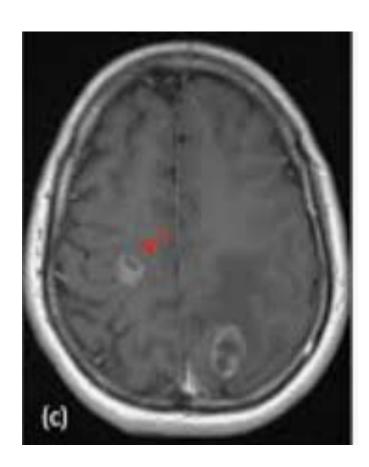
- A. Vinorelbine/trastuzumab
- B. Tucatinib/trastuzumab/capecitabine
- C. Trastuzumab deruxtecan
- D. Neratinib/capecitabine

A 47-year-old woman with HER2-positive, ER/PR-negative mBC who received paclitaxel/trastuzumab/pertuzumab, then T-DM1 and stereotactic radiation therapy to 3 supratentorial brain metastases develops extensive lymphangitic lung disease causing mild dyspnea. What is your most likely treatment?

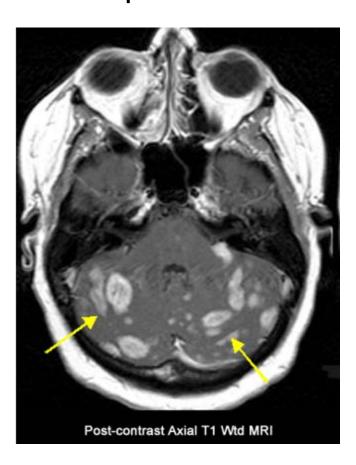
- 1. Tucatinib + trastuzumab/capecitabine
- 2. Trastuzumab deruxtecan
- 3. Neratinib
- 4. Neratinib + capecitabine
- 5. Neratinib + paclitaxel
- 6. Trastuzumab + chemotherapy
- 7. Trastuzumab + lapatinib
- 8. Other

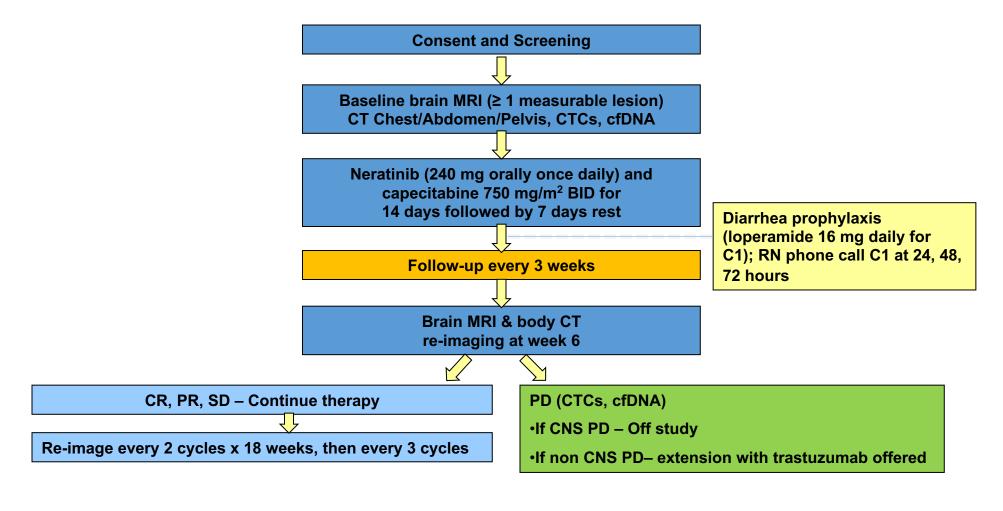

Brain metastases are a common consequence of advanced cancer

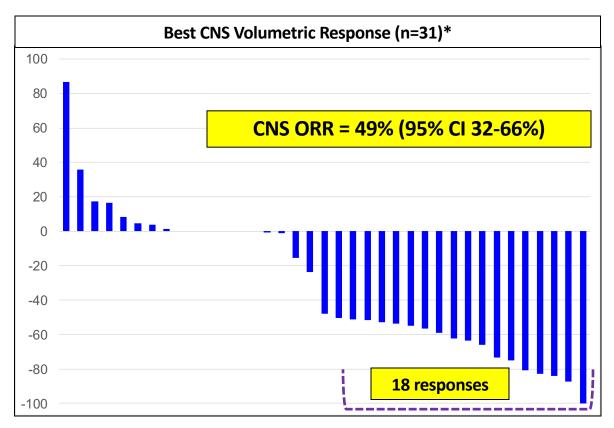
Primary site	Incidence Rates
Lung (overall)	16.3–19.9%
SCLC*	29.7% (at 5 years)
NSCLC*	12.6% (at 5 years)
Breast	10-15%
HER2 positive	25-50%
Triple negative	20%
Melanoma	6.9–7.4% 40 – 50%
Renal	6.5–9.8%
Colorectal	3.0%


Glitza Oliva et al. Ann Oncol 2018;29: 1509–1520 Barnholtz-Sloan et al. J. Clin Oncol. 2004;22(14):2865–72 Schouten et al. Cancer. 2002;94(10):2698–705 Chamberalin et al. Neuro-Oncology. 2017;19(1):i1–i24

Radiographic Images of Brain Metastases


Solitary lesion


Limited lesions


Multiple lesions

TBCRC 022 (Ph II neratinib/capecitabine): Study Design

Primary Endpoint – Neratinib/Capecitabine: CNS Volumetric Response

^{* 6} patients did not reach first re-staging evaluation and are categorized as '0'

⁺ No patient had clear increase in steroid use, non-target lesions, non-CNS lesions, or worsening neurological symptoms at time of radiographic response

HER2CLIMB Primary Analysis Results – SABCS 2019

- The HER2CLIMB trial met all primary and alpha-controlled secondary endpoints at the first interim analysis.
- Importantly, the secondary endpoint of PFS in patients with brain metastases was met.

