Key Questions and Emerging Research in the Management of Chronic Lymphocytic Leukemia and Follicular Lymphoma

> Wednesday, June 24, 2020 5:00 PM – 6:00 PM ET

#### Faculty

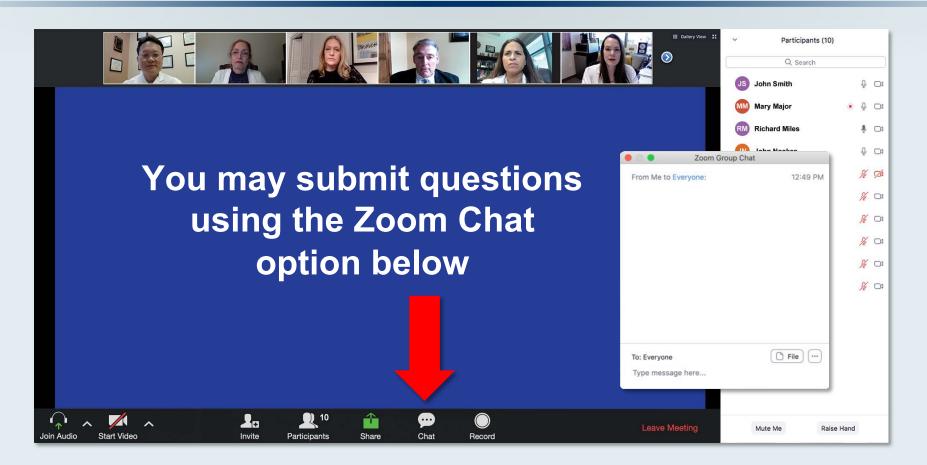
Jeff Sharman, MD Julie M Vose, MD, MBA

> Moderator Neil Love, MD



#### **Faculty**




#### Jeff Sharman, MD

Willamette Valley Cancer Institute and Research Center Medical Director of Hematology Research US Oncology Eugene, Oregon



#### Julie M Vose, MD, MBA Neumann M and Mildred E Harris Professor Chief, Division of Hematology/Oncology Nebraska Medical Center Omaha, Nebraska

## **Dr Love and Faculty Encourage You to Ask Questions**



Feel free to submit questions **now before** the program commences and **throughout the program**.

# ONCOLOGY TODAY WITH DR NEIL LOVE









Acute Myeloid Leukemia and the General Medical Oncologist: New Agents and Treatment Strategies, Particularly for Older Patients A Meet The Professor Series

#### Thursday, June 25, 2020 12:00 PM – 1:00 PM ET

Richard M Stone, MD Chief of Staff Director, Translational Research Leukemia Division Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School Boston, Massachusetts



# **Oncology Grand Rounds**

## New Agents and Strategies in PARP Inhibition in the Management of Common Cancers

Thursday, June 25, 2020 5:00 PM – 6:30 PM ET

| Faculty                                |                                |
|----------------------------------------|--------------------------------|
| Emmanuel S Antonarakis, MD             | Joyce O'Shaughnessy, MD        |
| Gretchen Santos Fulgencio, MSN, FNP-BC | Michael J Pishvaian, MD, PhD   |
| Erika Meneely, APRN, BC                | Deborah Wright, MSN, APRN, CNS |
| Kathleen Moore, MD                     |                                |
| Moderat                                | or Research                    |

Neil Love, MD

Research To Practice® Clinical Investigator Perspectives on the Current and Future Management of Multiple Myeloma A Meet The Professor Series

#### Friday, June 26, 2020 12:00 PM – 1:00 PM ET

#### Nikhil C Munshi, MD

Professor of Medicine, Harvard Medical School Director of Basic and Correlative Science Associate Director, Jerome Lipper Multiple Myeloma Center Department of Medical Oncology Dana-Farber Cancer Institute Boston, Massachusetts



## Conversations with the Investigators: Prostate Cancer

Wednesday, July 1, 2020 5:00 PM – 6:00 PM ET

Faculty

Robert Dreicer, MD, MS, MACP, FASCO Daniel P Petrylak, MD Christopher Sweeney, MBBS Additional faculty to be announced

Moderator Neil Love, MD





#### What We Know, What We Don't Know and What It All Means for Current Patient Care – A Live CME Webinar

Thursday, July 2, 2020 12:00 PM – 1:00 PM ET

> Moderator Neil Love, MD

Faculty Leora Horn, MD, MSc Naiyer A Rizvi, MD Lecia V Sequist, MD, MPH Key Questions and Emerging Research in the Management of Chronic Lymphocytic Leukemia and Follicular Lymphoma

> Wednesday, June 24, 2020 5:00 PM – 6:00 PM ET

#### Faculty

Jeff Sharman, MD Julie M Vose, MD, MBA

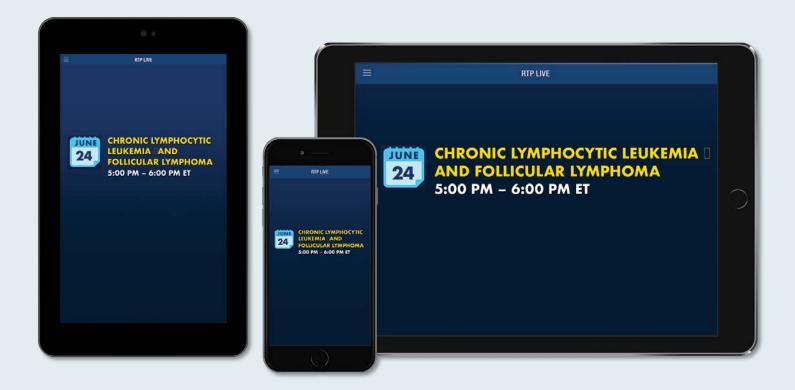
> Moderator Neil Love, MD



#### **About the Enduring Program**

- This webinar is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.




An email will be sent to all attendees when the activity is available.

 To learn more about our education programs visit our website, www.ResearchToPractice.com

#### Make the Meeting Even More Relevant to You

Download the RTP Live app on your smartphone or tablet to access program information, including slides being presented during the program:

### www.ResearchToPractice.com/RTPLiveApp



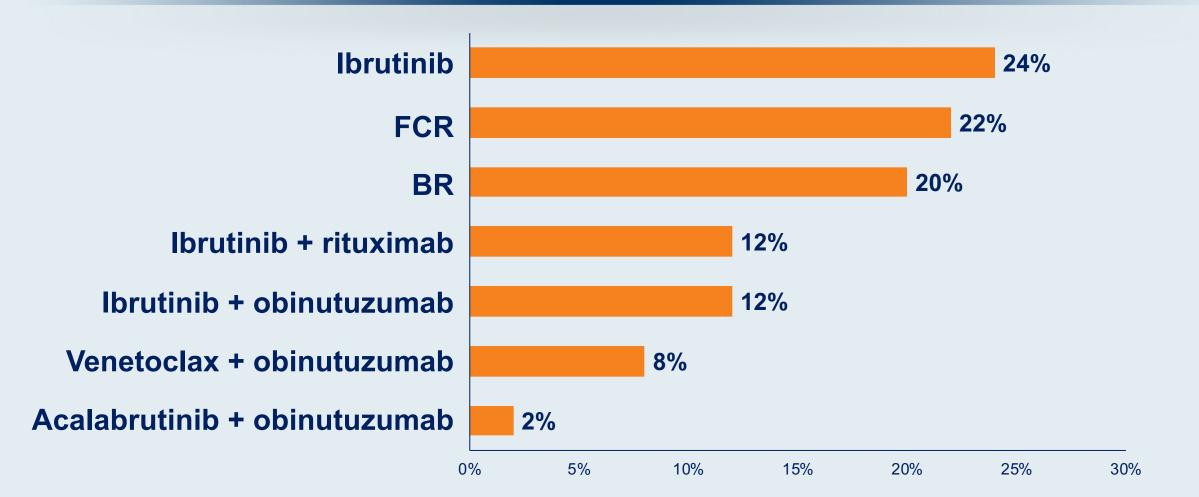
### Agenda

#### Module 1: Chronic Lymphocytic Leukemia (CLL) – Dr Sharman

- Phase III trials of ibrutinib-based therapy in younger (ECOG-E1912) and older (A041202, RESONATE-2) patients
- Acalabrutinib for treatment-naïve (ELEVATE-TN) and relapsed/refractory CLL (ASCEND)
- Long-term follow-up of venetoclax-based therapy for newly diagnosed (CLL14) and relapsed CLL (MURANO)
- PI3 kinase inhibitors idelalisib and duvelisib in relapsed CLL
- Ongoing trials

