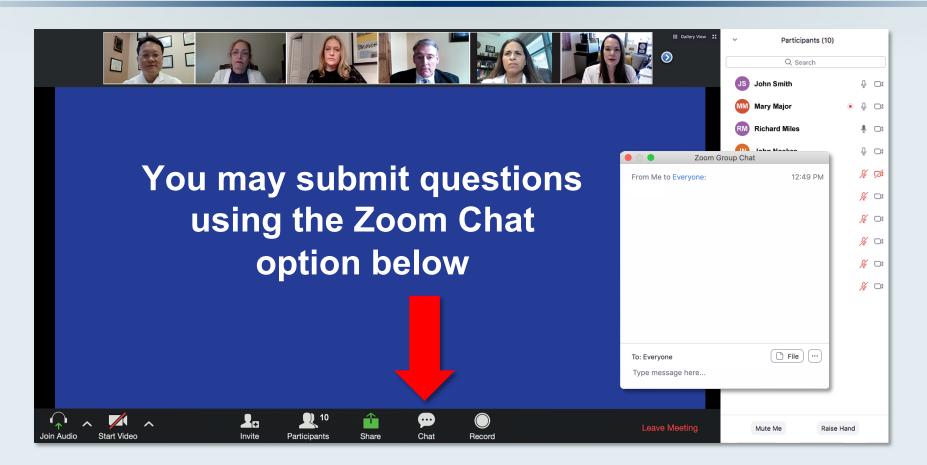
Key Questions and Emerging Research in the Management of HER2-Positive Breast Cancer

Wednesday, July 8, 2020 5:00 PM – 6:00 PM ET

> Faculty Lisa A Carey, MD Ian E Krop, MD, PhD

> > Moderator Neil Love, MD

Faculty


Lisa A Carey, MD

Richardson and Marilyn Jacobs Preyer Distinguished Professor for Breast Cancer Research Deputy Director for Clinical Sciences Lineberger Comprehensive Cancer Center Chapel Hill, North Carolina

Ian E Krop, MD, PhD Associate Chief, Division of Breast Oncology Dana-Farber Cancer Institute Associate Professor of Medicine Harvard Medical School Boston, Massachusetts

Dr Love and Faculty Encourage You to Ask Questions

Feel free to submit questions **now before** the program commences and **throughout the program**.

ONCOLOGY TODAY WITH DR NEIL LOVE

The Current and Future Role of Immune Checkpoint Inhibitors and Other Novel Therapies in Urothelial Bladder Cancer

Thursday, July 9, 2020 5:00 PM – 6:00 PM ET

Faculty

Arjun Balar, MD Siamak Daneshmand, MD Ashish M Kamat, MD, MBBS Jonathan E Rosenberg, MD

Moderator Neil Love, MD

Key Questions and Emerging Research in the Management of Multiple Myeloma

Monday, July 13, 2020 5:00 PM – 6:00 PM ET

> Faculty Shaji K Kumar, MD Noopur Raje, MD

> > Moderator Neil Love, MD

Meet The Professors

Clinical Investigators Discuss Existing and Emerging Treatment Strategies for Patients with Ovarian, Cervical and Endometrial Cancer

> Tuesday, July 14, 2020 12:00 PM – 1:00 PM ET

Faculty Michael J Birrer, MD, PhD Kathleen Moore, MD

> Moderator Neil Love, MD

Research To Practice®

Recent Advances in Medical Oncology: Triple-Negative Breast Cancer

Monday, July 20, 2020 5:00 PM – 6:00 PM ET

Faculty Joyce O'Shaughnessy, MD Hope S Rugo, MD

> Moderator Neil Love, MD

Research To Practice®

Recent Advances in Medical Oncology: ER-Positive Breast Cancer

Monday, August 17, 2020 5:00 PM – 6:00 PM ET

Faculty Virginia Kaklamani, MD, DSc Sara M Tolaney, MD, MPH

> Moderator Neil Love, MD

Research To Practice®

Make the Meeting Even More Relevant to You

Download the RTP Live app on your smartphone or tablet to access program information, including slides being presented during the program:

www.ResearchToPractice.com/RTPLiveApp

About the Enduring Program

- This webinar is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

- An email will be sent to all attendees when the activity is available.
- To learn more about our education programs visit our website, www.ResearchToPractice.com

Key Questions and Emerging Research in the Management of HER2-Positive Breast Cancer

Wednesday, July 8, 2020 5:00 PM – 6:00 PM ET

> Faculty Lisa A Carey, MD Ian E Krop, MD, PhD

> > Moderator Neil Love, MD

Community Oncologists

Patricia A DeFusco, MD Director, Breast Program Hartford HealthCare Cancer Institute Hartford Hospital Hartford, Connecticut

Nick C Leasure, MD Assistant Section Chief Section of Hematology and Oncology Tower Health Medical Group Reading, Pennsylvania

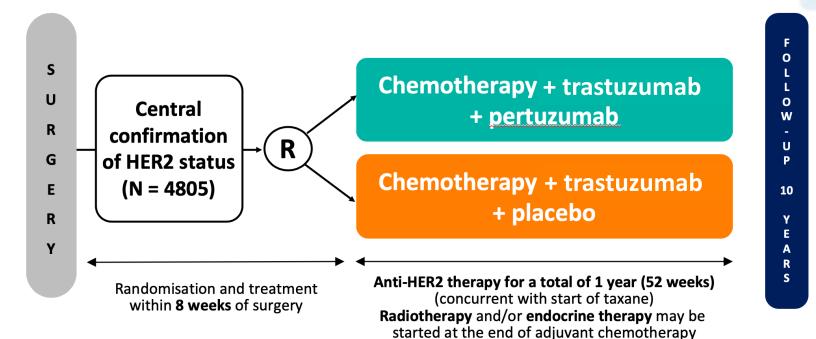
Justin Peter Favaro, MD, PhD Oncology Specialists of Charlotte Charlotte, North Carolina

YanJun Ma, MD Tennessee Oncology Murfreesboro, Tennessee

Module 1: Localized HER2-Positive Breast Cancer — Dr Carey

- Key Recent Data Sets
 - Adjuvant: APHINITY update (pertuzumab); ATEMPT T-DM1 vs HP
 - Postneoadjuvant: KATHERINE T-DM1 for residual disease
- Cases/Questions from General Medical Oncologists
- Faculty Cases

Module 2: HER2-Positive Metastatic Breast Cancer — Dr Krop


- Key Recent Data Sets
 - HER2CLIMB: Tucatinib/trastuzumab/capecitabine
 - DESTINY-Breast01: Trastuzumab deruxtecan
 - NALA: Neratinib/capecitabine
- Cases/Questions from General Medical Oncologists
- Faculty Cases

	Trastuzumab (H)	Pertuzumab (added to H)	Neratinib (after H)	T-DM1 (in RD)	TH/T-DM1 in stage 1	Tailoring to risk
	2005	2013-18	2018	2019	2017-19	2020+
Key trials	Many	APHINITY	ExteNET	KATHERINE	APT/ ATEMPT	COMPASS DECRESCENDO
∆ outcome	>10% 个 RFS/OS all	~ 2-3% 个 RFS esp N+	~2-3% 个 RFS esp ER+	10% 个 RFS	RFS > 95%	?
000					Co	urtesy of Lisa A Carey, MD

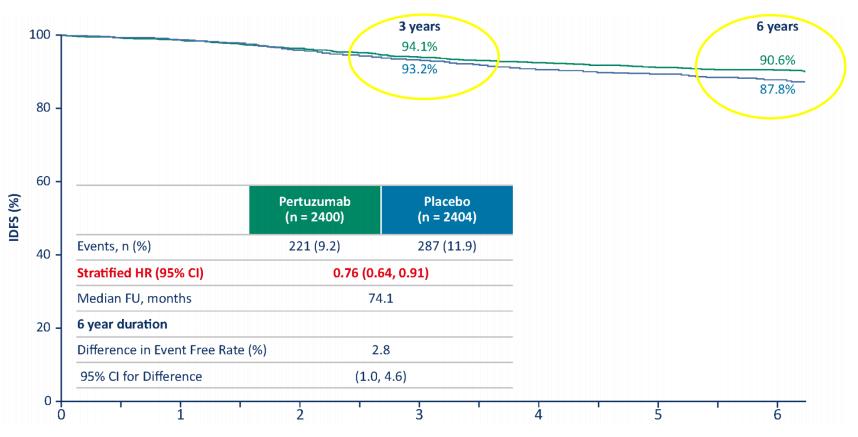
LINEBERGER COMPREHENSIVE

CANCER CENTER

APHINITY – Lessons Learned from the Update

ASCO/NEJM 2017:

- 3y iDFS HR 0.81 (△1.7%)
- > 3% benefit ER-, N+
- Diarrhea, esp with TCHP (18%)


Courtesy of Lisa A Carey, MD

Von Minckwitz et al, NEJM 2017

APHINITY @ SABCS 2019

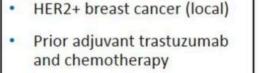
2nd interim analysis, 74m follow-up Time to first iDFS event:

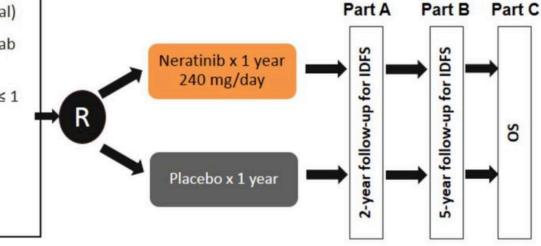
Little effect in N-4.5% absolute Δ in N+

Unlike 2017 benefit seen in both ER+ and ER-

No new cardiac safety signals

Courtesy of Lisa A Carey, MD


CANCER CENTER


Piccart M et al, AACR-SABCS 2019

Neratinib: Extended Adjuvant Anti-HER2 Therapy

ExteNET

- Completed trastuzumab ≤ 1 year prior to study entry
- Lymph node positive or non-pCR after adjuvant therapy
- ER/PR status unknown

iDFS @ 5y: 87.7% vs 90.2% (△2.5%) Esp in Asia, HR+, 4+ LN

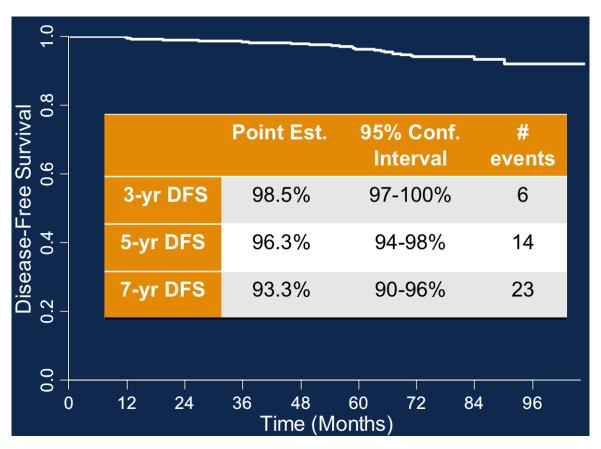
Study population received chemo+H.

Behavior post HP or T-DM1?

CANCER CENTER

Gr3+ Diarrhea 40%

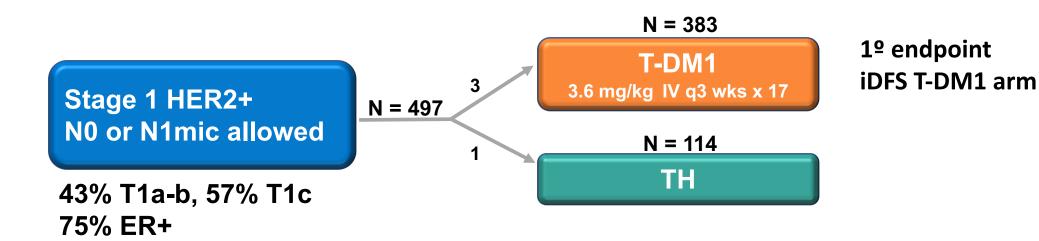
 \rightarrow structured intensive prophylaxis with loperamide x 1-2m

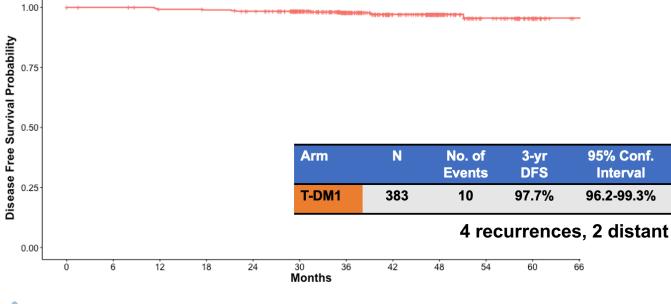

CONTROL Trial: additional maneuvers may help (budesonide, colestipol,) dose escalation

Martin M et al, Lancet Oncol 2017; Barcenas CH et al, Ann Oncol 2020

APT and ATEMPT: Optimizing Rx of Stage | HER2+

APT: 12 weeks TH, trastuzumab to 1y Single arm beat-the-threshold trial


Practice-changing for low anatomic risk HER2+ BC.



Tolaney S et al, JCO 2019

Courtesy of Lisa A Carey, MD

ATEMPT (TBCRC 033): T-DM1 in Stage I

Plt ↓

Gr 2+ PN

LFT abnl

Asx EF \downarrow * 1% 6% D/C from tox 17% 6%

T-DM1

11%

11%

10%

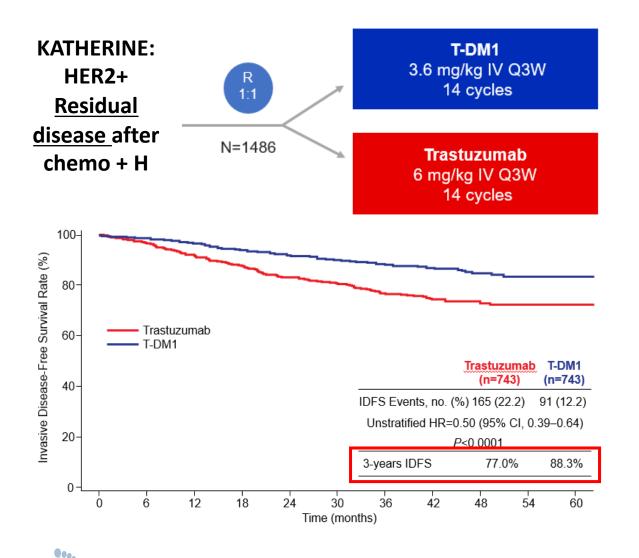
Side effects T-DM1 vs TH:

* < 1% CHF either arm

Courtesy of Lisa A Carey, MD

TH

23%


1%

5%

LINEBERGER COMPREHENSIVE **CANCER CENTER**

Tolaney S et al, AACR-SABCS 2019

KATHERINE

Von Minckwitz et al, NEJM 2018

			T-DM1	Trastuzumab %
ER-	- + - + I	0.50 (0.33-0.74)	82.1	66.6
ER+	⊢ ∎−-1	0.48 (0.35-0.67)	90.7	80.7
Н	₩ 1	0.49 (0.37-0.65)	87.7	75.9
HP	 ∎	0.54 (0.27-1.06)	90.9	81.8
ypN+	⊢ ∎1	0.52 (0.38-0.71)	83.0	67.7
ypN-		0.44 (0.28-0.68)	92.8	84.6
51				
<u>≺</u> ypT1b		0.66 (0.44-1.00)	88.3	83.6
_ypT1c		0.34 (0.19-0.62)	91.9	75.9
ypT2	- + + - +	0.50 (0.31-0.82)	88.3	74.3
урТ3		0.40 (0.18-0.88)	79.8	61.1

• EFS ER-, LN+ still 82-83%

Very few received pertuzumab

Courtesy of Lisa A Carey, MD

Strategies for Treatment of Early HER2+ Breast Cancer

Clinical stage	Initial Rx	Path stage	Adjuvant phase*
Stage I	Surgery	pT1aN0	No systemic therapy (ET prn)
cT1N0		pT1b-c,N0	TH x 12 wk, H to 6-12m
Stage II	Neoadjuvant Rx	pCR	H or HP to 1y
cT2-3N0 cT0-2N1	Chemo + H (HP if LN+)	Residual disease	T-DM1 x 14 cycles
Stage III	Neoadjuvant Rx	pCR	H or HP to 1y
cT3N1 cT4N(any) cT(any)N2-3			T-DM1 x 14 cycles Consider neratinib x 1y if ER+
Surgery first Stage II-III	Neoadjuvant recommended!	Stage II-III	Chemo + H (HP if LN+) Consider neratinib x 1y if ER+ and 4+ LN