PFS by BICR N=480*

Risk of progression or death was reduced by 46%

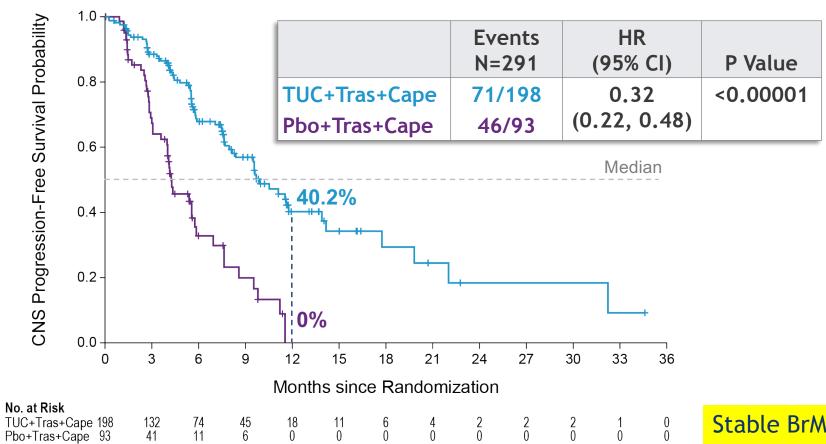
95% CI: 0.42 to 0.71, P<0.001

Overall Survival N=612

Risk of death was reduced by 34%

95% CI, 0.50 to 0.88, P=0.005

PFS by BICR in patients with brain metastases N=291

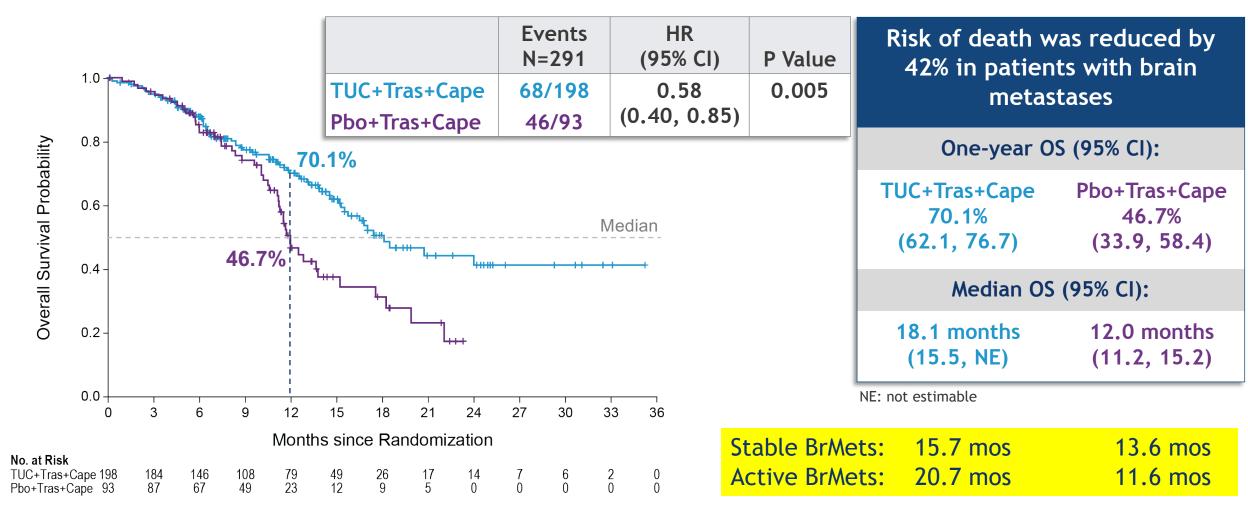

Risk of progression or death was reduced by 52%

95% CI, 0.34 to 0.69, P<0.001

PFS: progression-free survival; BICR: blinded independent central review *The primary endpoint of PFS was assessed in the first 480 patients enrolled.

Murthy RK, et al. N Engl J Med 2020;382:597-609.

HER2CLIMB: CNS-PFS Benefit in Patients with Brain Metastases

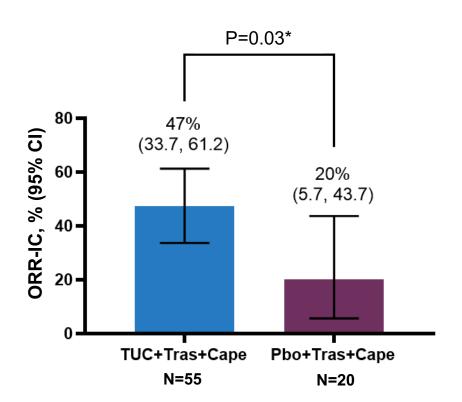

Risk of CNS progression or death was reduced by 68% in patients with brain metastases				
One-year CNS	-PFS (95% CI):			
TUC+Tras+Cape 40.2% (29.5, 50.6)	Pbo+Tras+Cape 0%			
Median CNS-	PFS (95% CI):			
9.9 months (8.0, 13.9)	4.2 months (3.6, 5.7)			

Stable BrMets: 13.9 mos 5.6 mos Active BrMets: 9.5 mos 4.1 mos

CNS-PFS: time from randomization to disease progression in the brain or death by investigator assessment.