#### Module 2: Follicular Lymphoma – Dr Vose

- Role of obinutuzumab-based chemoimmunotherapy for treatment-naïve FL (GALLIUM)
- Lenalidomide/rituximab (R-squared) in the up-front (RELEVANCE) and relapsed/refractory settings (AUGMENT)
- Comparison of FDA-approved PI3 kinase inhibitors in FL: idelalisib, duvelisib and copanlisib


### Module 1: Chronic Lymphocytic Leukemia (CLL) – Dr Sharman

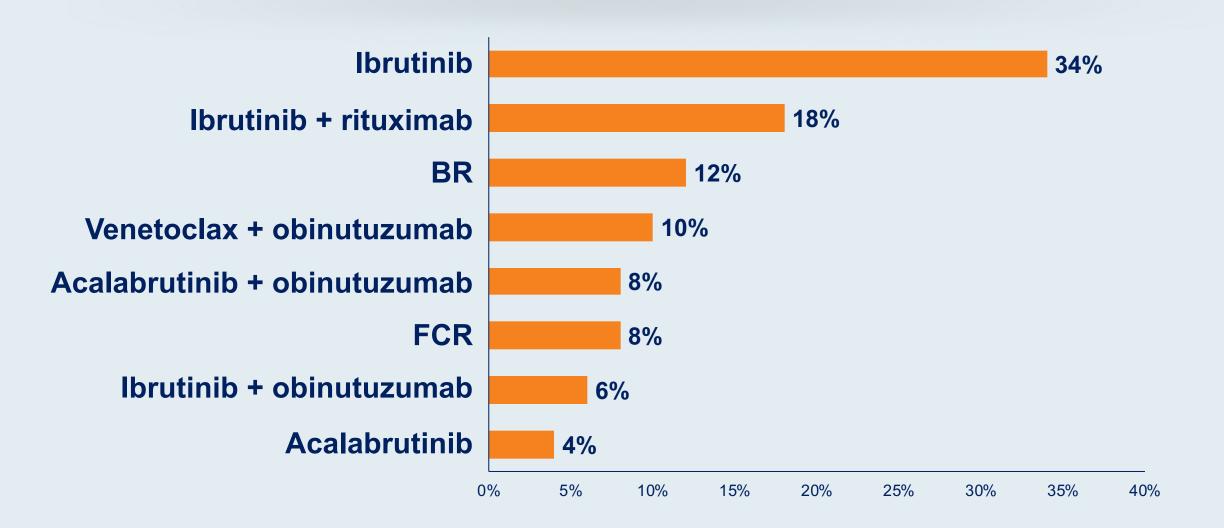
- Selection of first-line treatment
- BTK inhibitor tolerability profiles
- Adding an anti-CD20 antibody to a BTK inhibitor
- Management of MRD positivity after venetoclax/obinutuzumab
- Sequencing of venetoclax and anti-CD20 antibodies
- Recent relevant publications

What is your usual preferred initial regimen for a 60-year-old patient with <u>IGHV-</u> <u>mutated</u> chronic lymphocytic leukemia (CLL) without del(17p) or TP53 mutation who requires treatment?

- a. FCR (fludarabine/cyclophosphamide/rituximab)
- b. BR (bendamustine/rituximab)
- c. Ibrutinib
- d. Ibrutinib + rituximab
- e. Ibrutinib + obinutuzumab
- f. Acalabrutinib
- g. Acalabrutinib + obinutuzumab
- h. Venetoclax + obinutuzumab
- i. Other

What is your usual preferred initial regimen for a 60-year-old patient with <u>IGHV-mutated</u> chronic lymphocytic leukemia (CLL) without del(17p) or TP53 mutation who requires treatment?



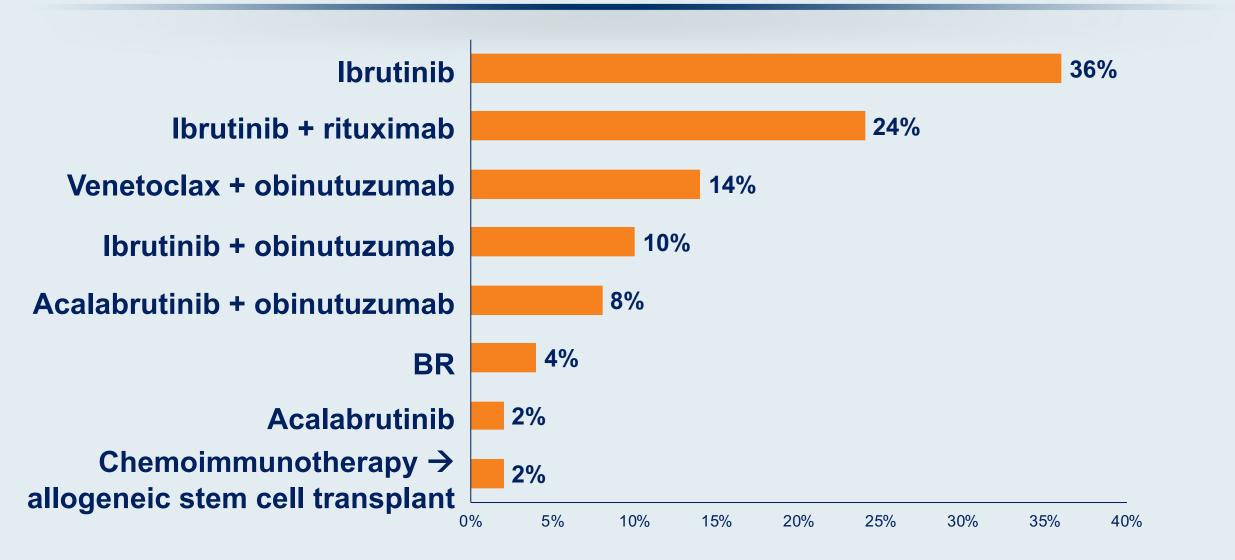

FCR = fludarabine/cyclophosphamide/rituximab; BR = bendamustine/rituximab

Survey of 50 US-based medical oncologists, June 2020

What is your usual preferred initial regimen for a 60-year-old patient with <u>IGHV-</u> <u>unmutated</u> CLL without del(17p) or TP53 mutation who requires treatment?

- a. FCR
- b. BR
- c. Ibrutinib
- d. Ibrutinib + rituximab
- e. Ibrutinib + obinutuzumab
- f. Acalabrutinib
- g. Acalabrutinib + obinutuzumab
- h. Venetoclax + obinutuzumab
- i. Other

What is your usual preferred initial regimen for a 60-year-old patient with <u>IGHV-unmutated</u> CLL without del(17p) or TP53 mutation who requires treatment?