*ET recommended if HR+

Courtesy of Lisa A Carey, MD

Agenda

Module 1: Localized HER2-Positive Breast Cancer — Dr Carey

- Key Recent Data Sets
 - Adjuvant: APHINITY update (pertuzumab); ATEMPT T-DM1 vs HP
 - Postneoadjuvant: KATHERINE T-DM1 for residual disease
- Cases/Questions from General Medical Oncologists
 - 35-year-old woman with locally recurrent ER/PR+, HER2+ IDC
 - 38-year-old woman with 3-cm, node-positive ER/PR+, HER2+ IDC
- Faculty Cases

A 35-year-old woman with a 6-cm, ER-positive, HER2-positive IDC achieves a pathologic complete response to neoadjuvant TCHP. She receives 1 year of adjuvant trastuzumab, undergoes oophorectomy and begins an adjuvant aromatase inhibitor. Four years later she presents with a 5-cm, ER-positive, HER2-positive in-breast recurrence and again receives neoadjuvant TCHP with a pathologic complete response. Regulatory and reimbursement issues aside, what adjuvant anti-HER2 therapy would you recommend?

- a. Trastuzumab
- b. Trastuzumab/pertuzumab
- c. T-DM1
- d. Trastuzumab \rightarrow neratinib
- e. Trastuzumab/pertuzumab \rightarrow neratinib
- f. T-DM1 \rightarrow neratinib
- g. Other

Nick C Leasure, MD

What is the size of the smallest tumor for which you would recommend neoadjuvant systemic therapy for a patient with ER-negative, HER2-positive, node-negative infiltrating ductal carcinoma (IDC)?

Which neoadjuvant systemic therapy, if any, would you generally recommend for a <u>77-year-old</u> woman with a <u>2-cm</u>, ER-positive, HER2-positive, <u>node-negative</u> IDC? (Dr Favaro)

	Smallest tumor size	Neoadjuvant systemic therapy	
LISA A CAREY, MD	2 cm	None	
VIRGINIA KAKLAMANI, MD, DSC	2 cm	None	
IAN E KROP, MD, PHD	2 cm	None	
JOYCE O'SHAUGHNESSY, MD	1 cm	ТСН	
HOPE S RUGO, MD	0.2 cm	Paclitaxel/trastuzumab	
SARA M TOLANEY, MD, MPH	1.5 cm	THP	

THP = paclitaxel/trastuzumab/pertuzumab; TCH = docetaxel/carboplatin/trastuzumab

An 80-year-old woman presents with a 0.5-cm, ER-negative, HER2-positive, node-negative IDC. Regulatory and reimbursement issues aside, what adjuvant systemic therapy would you recommend?

LISA A CAREY, MD	None
VIRGINIA KAKLAMANI, MD, DSC	Paclitaxel/trastuzumab
IAN E KROP, MD, PHD	T-DM1
JOYCE O'SHAUGHNESSY, MD	ТСН
HOPE S RUGO, MD	T-DM1 (for 6 months or less)
SARA M TOLANEY, MD, MPH	T-DM1

A 60-year-old woman presents with a 1.3-cm, <u>ER-negative</u>, HER2-positive IDC with 1 positive sentinel node. Would you incorporate adjuvant pertuzumab and/or postadjuvant neratinib into this patient's treatment?

What would be your approach if the patient had ER-positive IDC?

	ER-negative	ER-positive	
LISA A CAREY, MD	Pertuzumab	Pertuzumab	
VIRGINIA KAKLAMANI, MD, DSC	Pertuzumab	Pertuzumab and neratinib	
IAN E KROP, MD, PHD	Pertuzumab	Pertuzumab	
JOYCE O'SHAUGHNESSY, MD	Pertuzumab	Pertuzumab and neratinib	
HOPE S RUGO, MD	Pertuzumab	Pertuzumab (discuss neratinib)	
SARA M TOLANEY, MD, MPH	Pertuzumab	Pertuzumab	

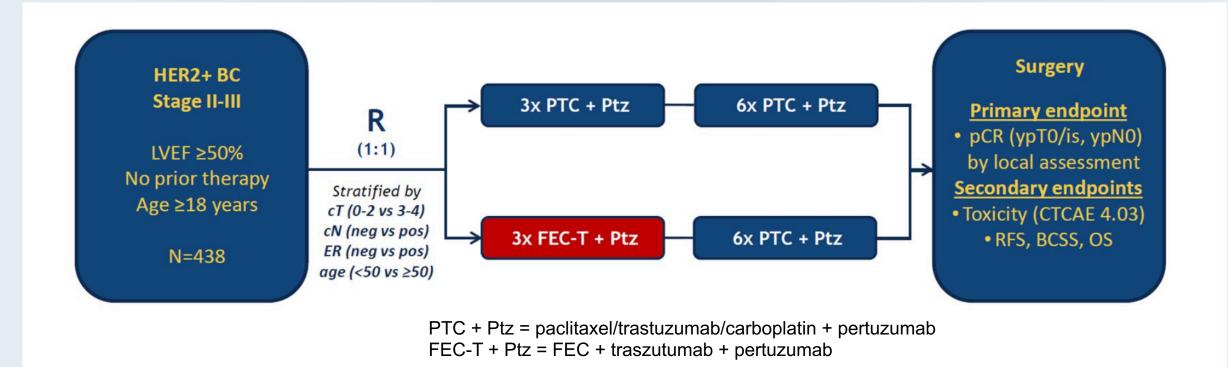
Reimbursement issues aside, would you like to substitute the subcutaneous formulation of pertuzumab, trastuzumab and hyaluronidase–zzxf for standard intravenous pertuzumab and trastuzumab for patients with HER2-positive breast cancer in your practice?

LISA A CAREY, MD	Yes, for all patients			
VIRGINIA KAKLAMANI, MD, DSC	Yes, for all patients			
IAN E KROP, MD, PHD	Yes, for all patients			
JOYCE O'SHAUGHNESSY, MD	Yes, for all patients			
HOPE S RUGO, MD	Yes, for select patients			
SARA M TOLANEY, MD, MPH	Yes, for all patients			

Which neoadjuvant systemic therapy, if any, would you generally recommend for a 38-year-old woman with a 3-cm, ER-positive, HER2-positive IDC with 1 positive axillary node on biopsy?

a. None

- b. Paclitaxel/trastuzumab
- c. Paclitaxel/trastuzumab/pertuzumab
- d. ACTH
- e. ACTHP
- f. TCH
- g. TCHP
- h. Other


Patricia A DeFusco, MD

Which neoadjuvant systemic therapy, if any, would you generally recommend for a <u>38-year-old</u> woman with a <u>3-cm</u>, ER-positive, HER2-positive IDC with <u>1 positive axillary node</u> on biopsy?

LISA A CAREY, MD	TCHP
VIRGINIA KAKLAMANI, MD, DSC	ТСНР
IAN E KROP, MD, PHD	TCHP
JOYCE O'SHAUGHNESSY, MD	TCHP
HOPE S RUGO, MD	TCHP
SARA M TOLANEY, MD, MPH	TCHP

TCHP = docetaxel/carboplatin/trastuzumab/pertuzumab

TRAIN-2: Phase III Trial of Neoadjuvant Chemotherapy with or without Anthracyclines in the Presence of Dual HER2 Blockade

- Primary endpoint pCR (PTC + Ptz vs FEC-T = Ptz): 68% vs 67% (p=0.95)
- Outcome was consistent across prespecified subgroups (cT, cN, HR status, age)

van Ramhorst MS et al. *Lancet Oncol* 2018;19(12):1630-40; van der Voort A et al. ASCO 2020;Abstract 501.