HR: hazard ratio computed from Cox proportional hazards model using stratification factors (ECOG performance status: 0/1, and Region of world: North America/Rest of World) at randomization. All P values are nominal.

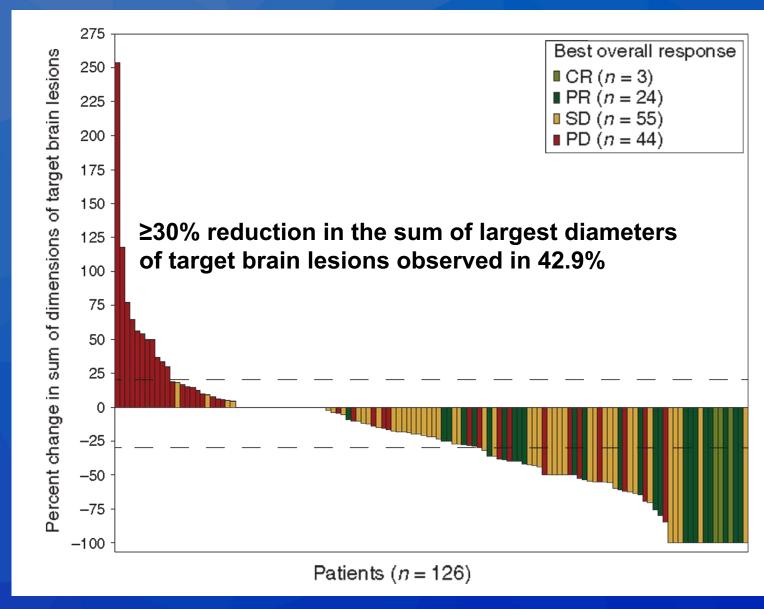
HER2CLIMB: OS Benefit in Patients with Brain Metastases



HR: hazard ratio computed from Cox proportional hazards model using stratification factors (ECOG performance status: 0/1, and Region of world: North America/Rest of World) at randomization. All P values are nominal.

HER2CLIMB: Intracranial Response Rate (ORR-IC) in Patients with Active Brain Metastases and Measurable Intracranial Lesions at Baseline

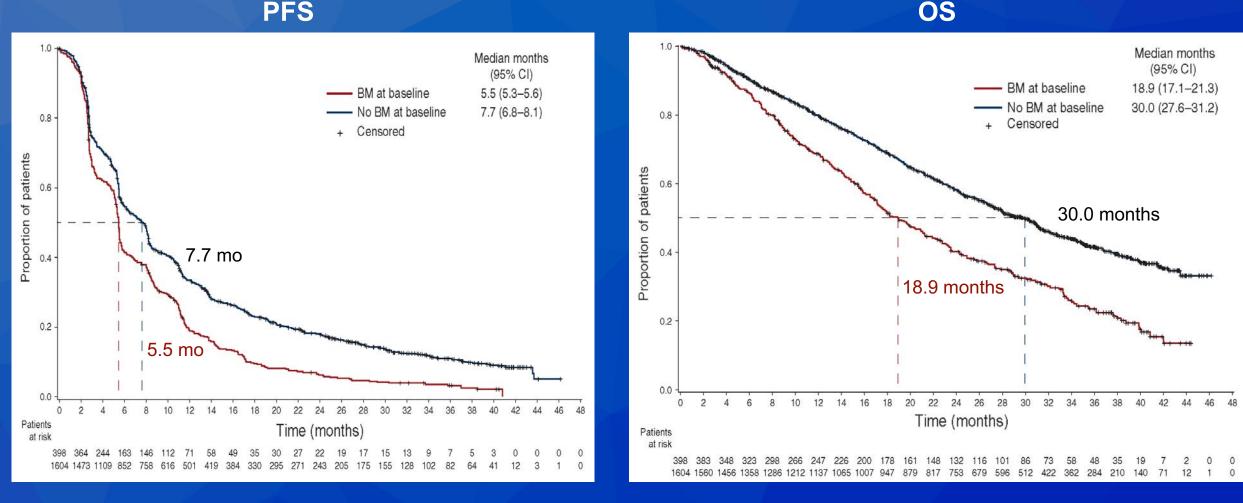
Confirmed Objective Response Rate (RECIST 1.1)



*Stratified Cochran-Mantel-Haenszel P value

	TUC+Tras+Cape (N=55)	Pbo+Tras+Cape (N=20)
Best Overall Intracranial Response ^a , n (%)		
Complete Response (CR)	3 (5.5)	1 (5.0)
Partial Response (PR)	23 (41.8)	3 (15.0)
Stable Disease (SD)	24 (43.6)	16 (80.0)
Progressive Disease (PD)	2 (3.6)	0
Not Available ^b	3 (5.5)	0
Subjects with Objective Response of Confirmed CR or PR, n	26	4
Duration of Intracranial Response (DOR-IC) ^e (95% CI) ^f , months	6.8 (5.5, 16.4)	3.0 (3.0, 10.3)

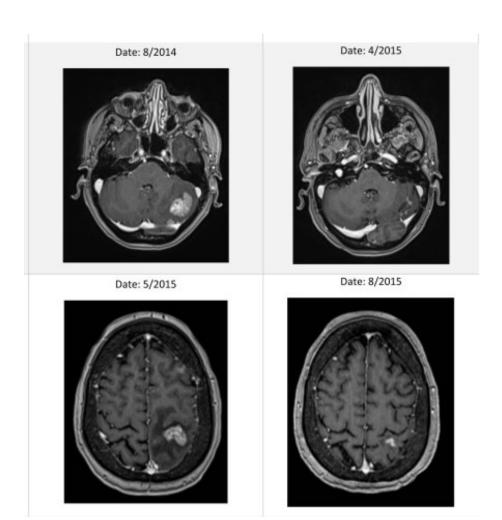
(a) Confirmed Best overall response assessed per RECIST 1.1. (b) Subjects with no post-baseline response assessments. (c) Twosided 95% exact confidence interval, computed using the Clopper-Pearson method (1934). (d Cochran-Mantel-Haenszel test controlling for stratification factors (ECOG performance status: 0/1, and Region of world: North America/Rest of World) at randomization. (e) As estimated using Kaplan-Meier methods. (f) Calculated using the complementary log-log transformation method (Collett, 1994).