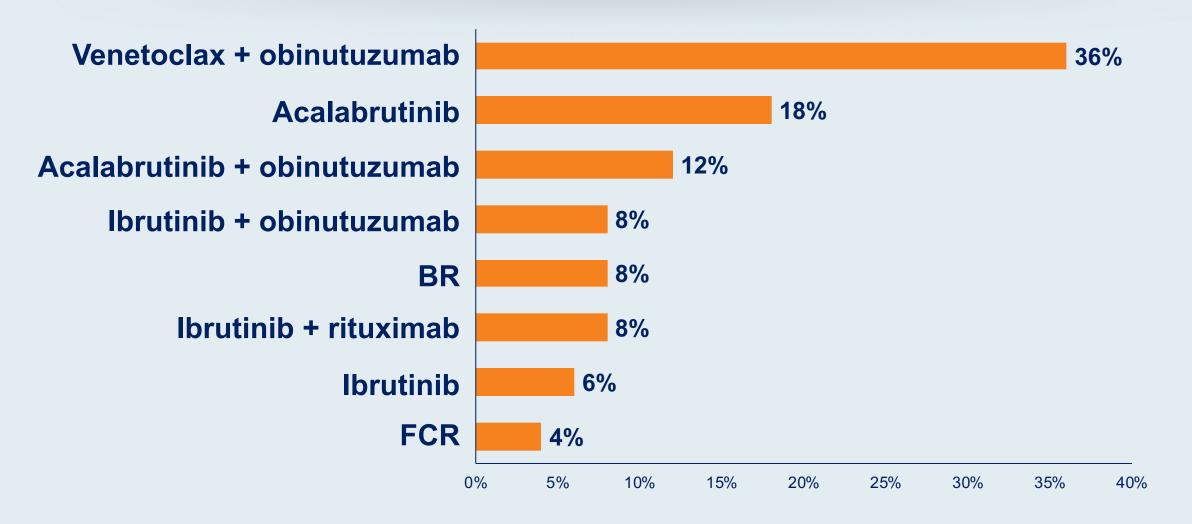



Survey of 50 US-based medical oncologists, June 2020

# What is your usual preferred initial regimen for a 60-year-old patient with <u>del(17p)</u> CLL who requires treatment?

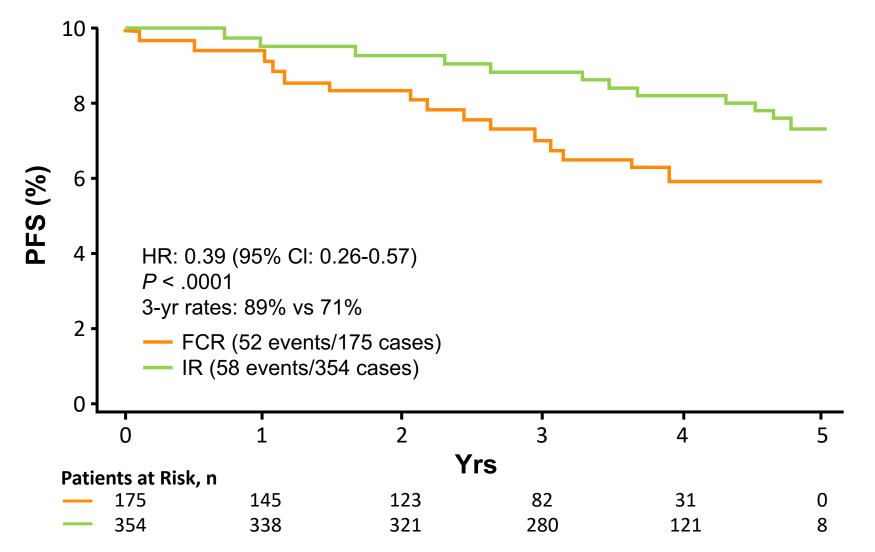
- a. FCR
- b. BR
- c. Ibrutinib
- d. Ibrutinib + rituximab
- e. Ibrutinib + obinutuzumab
- f. Acalabrutinib
- g. Acalabrutinib + obinutuzumab
- h. Venetoclax + obinutuzumab
- i. Other

# What is your usual preferred initial regimen for a 60-year-old patient with <u>del(17p)</u> CLL who requires treatment?




Survey of 50 US-based medical oncologists, June 2020

What is your usual preferred initial regimen for a 60-year-old patient with del(17p) CLL who requires treatment, has a history of atrial fibrillation and is receiving anticoagulation therapy?

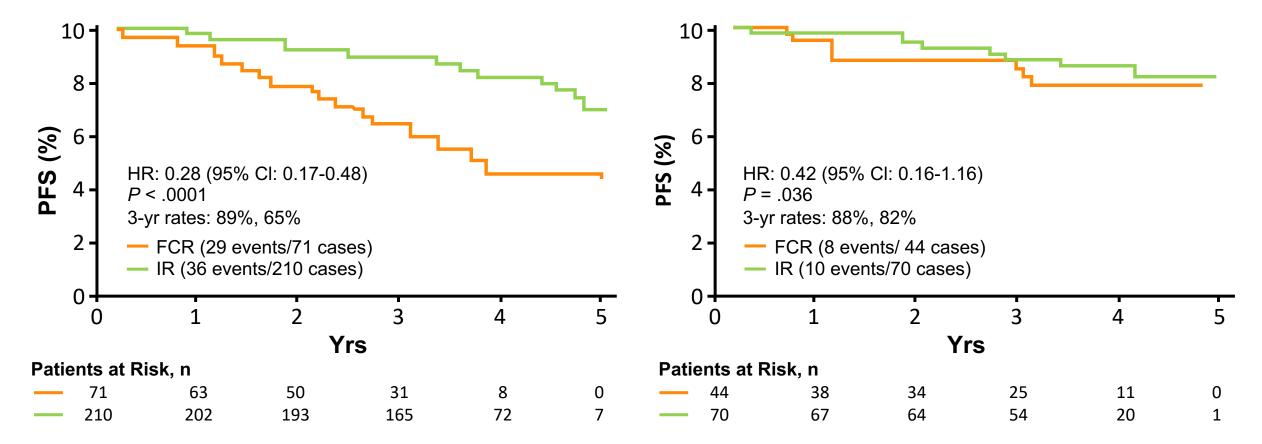

- a. FCR
- b. BR
- c. Ibrutinib
- d. Ibrutinib + rituximab
- e. Ibrutinib + obinutuzumab
- f. Acalabrutinib
- g. Acalabrutinib + obinutuzumab
- h. Obinutuzumab + chlorambucil
- i. Venetoclax + obinutuzumab
- j. Other

What is your usual preferred initial regimen for a 60-year-old patient with del(17p) CLL who requires treatment, has a history of atrial fibrillation and is receiving anticoagulation therapy?



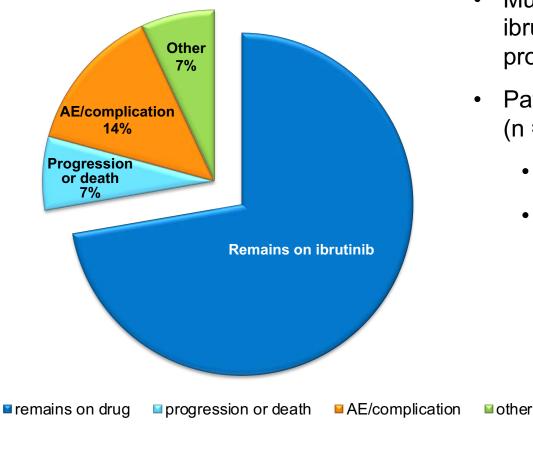
Survey of 50 US-based medical oncologists, June 2020

# E1912: Updated PFS With Longer Follow-up of First-line Ibrutinib + Rituximab in Untreated CLL




Shanafelt. ASH 2019. Abstr 33.