TRAIN-2 Event-Free Survival: 3-Year Follow-Up

	PTC	+Ptz	FEC-T	+Ptz		
	Events	total	events	Total	favors PTC+Ptz favors FEC-T+Ptz	Hazard Ratio (95% CI)*
HR-positive	13	126	15	129		0.84 (0.40 - 1.77)
HR-negative	8	93	8	90		1.00 (0.38 - 2.68)
Age <50 years	10	118	10	119		1.04 (0.43 - 2.50)
Age ≥50 years	11	101	13	100		0.80 (0.36 - 1.78)
сТ0-2	13	154	11	147		1.10 (0.49 - 2.45)
сТ3-4	8	65	12	72		0.76 (0.31 - 1.87)
cN negative	2	76	4	82		0.53 (0.10 - 2.90)
cN positive	19	143	19	137		0.95 (0.50 - 1.79)
Disease stage II [#]	11	151	10	139		1.00 (0.42 - 2.35)
Disease stage III	10	68	13	80		0.92 (0.40 - 2.09)
Tumor grade 1-2	11	113	16	107		0.63 (0.29 - 1.37)
Tumor grade 3	8	95	7	101		1.23 (0.44 - 3.38)
All patients	21	219	23	219		0.90 (0.50 - 1.63)
					0.2 1 5	

disease stage II includes one patient with stage I disease (PTC+Ptz) & disease stage III includes one patient with stage IV disease (FEC-T+Ptz)

*HR <1 favors PTC+Ptz

van der Voort A et al. ASCO 2020; Abstract 501.

TRAIN-2 Safety: 3-Year Follow-Up

Most common Grade ≥3 hematologic AEs	PTC + Ptz (n = 218)	FEC-T + Ptz (n = 220)
Neutropenia	54%	60%
Anemia	21%	20%
Thrombocytopenia	19%	18%
Febrile neutropenia	1%	10%

Cardiotoxicity	PTC + Ptz (n = 218)	FEC-T + Ptz (n = 220)	<i>p</i> -value
LVEF decrease ≥10% <u>or</u> LVEF <50%	22%	36%	0.0016
LVEF decrease ≥10% <u>and</u> LVEF <50%	3%	8%	0.044

• 2 patients (1%) in the FEC-T + Ptz arm developed chemotherapy-associated acute leukemia

van der Voort A et al. ASCO 2020; Abstract 501.

Agenda

Module 1: Localized HER2-Positive Breast Cancer — Dr Carey

- Key Recent Data Sets
 - Adjuvant: APHINITY update (pertuzumab); ATEMPT T-DM1 vs HP
 - Postneoadjuvant: KATHERINE T-DM1 for residual disease
- Cases/Questions from General Medical Oncologists
 - 35-year-old woman with locally recurrent ER/PR+, HER2+ IDC
 - 38-year-old woman with 3-cm, node-positive ER/PR+, HER2+ IDC

Faculty Cases

- 46-year-old woman with a 6-mm, node-negative ER/PR-, HER2+ IDC
- 33-year-old woman with ER-, HER2+ IDC and postneoadjuvant residual disease

A 46-year-old woman presents with extensive DCIS, undergoes right mastectomy and sentinel lymph node biopsy and is found to have 6 mm of ER/PR-negative, HER2-positive invasive disease with negative sentinel nodes. Regulatory and reimbursement issues aside, what adjuvant systemic therapy would you recommend?

a. None

b. Paclitaxel/trastuzumab

c. Paclitaxel/trastuzumab/pertuzumab

d. ACTH

e. ACTHP

f. TCH

g. TCHP

h. T-DM1

i. Other

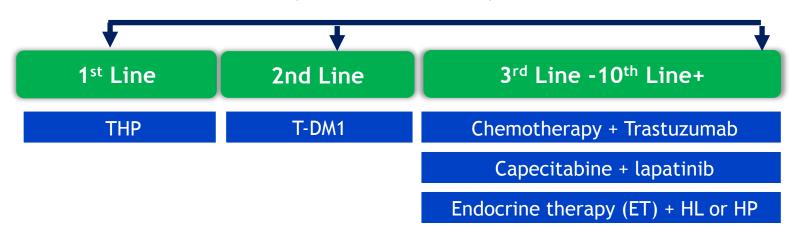
Case Presentation – Dr Carey: 46-Year-Old Woman with ER-negative/HER2-Positive, Node-Negative IDC

- 46 yo woman with extensive DCIS + breast mass
- Right mastectomy/SN: 6mm ER-, PR-, HER2 3+ IDC, SN negative
- Randomized to T-DM1 arm of ATEMPT
 - Grade 1 peripheral neuropathy, fatigue, rash, and nausea likely from T-DM1
 - Ran Boston Marathon while on T-DM1
- NED @ 5+y, no residual toxicities, still a runner!

*ET recommended if HR+

Case Presentation – Dr Carey: 33-Year-Old Woman with ER-negative/HER2-Positive, Node-Positive IDC

- 33 yo woman with right nipple changes and mass, clinical 8mm, 3 abnormal LN.
 Biopsy + grade 3 IDC, ER-, PR-, HER2 3+
- TCHP x 6 cycles
 - clinical CR
 - Nausea / vomiting despite Rx, grade 1 PN
- Partial mastectomy w/ AND + ypT0N1 (1/26 LN with RD), RT
- Adjuvant T-DM1 tolerated well grade 1 nausea only first few days post infusion.
- NED <2y from dx.


Module 1: Localized HER2-Positive Breast Cancer — Dr Carey

- Key Recent Data Sets
 - Adjuvant: APHINITY update (pertuzumab); ATEMPT T-DM1 vs HP
 - Postneoadjuvant: KATHERINE T-DM1 for residual disease
- Cases/Questions from General Medical Oncologists
- Faculty Cases

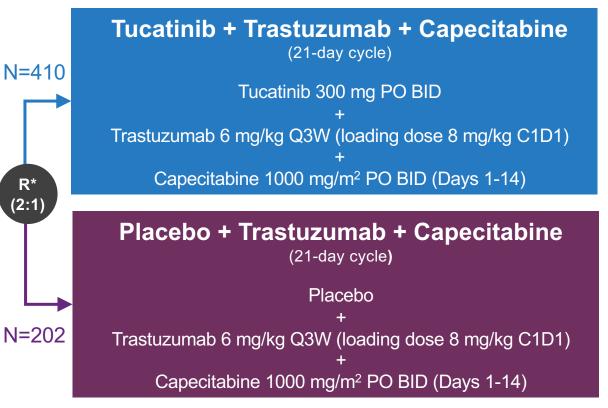
Module 2: HER2-Positive Metastatic Breast Cancer — Dr Krop

- Key Recent Data Sets
 - HER2CLIMB: Tucatinib/trastuzumab/capecitabine
 - DESTINY-Breast01: Trastuzumab deruxtecan
 - NALA: Neratinib/capecitabine
- Cases/Questions from General Medical Oncologists
- Faculty Cases

Treatment Paradigm for Metastatic HER2+ Breast Cancer (Circa 2019)

- Efficacy of chemotherapy + trastuzumab is limited in ≥3rd line
 - − PFS \approx 5 months
 - ORR ≈ 20%