KAMILLA Trial (Cohort 1): Response to T-DM1 in Brain

Of the 126 patients with measurable brain metastases at baseline:

- Complete response = 3 (2.4%)
- Partial response = 24 (19%)
- Best overall response rate across all organs = 21.4%
- Stable disease ≥6 mo = 27 (21.4%)
- Clinical benefit rate = 42.9%

KAMILLA Trial (Cohort 1): Survival for Patients with BM vs No BM at Baseline



BM = brain metastases

• This exploratory analysis of patients with HER2-positive mBC and BM enrolled in a prospective clinical trial shows that T-DM1 is active and well tolerated.

Montemurro F et al. Ann Oncol 2020;31(10):1350-8.

T-DM1 activity in HER2+ brain metastases: UNC experience and case reports

R. Bartsch, et al, Clin. Exp. Metastasis 2015.

Case report of n = 10 pts illustrated PFS of 5.5 mos; OS 8.5 mos

Four patients treated at UNC with durable responses, one over 16 mos.

Ph II study of T-DM1 plus neratinib in HER2+ BCBM activated through TBCRC 022

(PI R. Freedman)

Keith, K et al. Cancer Treat Comm 2016.

DESTINY-Breast01: PFS for patients with stable brain metastases treated with trastuzumab deruxtecan

The median response duration was 14.8 months (95% CI, 13.8 to 16.9) (Figure 3A). The median duration of progression-free survival was 16.4 months (95% CI, 12.7 to not reached) among all patients and 18.1 months (95% CI, 6.7 to 18.1) among the 24 patients who were enrolled with treated and asymptomatic brain metastases. Estimated overall survival was 93.9% (95% CI, 89.3 to 96.6) at 6 months and 86.2% (95% CI, 79.8 to 90.7) at 12 months; the median overall survival was not reached at the time of this report (Fig. S2).

How do we synthesize this data into a practical clinical algorithm?

Post-CNS radiation systemic therapy considerations

HER2-targeted therapy algorithms for HER2+ metastatic breast cancer

1st line: THP

• 2nd line: T-DM1

• 3rd line: Current options:

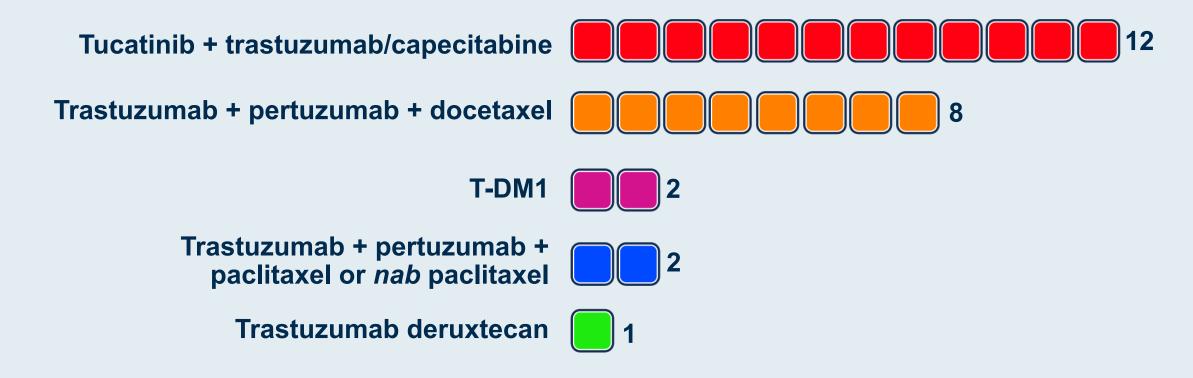
Trastuzumab-deruxtecan (Stable BrM)

Tucatinib/Trastuzumab/Capecitabine

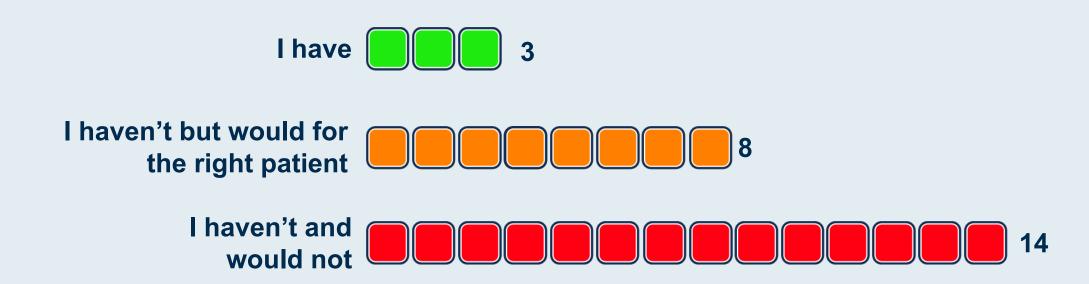
Neratinib/Capecitabine

Lapatinib/Capecitabine

Many outstanding questions:


- 1. Would incorporating tucatinib earlier in the treatment for patients with brain metastases be of benefit?
- 2. Would combining tucatinib with H/P or T-DM1 be of benefit to patients with brain metastases?
- 3. Would combining tucatinib with trastuzumab deruxtecan be of benefit to patients with brain metastases?
- 4. Would switching therapy to tucatinib regimen post-CNS XRT be of benefit to patients with brain metastases?
- 5. Many more....?