# E1912: Updated PFS by *IGHV* Status


#### **IGHV** Unmutated

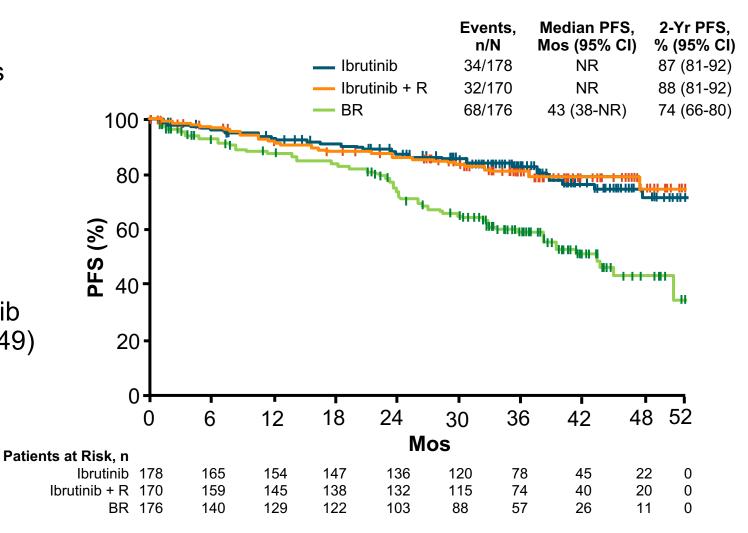
**IGHV** Mutated



Shanafelt. ASH 2019. Abstr 33.

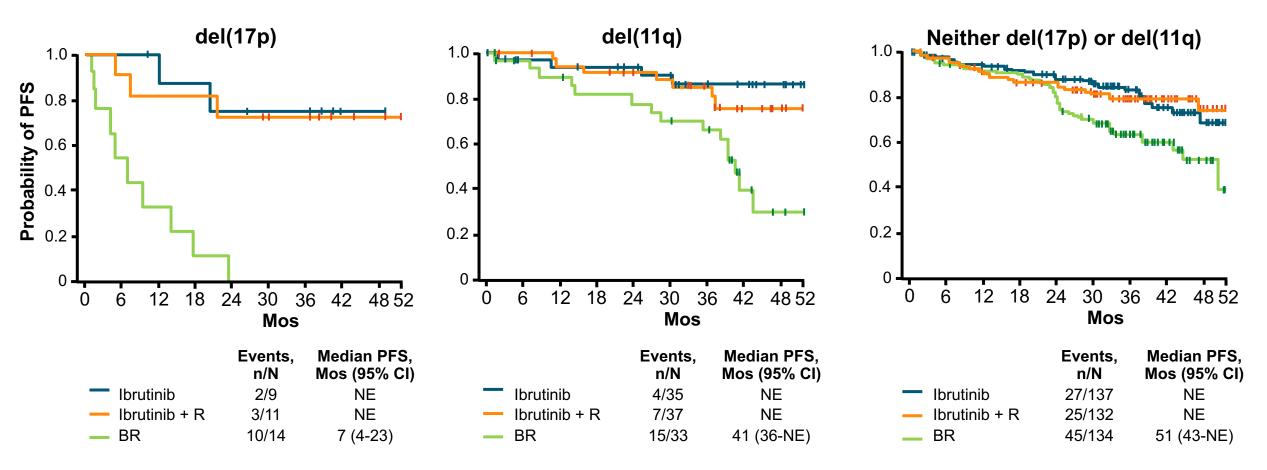
## **ECOG-E1912: Adverse Events in Younger CLL Patients**




- Multivariate Cox regression analysis: CIRS predicted ibrutinib discontinuation for reasons other than progression or death
- Patient discontinuing ibrutinib due to AEs or other reason (n = 72)
  - Time on ibrutinib: 15.1 mo (range: 0.2-58.2)
  - Median PFS: 23 mo

#### Select Grade 3/5 TRAE throughout observation

|                     | IR<br>(n = 352) | FCR<br>(n = 158) | <i>p</i> -value |
|---------------------|-----------------|------------------|-----------------|
| Any Grade ≥3 AE     | 69.6            | 80.4             | .013            |
| Neutropenia         | 27.0            | 43.0             | <.001           |
| Anemia              | 4.3             | 15.8             | <.001           |
| Thrombocytopenia    | 3.1             | 15.8             | <.001           |
| Atrial fibrillation | 2.8             | 0                | .036            |
| Hypertension        | 8.5             | 1.9              | .003            |

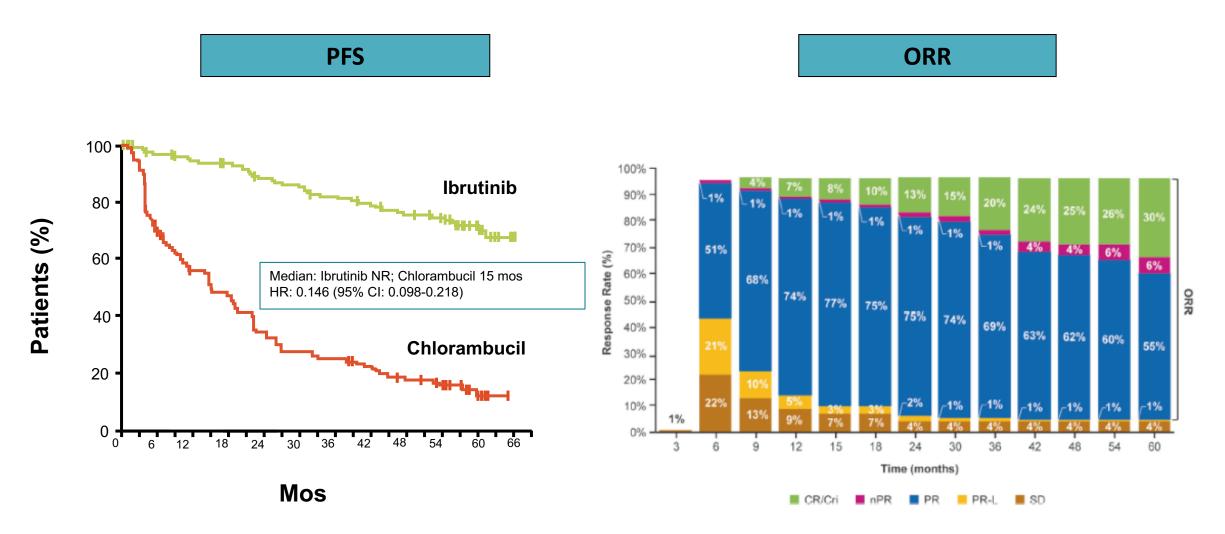

## A041202: PFS of Eligible Patients\* (Primary Endpoint)

- PFS significantly improved with ibrutinib vs BR and ibrutinib + R vs BR (both 1-sided P < .001)</li>
  - HR for ibrutinib vs BR:
     0.39 (95% CI: 0.26-0.58)
  - HR for ibrutinib + R vs BR:
     0.38 (95% CI: 0.25-0.59)
- No significant difference for ibrutinib
   + R vs ibrutinib only (1-sided P = .49)
  - HR: 1.00 (95% CI: 0.62-1.62)