*e.g. control arms of SOPHIA and HER2CLIMB trials

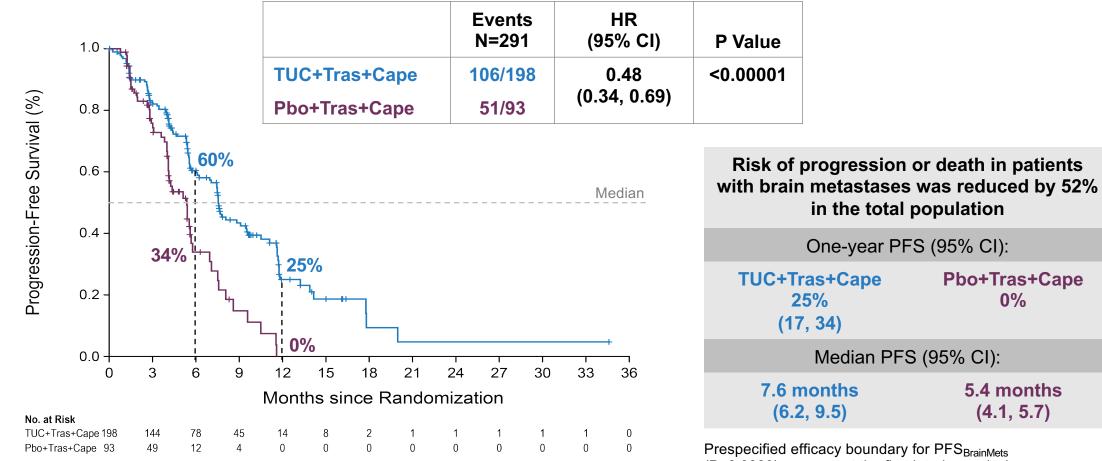

Slide adapted from S Tolaney ASCO 2018. Courtesy of Ian E Krop, MD, PhD

HER2CLIMB Trial Design

Key Eligibility Criteria

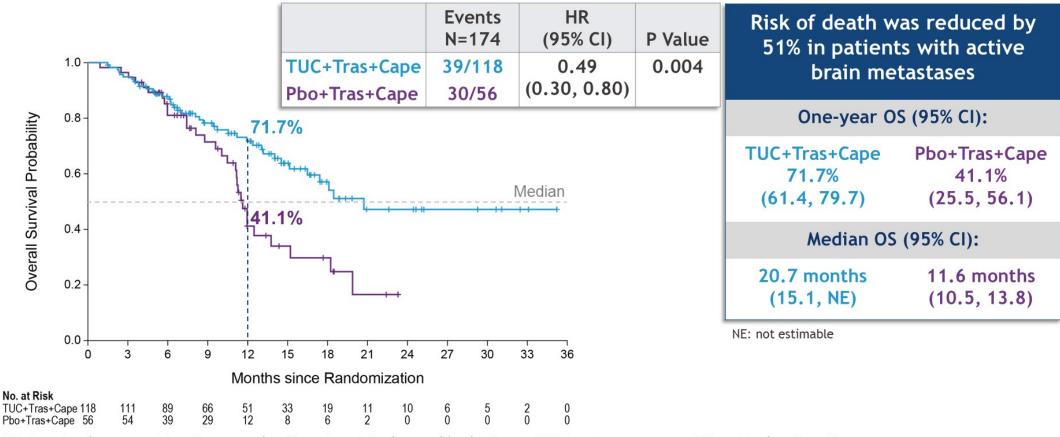
- HER2+ metastatic breast cancer
- Prior treatment with trastuzumab, pertuzumab, and T-DM1
- ECOG performance status 0 or 1
- Brain MRI at baseline
 - Previously treated stable brain metastases
 - Untreated brain metastases not needing immediate local therapy
 - Previously treated progressing brain metastases not needing immediate local therapy
 - No evidence of brain metastases

*Stratification factors: presence of brain metastases (yes/no), ECOG status (0 or 1), and region (US or Canada or rest of world)


https://clinicaltrials.gov/ct2/show/NCT02614794

Murthy RK et al. SABCS 2019; Abstract GS1-01. Courtesy of Ian E Krop, MD, PhD

R*


(2:1)

Progression-Free Survival for Patients with Brain Metastases

Prespecified efficacy boundary for PFS_{BrainMets} (P=0.0080) was met at the first interim analysis. Data cut off: Sep 4, 2019

OS Benefit in Patients with Active Brain Metastases

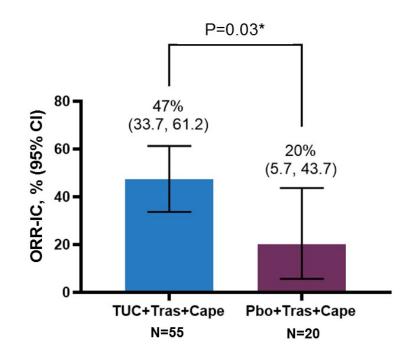
HR: hazard ratio computed from Cox proportional hazards model using stratification factors (ECOG performance status: 0/1, and Region of world: North America/Rest of World) at randomization. All P values are nominal.

#ASCO20 Slides are the property of the author, PRESENT

PRESENTED BY: Nancy Lin, nlin@partners.org

11

Presented by Nancy Lin. Courtesy of Ian E Krop, MD, PhD


2020ASCO

ANNUAL MEETING

PRESENTED AT:

Intracranial Response Rate (ORR-IC) in Patients with Active Brain Metastases and Measurable Intracranial Lesions at Baseline

Confirmed Objective Response Rate (RECIST 1.1)

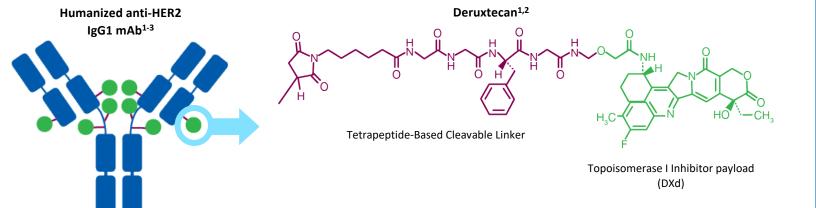
	TUC+Tras+Cape (N=55)	Pbo+Tras+Cape (N=20)
Best Overall Intracranial Response ^a , n (%)		
Complete Response (CR)	3 (5.5)	1 (5.0)
Partial Response (PR)	23 (41.8)	3 (15.0)
Stable Disease (SD)	24 (43.6)	16 (80.0)
Progressive Disease (PD)	2 (3.6)	0
Not Available ^b	3 (5.5)	0
Subjects with Objective Response of Confirmed CR or PR, n	26	4
Duration of Intracranial Response (DOR-IC) ^e (95% CI) ^f , months	6.8 (5.5, 16.4)	3.0 (3.0, 10.3)

(a) Confirmed Best overall response assessed per RECIST 1.1. (b) Subjects with no post-baseline response assessments. (c) Twosided 95% exact confidence interval, computed using the Clopper-Pearson method (1934). (d Cochran-Mantel-Haenszel test controlling for stratification factors (ECOG performance status: 0/1, and Region of world: North America/Rest of World) at randomization. (e) As estimated using Kaplan-Meier methods. (f) Calculated using the complementary log-log transformation method (Collett, 1994).

*Stratified Cochran-Mantel-Haenszel P value

PRESENTED AT: 2020ASCO ANNUAL MEETING HASCO20 Slides are the property of the author permission required for reuse.

PRESENTED BY: Nancy Lin, nlin@partners.org


Presented by Nancy Lin. Courtesy of Ian E Krop, MD, PhD

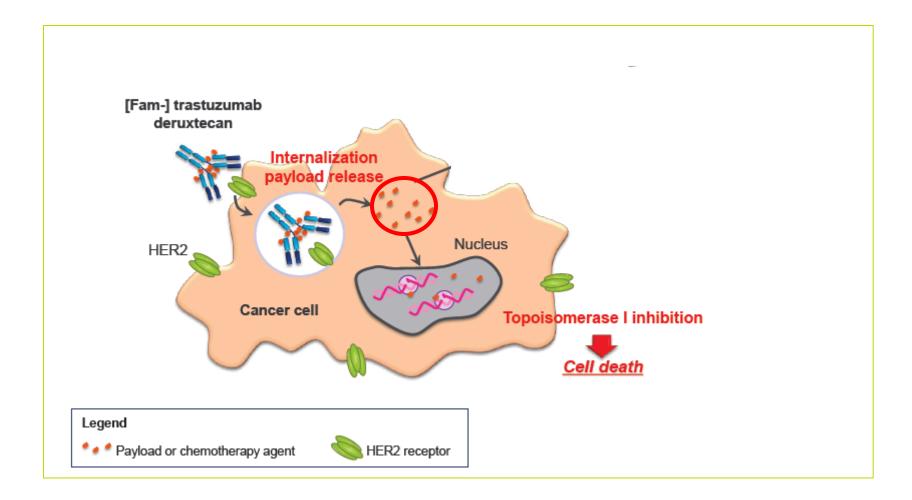
Trastuzumab Deruxtecan (DS-8201) is a Novel ADC Designed to Deliver an Optimal Antitumor Effect

Trastuzumab deruxtecan is an ADC composed of 3 components:

- A humanized anti-HER2 IgG1 mAb with the same amino acid sequence as trastuzumab
- A topoisomerase I inhibitor payload, an exatecan derivative
- A tetrapeptide-based cleavable linker

Payload MOA: topoisomerase I inhibitor
High potency of payload
High drug to antibody ratio ≈ 8
Payload with short systemic half-life
Stable linker-payload
Tumor-selective cleavable linker
Membrane-permeable payload

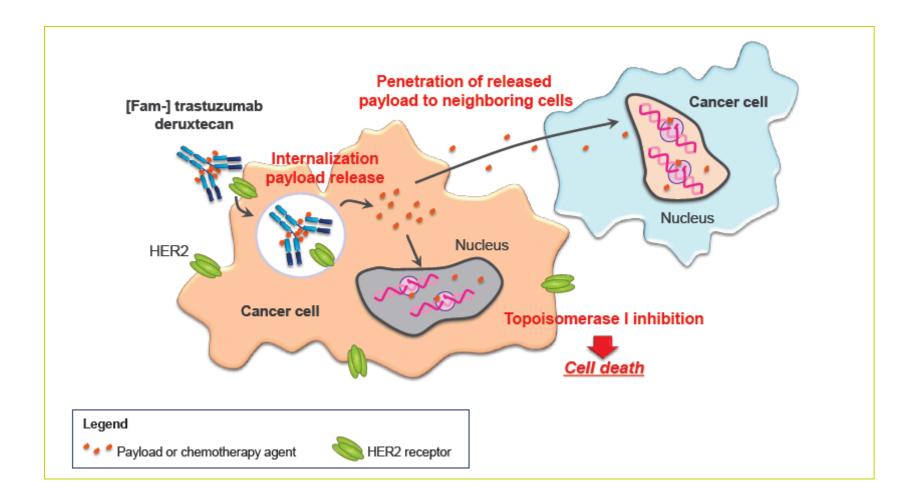
The clinical relevance of these features is under investigation.