A 65-year-old woman with an ER-negative, HER2-positive IDC experiences disease recurrence in the <u>liver and brain</u> 18 months after completing neoadjuvant TCHP followed by <u>adjuvant</u> <u>trastuzumab/pertuzumab</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?


- 1. Trastuzumab/pertuzumab/docetaxel
- 2. T-DM1
- 3. Neratinib + paclitaxel
- 4. Neratinib + capecitabine
- 5. Tucatinib + trastuzumab/capecitabine
- 6. Trastuzumab deruxtecan
- 7. Trastuzumab + capecitabine
- 8. Other

A 65-year-old woman with ER-negative, HER2-positive IDC experiences disease recurrence in the <u>liver and brain</u> 18 months after completing neoadjuvant TCHP followed by <u>adjuvant</u> <u>trastuzumab/pertuzumab</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

Have you administered or would you administer tucatinib combined with something other than trastuzumab/capecitabine outside of a clinical trial setting?

Agenda

Module 1: Considerations in the Care of Patients with Localized HER2-Positive Breast Cancer (BC) Receiving Neoadjuvant Systemic Therapy — Dr Pegram

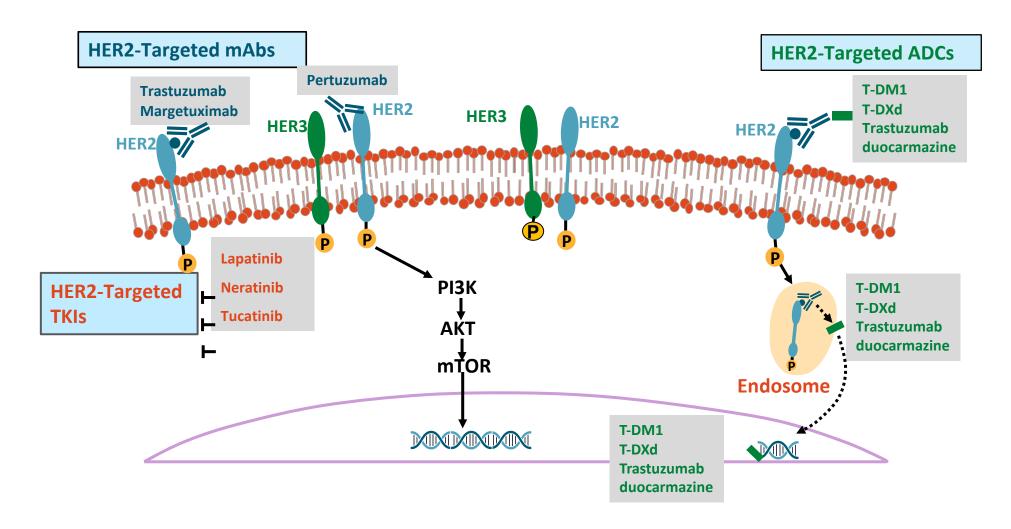
Module 2: Adjuvant and Extended-Adjuvant Therapy for Patients with Localized HER2-Positive BC — Dr Tolaney

Module 3: Optimizing the Management of HER2-Positive Metastatic BC (mBC) — Dr Hurvitz

Module 4: Treatment of HER2-Positive Brain Metastases — Dr Anders

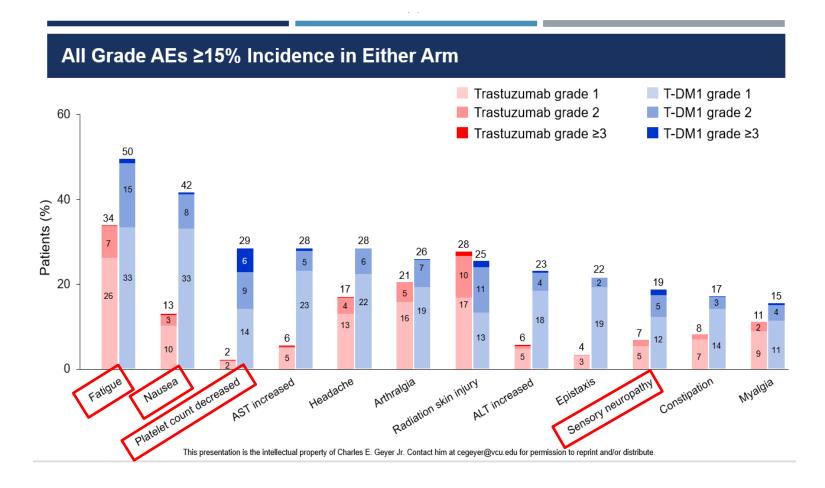
Module 5: Incidence and Management of Adverse Events Associated with HER2-Targeted Therapy — Dr Hamilton

Adverse Events (AEs) associated with HER2 targeted therapies


Erika Hamilton, MD

Director, Breast and Gynecological Research

Sarah Cannon Research Institute/Tennessee Oncology



Targeted therapies for HER2+ breast cancer

KATHERINE Trial (Trastuzumab vs T-DM1): Adverse event profile

Number of patients	Trastuzumab n=720	T-DM1 n=740
Grade <u>></u> 3 AEs	111 (15.4)	190 (25.7)
Serious AEs	58 (8.1)	94 (12.7)
AEs leading to tx		
discontinuation	15 (2.1)	133 (18.0)
AE with fatal outcome*	0	1 (0.1)

^{*}Fatal AE was intracranial hemorrhage after a fall associated with T-DM1–induced thrombocytopenia