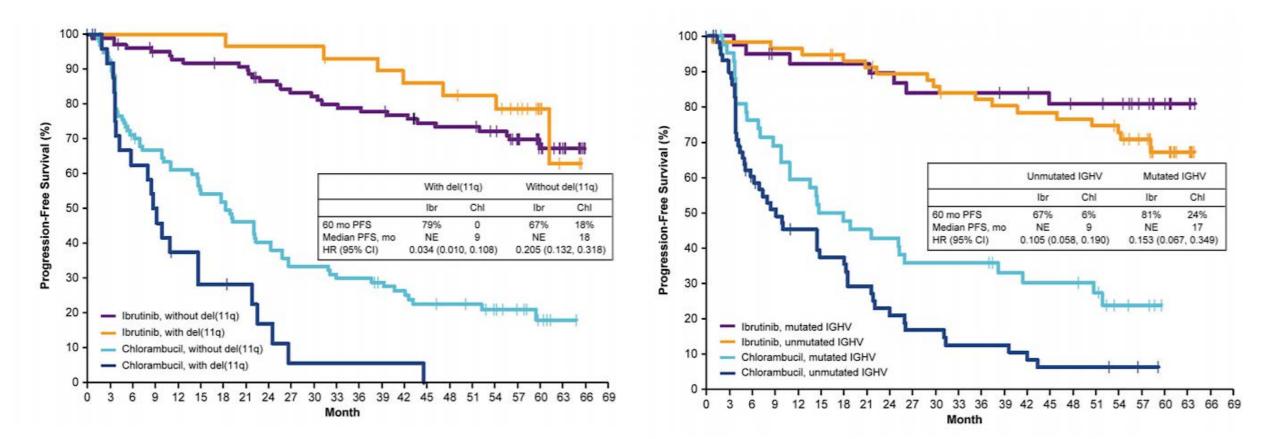


\*524 of 547 randomized patients.

## A041202: PFS by FISH and Complex Karyotype (CK), and IGHV




PFS benefit with ibrutinib vs BR observed in all cytogenetic factor-related subgroups, with del(17p13.1) being most pronounced

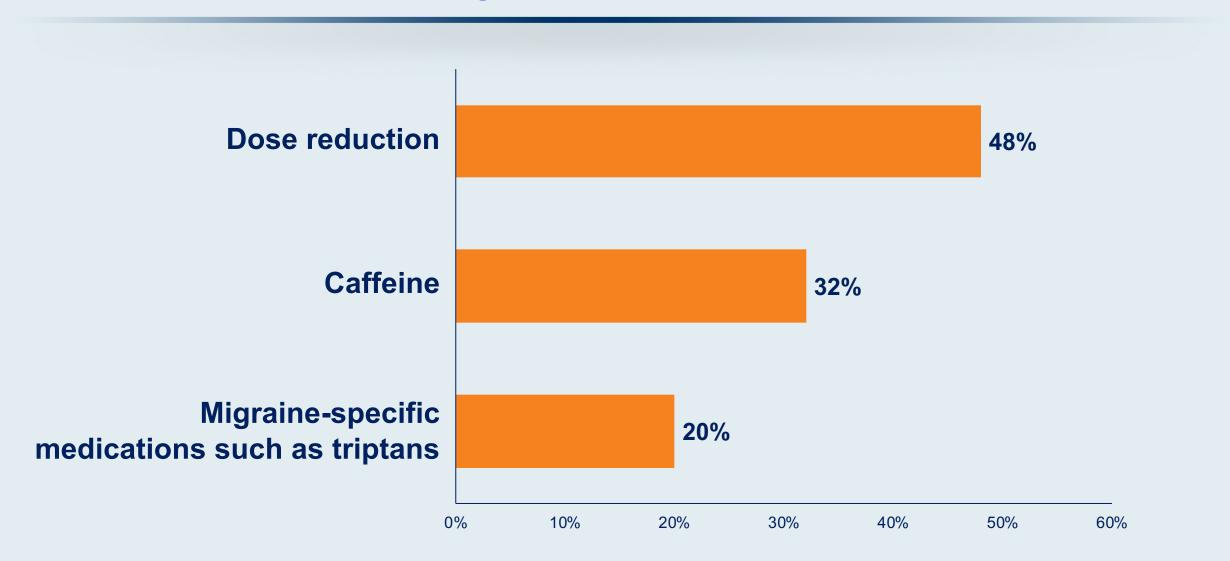

- In CK, 24-month PFS: BR (59%; 42% to 73%) vs I (91%, 75% to 97%) vs IR (87%, 75% to 94%); no influence on ibrutinib-associated PFS
- No significant interaction between IGHV mutation status and PFS benefit by regimen
  - Increased PFS among patients with mutated vs unmutated IGHV disease (HR: 0.51; 95% CI: 0.32-0.81)

Woyach. NEJM. 2018;379:2517.

## **RESONATE-2: 5-Year Follow-up of Ibrutinib vs Chlorambucil in Treatment-Naïve Older Patients with CLL**



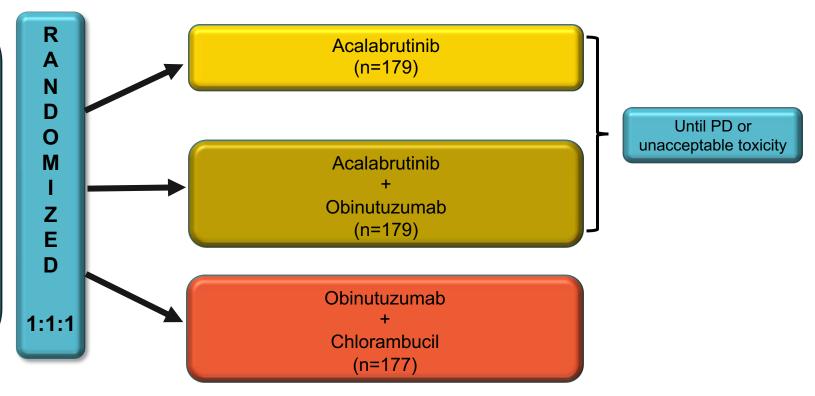
# Long Term RESONATE-2 by 11Q & IgHV




Burger Leukemia 2020

# What management strategy would you generally recommend for a patient who is experiencing acalabrutinib-associated headache?

- a. Dose reduction
- b. Caffeine
- c. Migraine-specific medications such as triptans
- d. Other

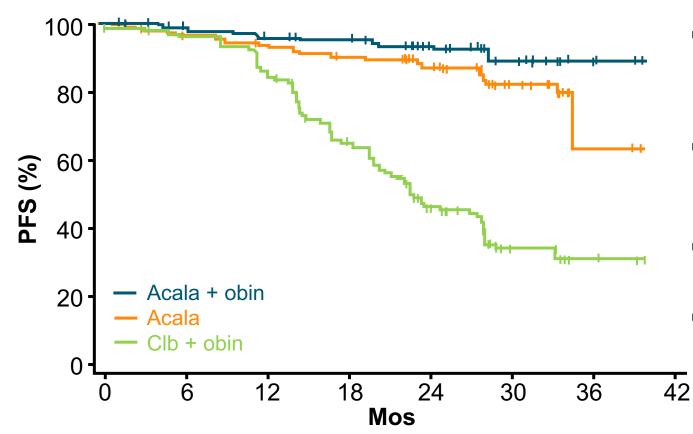

What management strategy would you generally recommend for a patient who is experiencing acalabrutinib-associated headache?