ADC, antibody-drug conjugate; MOA, mechanism of action.

1. Nakada T, et al. Chem Pharm Bull (Tokyo). 2019;67(3):173-185. 2. Ogitani Y, et al. Clin Cancer Res. 2016;22(20):5097-5108. 3. Trail PA, et al. Pharmacol Ther. 2018;181:126-142. 4. Ogitani Y, et al. Cancer Sci. 2016;107(7):1039-1046.

Courtesy of Ian E Krop, MD, PhD

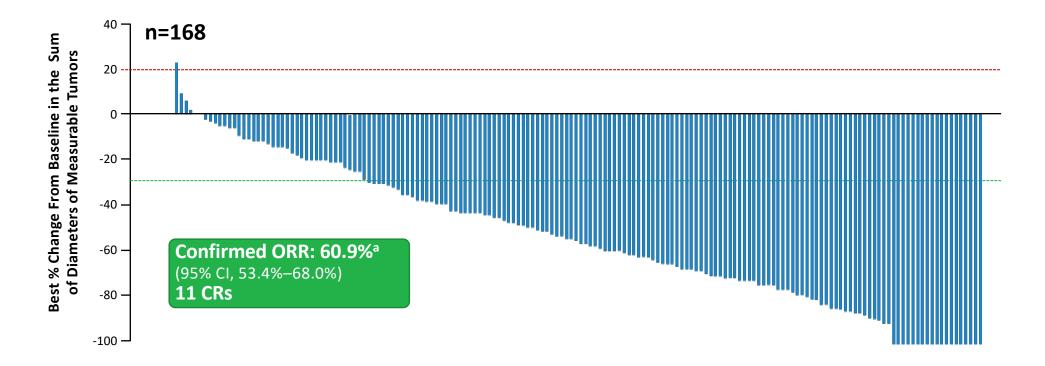
Krop IE et al. SABCS 2019; Abstract GS1-03.


DS-8201's membrane-permeable payload can attack neighbouring cancer cells (i.e. a bystander effect)

ADCC= antibody-dependent cellular cytotoxicity; HER2=human epidermal growth factor receptor 2; Topo-1=topoisomerase I.

1. Ogitani Y et al. Cancer Sci. 2016;107:1039–1046 . 2. Ogitani Y et al. Clin Cancer Res. 2016;22:5097–5108. Courtesy of Ian E Krop, MD, PhD

DS-8201's membrane-permeable payload can attack neighbouring cancer cells (i.e. a bystander effect)



ADCC= antibody-dependent cellular cytotoxicity; HER2=human epidermal growth factor receptor 2; Topo-1=topoisomerase I.

1. Ogitani Y et al. Cancer Sci. 2016;107:1039–1046 . 2. Ogitani Y et al. Clin Cancer Res. 2016;22:5097–5108. Courtesy of Ian E Krop, MD, PhD

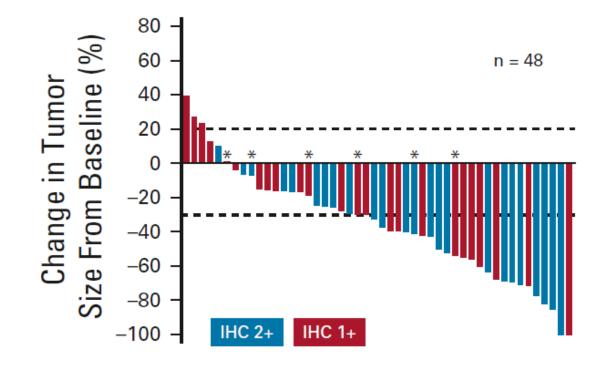
DESTINY-Breast01: Best Change in Tumor Size

- By independent central review.
- The line at 20% indicates progressive disease; the line at –30% indicates partial response.
- ^a Includes all patients who received T-DXd 5.4 mg/kg (intent-to-treat analysis; N=184).

Krop IE et al. SABCS 2019; Abstract GS1-03.

DESTINY-Breast01: Adverse Events of Special Interest: Interstitial Lung Disease

	Patients who received T-DXd 5.4 mg/kg (N=184)					
Preferred Term, n (%)						Any Grade/
	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Total
Interstitial lung disease	5 (2.7)	15 (8.2)	1 (0.5)	0	4 (2.2)	25 (13.6)


Drug related; ILD was determined by the Independent ILD Adjudication Committee based on 44 preferred terms.

Among the 25 total events:

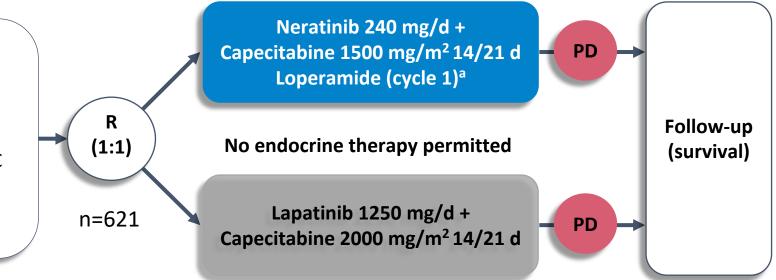
- Median time to investigator-reported onset was 193 days (range, 42-535 days)
- 17 of 20 patients with grade \geq 2 ILD received corticosteroids
- 7 patients recovered, 2 were recovering, 12 were either outcome unknown or not followed until resolution, and 4 died
- Of the 4 fatal cases, onset was from 63-148 days, 3 received steroids as part of treatment, and death occurred 9-60 days after diagnosis

Recommendations: Monitor for symptoms. Hold T-DXd and start steroids as soon as ILD is suspected

Effect of trastuzumab deruxtecan in heavily pretreated* HER2-low metastatic breast cancer

ORR Overall 37% HER2 2+ 39%

	Overall	31%
	HER2 2+	39%
	HER2 1+	36%
	ER+	40% (N=47)
	ER-	14% (N=7)
PFS		
	Overall	11.1 months


*median of 7.5 prior regimens

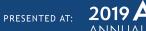
Modi et al, JCO 2020 38:1888. Courtesy of Ian E Krop, MD, PhD

NALA study design

Inclusion criteria

- Metastatic breast cancer (MBC)
- Centrally confirmed HER2+ disease
- ≥2 lines of HER2-directed therapy for MBC
- Asymptomatic and stable brain metastases permitted