KATHERINE: Dose reductions and Treatment discontinuations

Dose reductions

	Trastuzumab (n=720)	T-DM1 (n=740)
Cycles of trastuzumab/T-DM1 completed, n (%)		
7 cycles	664 (92.2)	637 (86.1)
14 cycles	583 (81.0)	528 (71.4)
Patients with a dose reduction, n (%)		
No dose reduction	N/A	634 (85.7)
One dose level reduction (3.0 mg/kg)	N/A	77 (10.4)
Two dose level reductions (2.4 mg/kg)	N/A	29 (3.9)

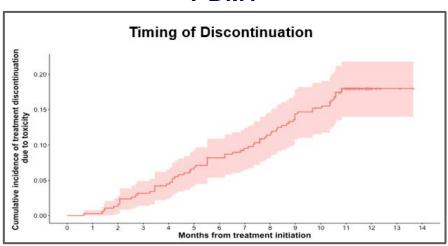
Treatment discontinuations

	Trastuzumab n=720	T-DM1 n=740
Patients discontinuing due to adverse events	15 (2.1%)	133 (18.0%)
Platelet count decreased	0	31 (4.2%) 🗸
Blood bilirubin increased	0	19 (2.6%)
Aspartate aminotransferase (AST) increased	0	12 (1.6%)
Alanine aminotransferase (ALT) increased	0	11 (1.5%)
Peripheral sensory neuropathy	0	11 (1.5%) 🗸
Ejection fraction decreased	10 (1.4%)	9 (1.2%)

@ErikaHamilton9

ATEMPT Trial (T-DM1 vs. TH): Adverse event profile

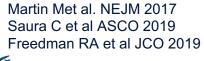
Treatment related AEs Grade ≥2 by Arm


	T-DM1 (n = 383)	TH (n = 114)
Fatigue	84 (22%)	26 (23%)
Neuropathy	44 (11%)	27 (24%)
Neutropenia	13 (3%)	15 (13%)
Thrombocytopenia	43 (11%)	1 (1%)
Nausea	39 (10%)	8 (7%)
Hypertension	35 (9%)	7 (6%)
ALT increase	33 (9%)	5 (4%)
Headache	24 (6%)	4 (4%)
Bilirubin increase	21 (5%)	1 (1%)
Infusion related reaction	19 (5%)	12 (11%)
Arthralgia	18 (5%)	2 (2%)
Anemia	18 (5%)	2 (2%)

ATEMPT: Toxicities and treatment discontinuations

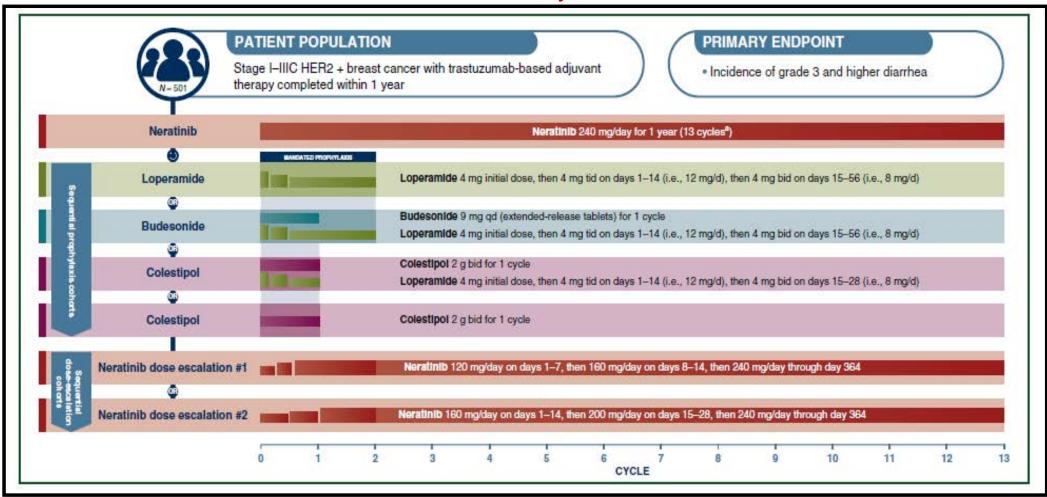
Clinically Relevant Toxicity	T-DM1 (n = 383) N (%)	TH (n = 114) N (%)
Grade ≥3 non-hematologic toxicity	37 (10%)	13 (11%)
Grade ≥ 2 neurotoxicity	42 (11%)	26 (23%)
Grade ≥4 hematologic toxicity	4 (1%)	0 (0%)
Febrile neutropenia	0 (0%)	2 (2%)
Any toxicity requiring dose delay	106 (28%)	30 (26%)
Any toxicity requiring early discontinuation	67 (17%)	7 (6%)
Total	176 (46%)	53 (46%)
	n=	0.91

Probability of discontinuing T-DM1 within 6 months: 8.2% Probability of discontinuing T-DM1 within 6-12 months:10.7%