Survey of 50 US-based medical oncologists, June 2020

### ELEVATE-TN Trial: Acalabrutinib ± Obinutuzumab vs Obinutuzumab + Chlorambucil in Treatment-naïve CLL

- Phase 3, randomized, multicenter, open-label
- Treatment-naïve patients with CLL (N=535)
- ≥65 yrs, or <65 with CIRS score >6 and CrCl <70 mL/min
- Patients stratified by del(17p) status, ECOG ≤1 vs 2, geographic region




**Primary endpoint:** PFS per IRC (acalabrutinib/obinutuzumab vs chlorambucil/obinutuzumab) **Secondary endpoints:** PFS of acalabrutinib monotherapy vs obinutuzumab/chlorambucil, ORR, TTNT, OS, safety

BID, twice daily; CIRS, Cumulative Illness Rating Scale for Geriatrics; CrCl, creatinine clearance; ECOG, Eastern Cooperative Oncology Group; IRC, independent review committee; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; TTNT, time to next treatment

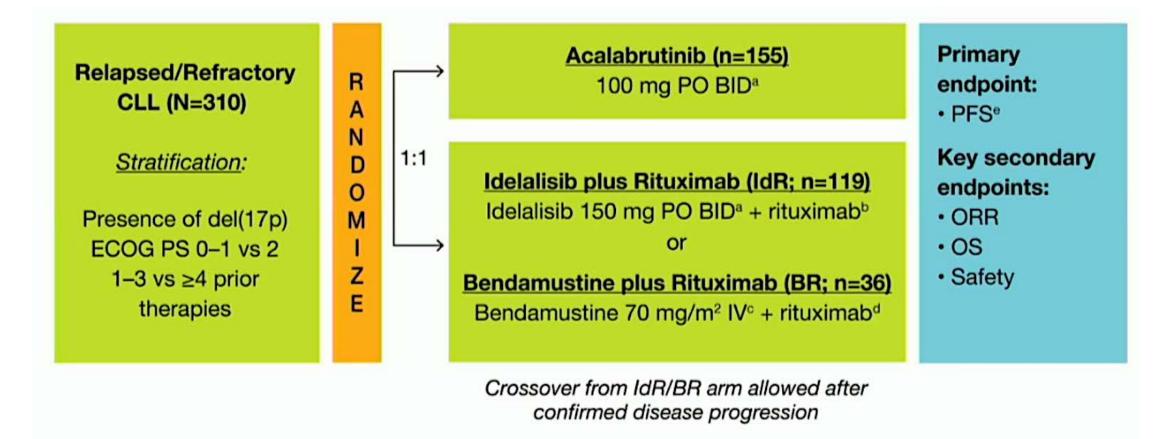
Sharman JP, et al. Lancet. Published online April 18, 2020

# **ELEVATE-TN: IRC-Assessed PFS**



- 30-month PFS estimates
  - Acala + obin: 90%, acala: 82%, Clb + obin: 34%
- ORR of acala + obin (93.9%) vs acala (85.5%) did not achieve significance at current follow-up
- CR rates higher with acala + obin (13%) vs acala (1%)
- 30-month OS estimates
  - Acala + obin: 95%, acala: 94%, Clb + obin: 90%

| Outcome                                                                   | Acalabrutinib + Obinutuzumab                         | Acalabrutinib                         | Obinutuzumab + Chlorambucil |
|---------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------|-----------------------------|
| Median PFS, mo                                                            | Not reached                                          | Not reached                           | 22.6                        |
| <ul> <li>HR vs acala (95% CI)</li> <li>HR vs obin/clb (95% CI)</li> </ul> | 0.49 (0.26-0.95)<br>0.10 (0.6-0.17); <i>p</i> < .001 | <br>0.20 (0.13-0.30); <i>p</i> < .001 | <br>                        |

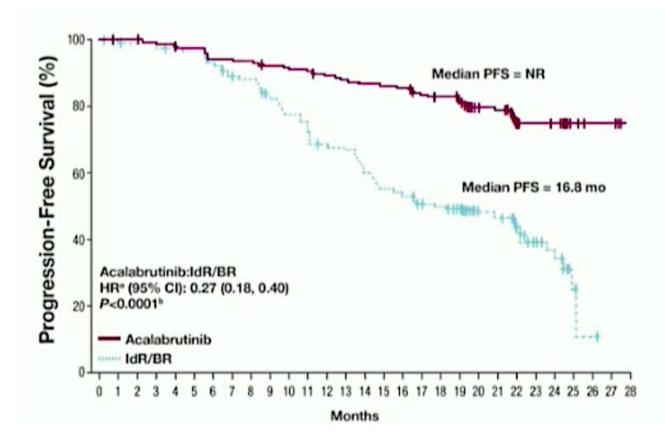

Sharman. Lancet. 2020;395:1278.

# **ELEVATE-TN: Safety**

| Adverse Events,<br>n (%)                 | Acala + Obin*<br>(n = 178) |          | Acala*<br>(n = 179) |          | Obin + Clb<br>(n = 169) |          |  |
|------------------------------------------|----------------------------|----------|---------------------|----------|-------------------------|----------|--|
|                                          | Any grade                  | Grade ≥3 | Any grade           | Grade ≥3 | Any grade               | Grade ≥3 |  |
| Any                                      | 171 (96)                   | 125 (70) | 170 (95)            | 89 (50)  | 167 (99)                | 118 (70) |  |
| Serious                                  | 69 (39)                    |          | 57 (32)             |          | 37 (22)                 |          |  |
| Headache                                 | 71 (40)                    | 2 (1)    | 66 (37)             | 2 (1)    | 20 (12)                 | 0        |  |
| Diarrhea                                 | 69 (39)                    | 8 (4)    | 62 (35)             | 1 (1)    | 36 (21)                 | 3 (2)    |  |
| Neutropenia                              | 56 (31)                    | 53 (30)  | 19 (11)             | 17 (9)   | 76 (45)                 | 70 (41)  |  |
| Nausea                                   | 36 (20)                    | 0        | 40 (22)             | 0        | 53 (31)                 | 0        |  |
| Infusion-related reaction                | 24 (13)                    | 4 (2)    | 0                   | 0        | 67 (40)                 | 9 (5)    |  |
| Atrial fibrillation                      | 6 (3)                      | 1 (<1)   | 7 (4)               | 0        | 1 (<1)                  | 0)       |  |
| Hypertension                             | 13 (7)                     | 5 (3)    | 8 (5)               | 4 (2)    | 6 (4)                   | 5 (3)    |  |
| Bleeding                                 | 76 (43)                    | 3 (2)    | 70 (39)             | 3 (2)    | 20 (12)                 | 0        |  |
| Infections                               | 123 (69)                   | 37 (21)  | 117 (65)            | 25 (14)  | 74 (44)                 | 14 (8)   |  |
| Fatigue                                  | 50 (28)                    | 3 (2)    | 33 (18)             | 2 (1)    | 29 (17)                 | 1 (<1)   |  |
| Grade 5                                  | 5 (3)                      |          | 7 (4)               |          | 12 (7)                  |          |  |
| *Treatment duration 27.7 ma in both arma |                            |          |                     |          |                         |          |  |

\*Treatment duration 27.7 mo in both arms

# ASCEND: Phase III Trial of Acalabrutinib vs Rituximab with Either Idelalisib or Bendamustine



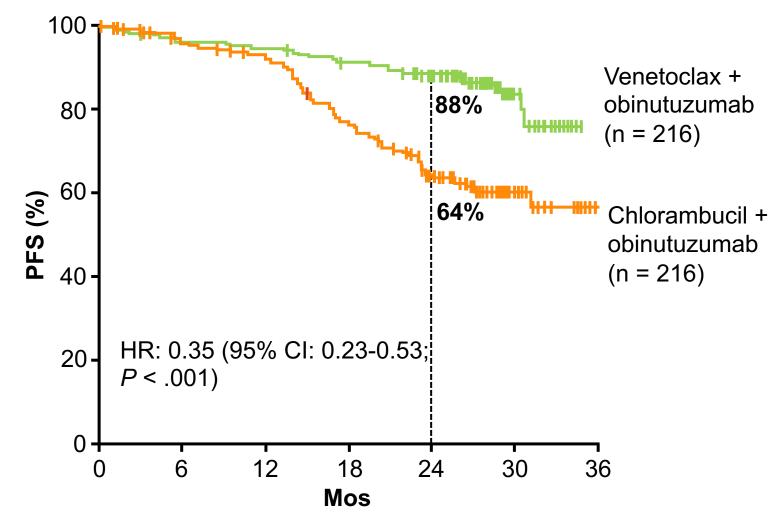

The data cut-off date for this analysis was August 1, 2019

Ghia P et al. *Proc EHA* 2020; Abstract S159.