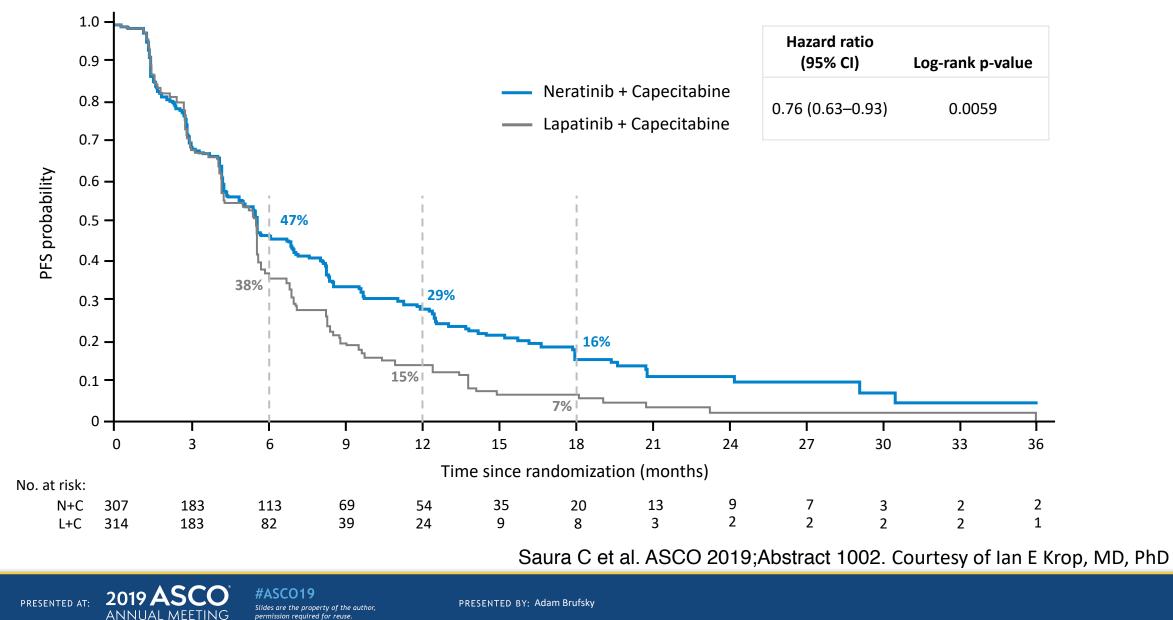
Stratification variables


- Number of prior HER2 therapies for MBC
- Disease location
- HR status
- Geographic location

Endpoints

- Co-primary: PFS (centrally confirmed) and OS
- Secondary: PFS (local), ORR, DoR, CBR, intervention for CNS metastases, safety, health outcomes

Saura C et al. ASCO 2019; Abstract 1002. Courtesy of Ian E Krop, MD, PhD


Loperamide 4 mg with first dose of neratinib, followed by 2 mg every 4 h for first 3 d, then loperamide 2 mg every 6–8 h until end of Cycle 1. Thereafter as needed

#ASCO19 Slides are the property of the author permission required for reuse.

PRESENTED BY: Adam Brufsky

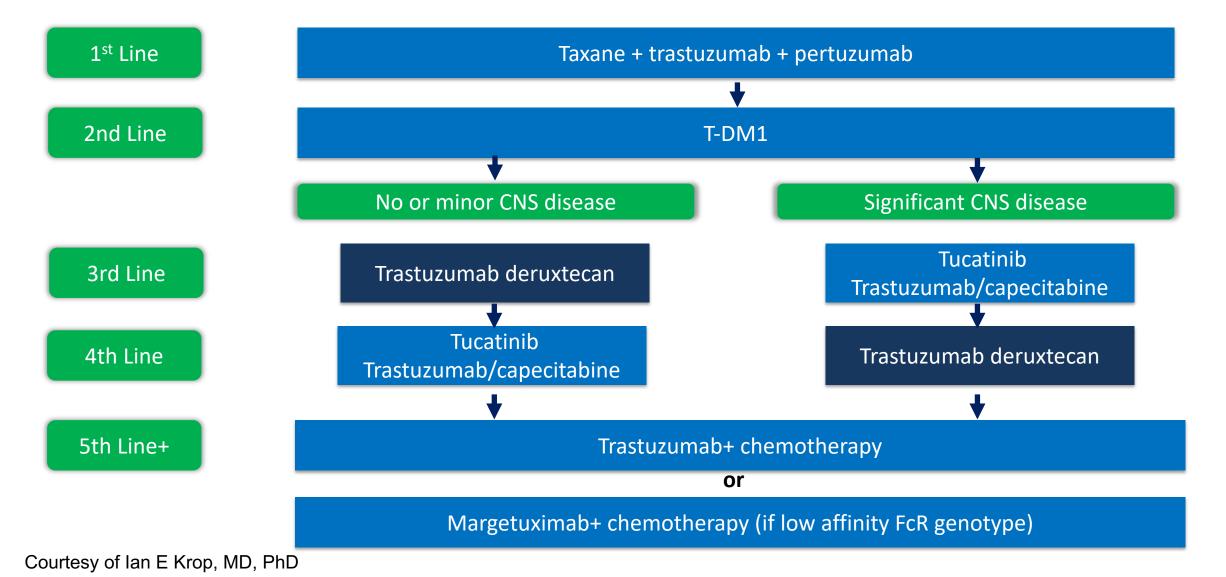
Centrally confirmed PFS (co-primary endpoint)

NALA

Neratinib and Capecitabine for CNS disease (TBCRC 022)

- Phase 2 trial of patients with progressive HER2+ brain metastases (N=49)
- Patients received neratinib (240 mg po QD) and capecitabine (750 mg/m² BID 14d on/7d off)
- Efficacy in cohort without previous lapatinib (N=37):
 - 49% CNS objective response rate*
 - 5.5 mo median PFS

*≥50% reduction in sum of target CNS lesion volumes without progression of nontarget lesions, new lesions, escalating steroids, progressive neurologic signs or symptoms, or non-CNS progression


Freedman R et al. JCO 2019 37:1081. Courtesy of Ian E Krop, MD, PhD

How to Best Sequence New ≥3rd-Line Agents?

	Trastuzumab Deruxtecan	Tucatinib + Tras/Cape	Neratinib + Capecitabine	Margetuximab + Chemo
PROS	Very high ORR	OS and PFS benefit	PFS benefit	Well tolerated
	Durable benefit Long PFS	Activity in both treated and progressive brain mets	Delays time to CNS Rx	Benefit may be larger in pts with low affinity FcR (FF/FV)
	Activity maintained in pts with treated brain mets	Manageable toxicity profile		Can be combined with multiple chemotherapy partners
CONS	ILD is serious potential risk	Absolute PFS benefit modest	Serious diarrhea is common	Benefit modest
	No data on efficacy in progressive brain mets		Benefit modest	

Courtesy of Ian E Krop, MD, PhD

Approach to Therapy for Metastatic HER2+ disease: Move to Personalization

Agenda

Module 2: HER2-Positive Metastatic Breast Cancer (mBC) — Dr Krop

- Key Recent Data Sets
 - HER2CLIMB: Tucatinib/trastuzumab/capecitabine
 - DESTINY-Breast01: Trastuzumab deruxtecan
 - NALA: Neratinib/capecitabine
- Cases/Questions from General Medical Oncologists
 - 38-year-old woman with HER2+ mBC; progression on THP including new brain mets
 - 75-year-old woman with HER2+ mBC; progression on THP → T-DM1 including leptomeningeal mets
- Faculty Cases

A 38-year-old woman with ER-negative, HER2-positive metastatic breast cancer <u>receives THP</u> but after 1 year experiences disease progression, <u>including multiple brain metastases</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend next?

- a. Trastuzumab + chemotherapy
- b. Trastuzumab + lapatinib
- c. T-DM1
- d. Neratinib
- e. Neratinib + capecitabine
- f. Neratinib + paclitaxel
- g. Lapatinib + capecitabine
- h. Tucatinib + trastuzumab/capecitabine
- i. Trastuzumab deruxtecan
- j. Other

Justin P Favaro, MD, PhD

A 38-year-old woman with ER-negative, HER2-positive metastatic breast cancer <u>receives THP</u> but after 1 year experiences disease progression, <u>including multiple brain</u> <u>metastases</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend next?