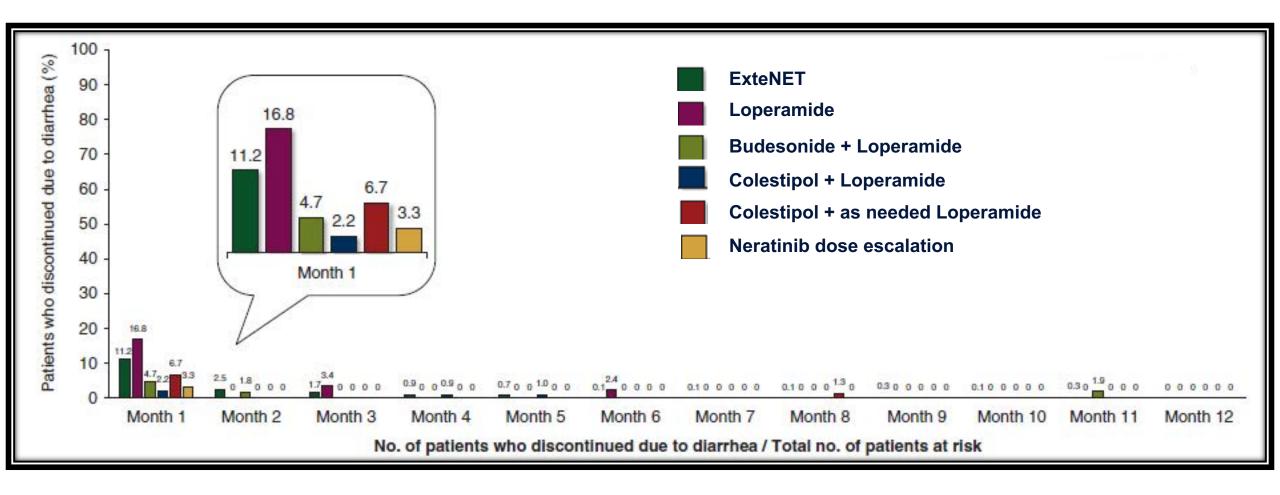

Discontinuations for toxicity that were protocol mandated: 9%

Common toxicities leading to T-DM1 discontinuation include elevation of liver enzymes or bilirubin, neuropathy and thrombocytopenia

Diarrhea seen with neratinib across trials


Trial		EXT	ENET			N.	LA		TBCR	C 022
Patient	HER2+ EB	C after ad	juvant tras	stuzumab	HER2+	HER2+ MBC after >2L of anti HER2			HER2+ MBC with brain	
population		the	rapy			the	rapy		me	ets
	Nera	tinib	Plac	ebo	Neratini	b+Cape	Lapatini	b+Cape	Neratini	b+Cape
Treatment	(N=1	408)	(N=1	408)	(N=3	303)	(n=3	311)	(N=	49)
Grade	G1-2	G3	G1-2	G3	All grade	G3-4	All grade	G3-4	G2	G3
Treatment related diarrhea, % of pts		40	34	2	83	24	66	13	33	29
diarrilea, % of pts	33	40	34		65		00	13	33	25
			Δ38%				Δ11%			

CONTROL Trial: Improving tolerability of Neratinib in EBC


Treatment schedules by CONTROL cohort

Barcenas CH et al 2020

CONTROL: Treatment discontinuations d/t diarrhea

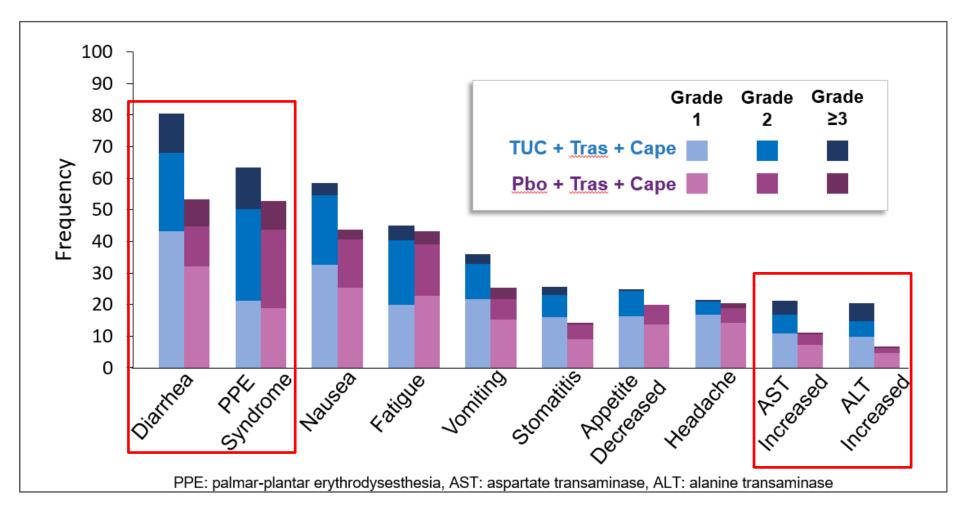
FDA label for Neratinib includes data on the use of prophylactic loperamide plus budesonide

Prophylaxis for diarrhea with Neratinib

Dose management for EBC

Dose management for MBC

Neratinib 240mg once a day daily


Capecitabine twice a day for 14days and 7days off

An antidiarrheal should be taken with Neratinib for the first 2 months (EBC & MBC)

HER2CLIMB Trial (Tucatinib or Placebo + Capecitabine/Trastuzumab) - Most common AEs (>20% in the Tucatinib arm)

Management of toxicities with Tucatinib

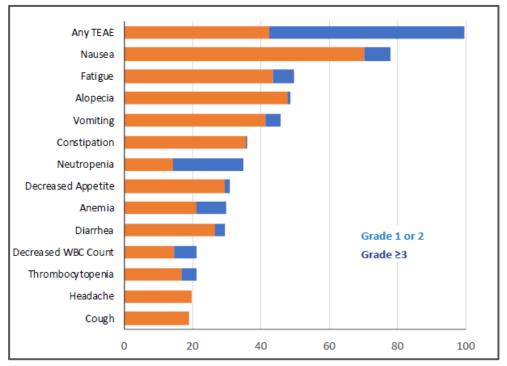
Diarrhea

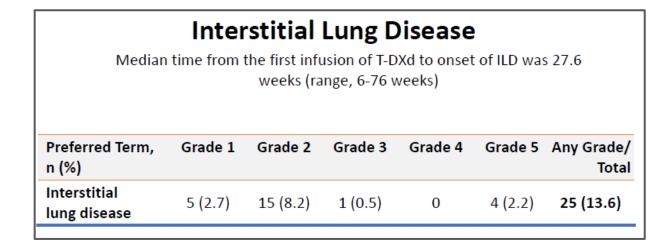
- Antidiarrheal prophylaxis not required
- Administer antidiarrheal treatment as clinically indicated
- Perform diagnostic tests as clinically indicated to exclude other causes of diarrhea
- Based on the severity of the diarrhea, consider dose reductions of capecitabine and possibly tucatinib