## **ASCEND:** Final Analysis of Investigator-Assessed PFS

PFS for Acalabrutinib vs IdR/BR



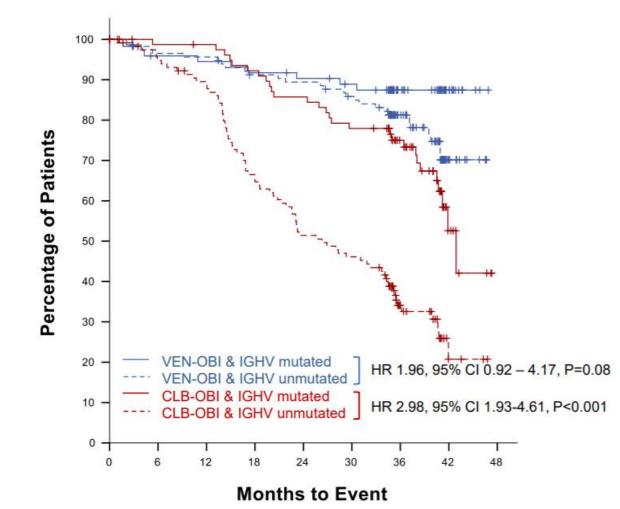

After a median of 22 months, acalabrutinib prolonged PFS vs investigator's choice of therapy (estimated 18-mo PFS: 82% and 48%, respectively)

Ghia P et al. Proc EHA 2020; Abstract S159.

## **ASCEND: Adverse Events of Clinical Interest**

|                                                                       | Acalabrutinib (n=154) |                    | ldR (n=118) |          |
|-----------------------------------------------------------------------|-----------------------|--------------------|-------------|----------|
| AE, n (%)                                                             | Any                   | Grade ≥3           | Any         | Grade ≥3 |
| Atrial fibrillation                                                   | 9 (6)                 | 2 (1)              | 5 (3)       | 2 (1)    |
| Hemorrhage                                                            | 44 (29)               | 4 (3)              | 12 (8)      | 4 (3)    |
| Major hemorrhage <sup>a</sup>                                         | 5 (3)                 | 4 (3) <sup>b</sup> | 4 (3)       | 4 (3)°   |
| Hypertension                                                          | 7 (5)                 | 4 (3)              | 6 (4)       | 1 (1)    |
| Infections                                                            | 97 (63)               | 30 (20)            | 99 (65)     | 38 (25)  |
| Second primary malignancies excluding non-melanoma skin<br>carcinomas | 8 (5)                 | 6 (4)              | 3 (2)       | 2 (1)    |
| Tumor lysis syndrome                                                  | 1 (1)                 | 1 (1)              | 1 (1)       | 1 (1)    |

# CLL14 Primary Endpoint: Investigator-Assessed PFS with Venetoclax/obinutuzumab in Previously Untreated CLL




- PFS benefit remains at median follow-up of 39.6 mos
- mPFS
  - Clb + Obin: 36 mos
  - Ven + Obin: NR
  - HR 0.31 (95% CI: 0.22-0.44)
  - *P* < .0001
- 36-mo estimated PFS
  - Clb + Obin: 50%
  - Ven + Obin: 82%

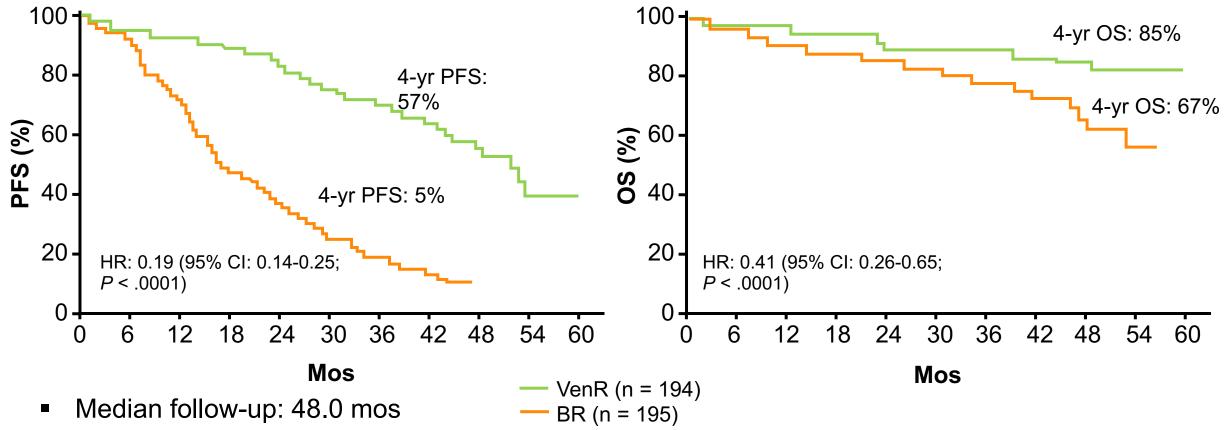
# CLL14: PFS by IGHV Mutation and TP53 Status

#### **PROGRESSION-FREE SURVIVAL**

According to IGHV status

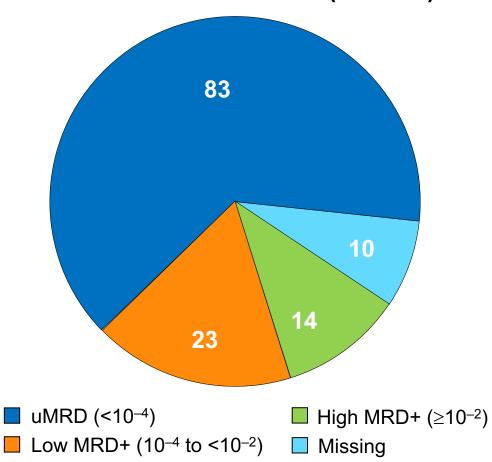


#### Median PFS


Ven-Obi IGHV*mut*: not reached Ven-Obi IGHV*unmut*: not reached

Clb-Obi IGHV*mut*: 42.9 months Clb-Obi IGHV*unmut*: 26.3 months

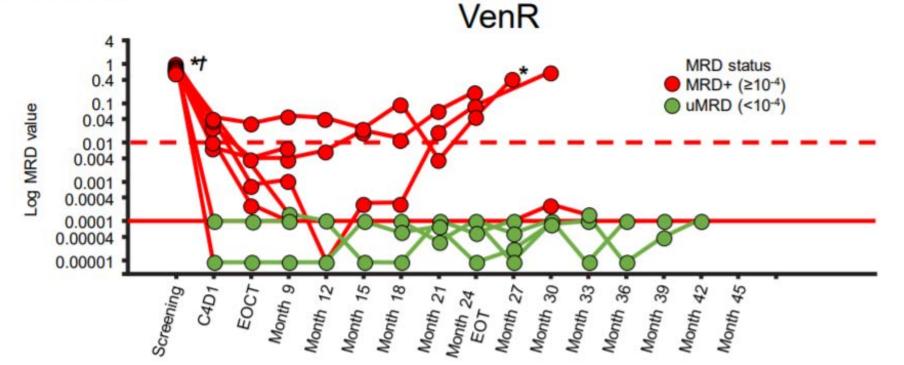
#### Al-Sawaf EHA 2020


# MURANO: Updated PFS and OS with Venetoclax/Rituximab in Previously Treated CLL

- Phase III trial in patients with R/R CLL after 1-3 previous lines of tx
  - Venetoclax 5-wk dose ramp-up then 400 mg PO QD for C1-6 + rituximab (n = 194) vs bendamustine + rituximab (n = 195) for 6 cycles
  - ORR: 93.3% with venetoclax + R vs 67.7% with bendamustine + R