LISA A CAREY, MD	T-DM1
VIRGINIA KAKLAMANI, MD, DSC	Tucatinib + trastuzumab/capecitabine
IAN E KROP, MD, PHD	T-DM1
JOYCE O'SHAUGHNESSY, MD	Tucatinib + trastuzumab/capecitabine
HOPE S RUGO, MD	T-DM1
SARA M TOLANEY, MD, MPH	Tucatinib + trastuzumab/capecitabine

A woman in her 70s with ER-negative, HER2-positive metastatic breast cancer receives THP followed by T-DM1 on progression. She now presents with further disease progression <u>but no</u> <u>evidence of CNS involvement</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

LISA A CAREY, MD	Tucatinib + trastuzumab/capecitabine
VIRGINIA KAKLAMANI, MD, DSC	Trastuzumab deruxtecan
IAN E KROP, MD, PHD	Depends on disease burden, symptomatic vs asymptomatic progression
JOYCE O'SHAUGHNESSY, MD	Tucatinib + trastuzumab/capecitabine
HOPE S RUGO, MD	Trastuzumab deruxtecan
SARA M TOLANEY, MD, MPH	Trastuzumab deruxtecan

A 75-year-old woman with ER-negative, HER2-positive metastatic breast cancer receives THP followed by T-DM1 on progression. She now presents with further disease progression, <u>including significant leptomeningeal</u> <u>metastases</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

- a. Trastuzumab + chemotherapy
- b. Trastuzumab + lapatinib
- c. Neratinib
- d. Neratinib + capecitabine
- e. Neratinib + paclitaxel
- f. Lapatinib + capecitabine
- g. Tucatinib + trastuzumab/capecitabine
- h. Trastuzumab deruxtecan
- i. Other

Yanjun Ma, MD, PhD

A woman in her 70s with ER-negative, HER2-positive metastatic breast cancer receives THP followed by T-DM1 on progression. She now presents with further disease progression, <u>including</u> <u>significant leptomeningeal metastases</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

LISA A CAREY, MD	Tucatinib + trastuzumab/capecitabine
VIRGINIA KAKLAMANI, MD, DSC	Tucatinib + trastuzumab/capecitabine
IAN E KROP, MD, PHD	Tucatinib + trastuzumab/capecitabine
JOYCE O'SHAUGHNESSY, MD	Tucatinib + trastuzumab/capecitabine
HOPE S RUGO, MD	Tucatinib + trastuzumab/capecitabine
SARA M TOLANEY, MD, MPH	Tucatinib + trastuzumab/capecitabine

A woman with ER-negative, HER2-positive metastatic breast cancer receives THP followed by T-DM1 on progression. She presents with further disease progression, including new brain metastases, and is started on tucatinib/trastuzumab/capecitabine with sustained response followed by limited disease progression in the brain only. Regulatory and reimbursement issues aside, in addition to local therapy, what systemic treatment would you recommend?

LISA A CAREY, MD	Continue tucatinib + trastuzumab/capecitabine
VIRGINIA KAKLAMANI, MD, DSC	Trastuzumab deruxtecan
IAN E KROP, MD, PHD	Continue tucatinib + trastuzumab/capecitabine
JOYCE O'SHAUGHNESSY, MD	Continue tucatinib + trastuzumab/capecitabine
HOPE S RUGO, MD	Trastuzumab deruxtecan
SARA M TOLANEY, MD, MPH	Continue tucatinib + trastuzumab/capecitabine

Have you or would you administer tucatinib/trastuzumab without capecitabine to a patient with HER2-positive metastatic breast cancer who has been unable to tolerate capecitabine in the past? (Dr Ma)

LISA A CAREY, MD	I have not but would for the right patient
VIRGINIA KAKLAMANI, MD, DSC	I have not but would for the right patient
IAN E KROP, MD, PHD	I have not but would for the right patient
JOYCE O'SHAUGHNESSY, MD	I have not but would for the right patient
HOPE S RUGO, MD	I have not but would for the right patient
SARA M TOLANEY, MD, MPH	Only on clinical trial and for a rare patient

Have you or would you administer trastuzumab deruxtecan to a patient with HER2-low metastatic breast cancer outside of a clinical trial setting?

LISA A CAREY, MD	I have not but would for the right patient
VIRGINIA KAKLAMANI, MD, DSC	I have not and would not
IAN E KROP, MD, PHD	I have not but would for the right patient
JOYCE O'SHAUGHNESSY, MD	I have
HOPE S RUGO, MD	I have not and would not
SARA M TOLANEY, MD, MPH	I have not but would for the right patient

Agenda

Module 2: HER2-Positive Metastatic Breast Cancer (mBC) — Dr Krop

- Key Recent Data Sets
 - HER2CLIMB: Tucatinib/trastuzumab/capecitabine
 - DESTINY-Breast01: Trastuzumab deruxtecan
 - NALA: Neratinib/capecitabine
- Cases/Questions from General Medical Oncologists
 - 38-year-old woman with HER2+ mBC; progression on THP including new brain mets
 - 75-year-old woman with HER2+ mBC; progression on THP → T-DM1 including leptomeningeal mets
- Faculty Cases
 - 40-year-old woman with HER2+ mBC; progression on THP → T-DM1 including new brain mets
 - 54-year-old woman with HER2+ mBC (liver, adrenal); progression on trastuzumab/pertuzumab-based chemotherapy → T-DM1

A 40-year-old woman with metastatic HER2-positive disease receives THP followed by T-DM1 on progression. She presents with further disease progression including multiple new brain metastases. What systemic treatment would you recommend next?

- a. Trastuzumab + chemotherapy
- b. Trastuzumab + lapatinib
- c. Neratinib
- d. Neratinib + capecitabine
- e. Neratinib + paclitaxel
- f. Lapatinib + capecitabine
- g. Tucatinib + trastuzumab/capecitabine
- h. Trastuzumab deruxtecan
- i. Other

- 40 yo elementary school teacher initially presented in 2011 with mammographically detected mass in L breast
 - Core bx: IDC, grade 3, ER+ PR- HER2 3+
- Mastectomy: 2.1 cm poorly differentiated IDC.
 SLNB: 1 positive LN
- Adjuvant TCH, started on tamoxifen/OS

- 2015: left hip and mid back pain
 - Scans show multiple bone lesions, 2 cm liver lesion and sub-centimeter pulmonary nodules
 - Liver bx: ER+PR-HER2 3+ adenoCA c/w breast primary
- Started on paclitaxel/trastuzumab/pertuzumab
 - Had near complete response after 4 cycles
 - Asymptomatic
 - Continued two more cycles of THP, then stopped paclitaxel can continued HP alone

- 3/2017 Progression in liver, remained asymptomatic
 Reintroduced paclitaxel with HP
- 5/2017: further liver progression
 - Started T-DM1
- 9/2017: complete response in liver, bone lesions stable, pulmonary nodules no longer visible
 - Tolerating T-DM1 well

- 8/18: Persistent R-sided headache
 - MRI: innumerable brain lesions, largest 0.7
 - Restaging CT: stable bone lesions, no other disease
 - Whole brain RT
 - Continue T-DM1
- 6/19: Headache returned
 - MRI: progression in 4 lesions, largest 1.4 cm

- 7/19: Started on HER2CLIMB study
 - Headaches improved
- 9/19
 - MRI:PR in brain
 - CT: extracranial disease stable
- 6/20: continues on capecitabine/trastuzumab/tucatinib

- 2017: 54 year old town clerk of a small town in NE. She presented with palpable R breast mass
 - Bx: ER-PR-HER2 3+ poorly differentiated ductal cancer
 - Neoadjuvant ACTHP
 - Lumpectomy/SLND: 2cm residual cancer, 1/3 nodes positive
 - Adjuvant radiation
 - Continued 1 year of HP
- 3/2019: RUQ abdominal pain
 - Scans show multiple liver lesions, largest 3.4cm
 - Liver bx demonstrates metastatic carcinoma, ER-PR-HER2 2+ FISH ratio 3.2
 - Started on vinorelbine/HP
 - Abdominal pain improved

- 7 /2019: disease progression in liver
 - Started T-DM1
- 10/19: abdominal pain worsened, CT: modest progression in liver
 - Started eribulin/trastuzumab
 - Abdominal pain improved

- 1/20: abdominal pain recurs
 - Scans: progression in liver, new adrenal lesion, grade 2 transaminase elevation
- 2/20: Started trastuzumab deruxtecan
 - Abdominal pain resolves, LFTs normalize
 - Initially had nausea, but resolved with ondansetron
 - Back to work
- 5/20: scans: no clearly defined liver lesions, adrenal lesion resolved

The Current and Future Role of Immune Checkpoint Inhibitors and Other Novel Therapies in Urothelial Bladder Cancer

Thursday, July 9, 2020 5:00 PM – 6:00 PM ET

Faculty

Arjun Balar, MD Siamak Daneshmand, MD Ashish M Kamat, MD, MBBS Jonathan E Rosenberg, MD

Moderator Neil Love, MD

Thank you for joining us!

CME credit information will be emailed to each participant tomorrow morning.