Hepatotoxicity

- Monitor ALT, AST and bilirubin prior to starting Tucatinib, q 3weeks during treatment and as clinically indicated
- Based on the severity of the hepatotoxicity, interrupt dose, then dose reduce or permanently discontinue tucatinib and/or capecitabine

PPE syndrome


- Side effect of capecitabine
- Support care per standard capecitabine (emollients, topical creams, altered schedule, dose reductions)


PPE: Palmar plantar erythrodysesthesia

DESTINY Breast-01 Trial: Adverse events with TDxd

Treatment-emergent Adverse Events in >15% of Patients^a

a Patients who received T-DXd 5.4 mg/kg.

- Serious TEAEs, 22.8% (drug related, 12.5%)
- TEAEs associated with discontinuation, 15.2% (drug related, 14.7%);
 the majority were due to pneumonitis/ILD (8.7%)

Krop I et al SABCS 2019
SARAH CANNON

Symptom identification for diagnosis of ILD

Talk to your patients about their symptoms....

- ✓ Have you been coughing recently? Is it a dry cough?
- ✓ Have you had any shortness of breath, especially during or after physical activity?
- ✓ Have you experienced any new breathing or respiratory problems?
- ✓ If you already have respiratory problems, have they gotten worse?
- ✓ Have you had a fever?
- ✓ Have you been feeling tired?
- ✓ Have you lost weight?

Symptom identification is vital to identification of ILD/pneumonitis!

Pneumonitis-associated with DS-8201a

ILD in Phase 1/2 studies¹

	All-grade	Grade 5
All subjects N=665	9.9%	0.8%
Breast cancer, any dose N=510	10.6%	0.8%
Breast cancer, 5.4 mg/kg N=269	5.6%	0.4%

Conclusions

- Higher likelihood of developing ILD associated with¹:
 - ➤ Higher dose (≥6.4 mg/kg)
 - Japanese origin: Japanese patients 49% of N=665 sample
 - Number of prior therapies: Many patients in Phase1/2 have multiple prior lines of therapy
- Median 149 days (~6 months) to onset¹ allows for monitoring & intervention
- Education and guidelines implementation underway

Management of Interstitial Lung Disease in Clinical Studies of Trastuzumab Deruxtecan

Monitor

Suspected ILD

Interrupt drug

Rule out ILD if the patient exhibits:

- Radiographic changes suggesting ILD
- Acute onset of new/worsening pulmonary or related symptoms (eg, cough, dyspnea, fever)

Confirm

Assessments should include:

- High-resolution CT
- Pulmonologist consultation and, if indicated, ID consultation
- Blood culture and CBC; other blood tests as needed
- Consider bronchoscopy and BAL if indicated and feasible
- PFTs and pulse oximetry
- Arterial blood gasses, if indicated
- As soon as ILD suspected, collect 1 blood sample for PK assessment, if feasible

All ILD events should be followed until resolution and after drug discontinuation.

Manage

Hold drug for any ILD events independent of grade

- **Grade 1:** Hold until fully resolved, then:
- If resolved ≤ 28 d from onset: maintain dose
- If resolved > 28 d after onset: reduce dose by 1 level
- If grade 1 ILD occurs beyond cycle Day 22 and has not resolved within 49 d from last infusion: discontinue drug
- Grades 2-4: permanently discontinue treatment and follow toxicity management guidelines for trastuzumab deruxtecan

Case Presentation – Dr Hamilton: 69-year-old woman with HER2-positive breast cancer

- 69 yo F with HER2-amplified breast cancer
 - Oct 2008 L breast biopsy, ER-, PR-, HER2 3+ L4 biopsy + metastatic carcinoma c/w breast
 - Kyphoplasty and XRT L4
 - For roughly 10 years received 13 lines of HER2-directed therapy including T-DM1, pertuzumab, margetuximab, lapatinib, etc and most chemo backbones with trastuzumab
 - Metastatic disease to liver, bone and even epidural tumor in spine
 - Received trastuzumab deruxtecan
 - C3D1 -26.8% SD
 - C5D1 -55% PR
 - C7D1 -68% PR

Case Presentation – Dr Hamilton: 69-year-old woman with HER2-positive breast cancer (cont)

- At C16D1 presents to clinic feeling unwell, 99% RA, on questioning has subtle SOB on stairs and some cough when lying flat at night
 - Scans ordered and show pneumonitis
 - Steroids started at 1mg/kg and symptoms improve, wean off steroids over 4 weeks
 - Several weeks later symptoms return and she goes back on steroids with hospitalization with prolonged taper over 2 months
 - Remained off therapy for 10 months with no progression

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Triple-Negative Breast Cancer

Friday, December 11, 2020 8:30 PM – 10:00 PM ET

Faculty

P Kelly Marcom, MD
Joyce O'Shaughnessy, MD

Hope S Rugo, MD

Professor Peter Schmid, MD, PhD

Moderator

Neil Love, MD

Thank you for joining us!

CME credit information will be emailed to each participant within 3 business days.