# **MURANO: MRD and Progression Status at EOT**


MRD Status at EOT (n = 130)



| Status Off<br>Therapy,<br>n (%) | uMRD<br>(n = 83) | Low<br>MRD+<br>(n = 23) | High<br>MRD+<br>(n = 14) | Missing<br>(n = 10) |
|---------------------------------|------------------|-------------------------|--------------------------|---------------------|
| Progression free                | 72 (87)          | 14 (61)                 | 1 (7)                    | 8 (80)              |
| Progressive disease             | 11 (13)          | 9 (39)                  | 13 (93)                  | 2 (20)              |

# MRD over time with venetoclax (MURANO)

Figure 2. MRD kinetics during treatment and follow-up: VenR combination therapy  $\rightarrow$  Ven monotherapy



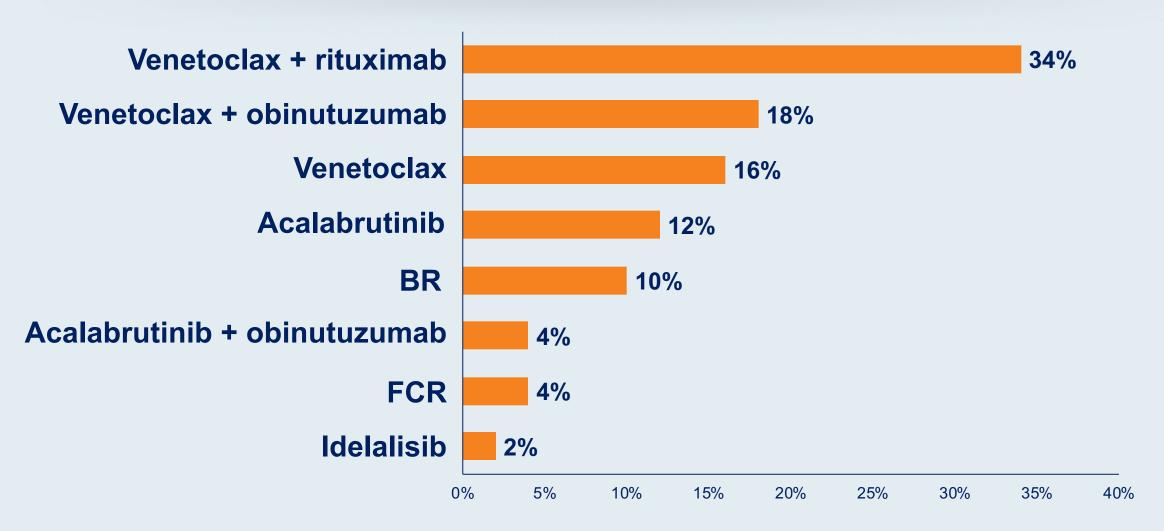
\* TP53 mutated

Kater et al EHA 2020

† 17p del- present

# **Approach to first line therapy: Disease Characteristics**

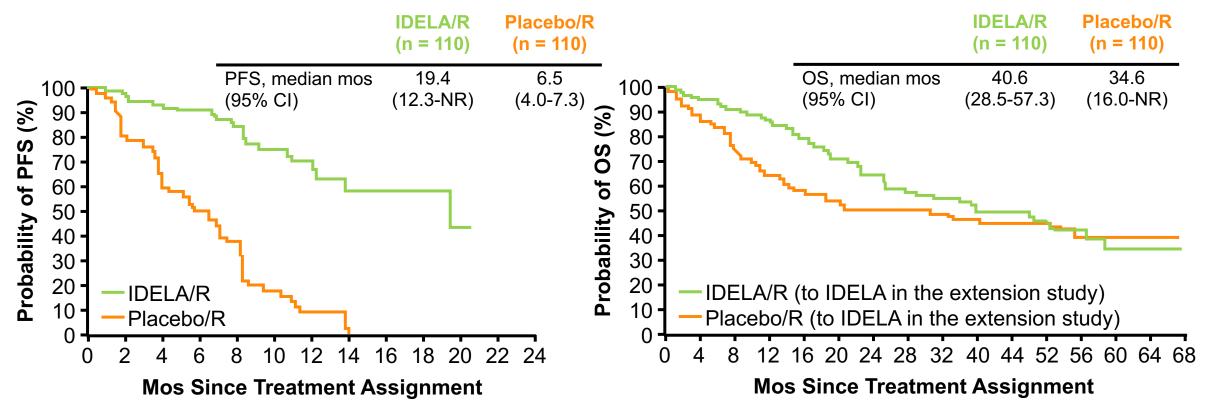
| Characteristic | Favor                              | Over  |
|----------------|------------------------------------|-------|
| IgHV Unmutated | Targeted Agent                     | CIT   |
| IgHV Mutated   | Consider Secondary Characteristics |       |
| 17P            | BTK                                | Ven-G |
| Bulky Disease  | BTK                                | Ven-G |


### **Approach to first line therapy: Patient Characteristics**

| Characteristic          | Favor         | Over          |  |
|-------------------------|---------------|---------------|--|
| Hypertension            | Acalabrutinib | Ibrutinib     |  |
| Chronic Kidney Disease  | BTK           | Ven-G         |  |
| Compliance Concerns     | Acala/Obin    | Acala mono    |  |
| GERD/PPI                | Ibrutinib     | Acalabrutinib |  |
| Ibrutinib Intolerance   | Acalabrutinib | Class Change  |  |
| Anti-Coagulation / DOAC | Ven-G         | BTK           |  |

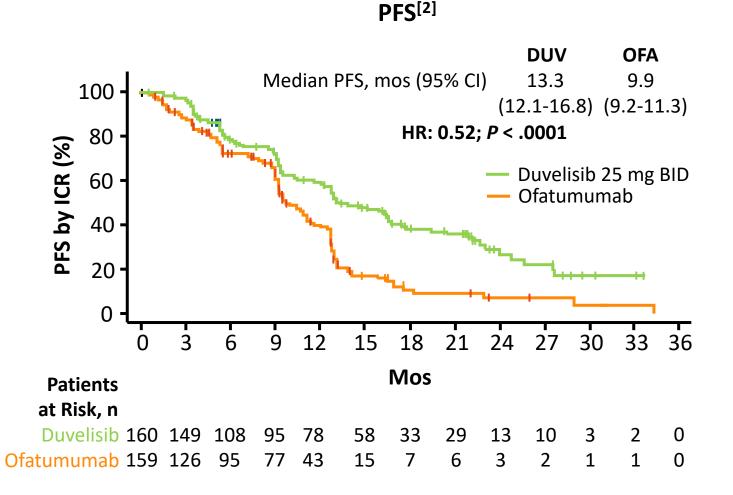
Reimbursement and regulatory issues aside, which second-line systemic therapy would you recommend for a 75-year-old patient with IGHV-mutated CLL without del(17p) or TP53 mutation who responds to ibrutinib and then experiences disease progression 3 years later?

- a. FCR
- b. BR
- c. Acalabrutinib
- d. Acalabrutinib + obinutuzumab
- e. Venetoclax
- f. Venetoclax + rituximab
- g. Venetoclax + obinutuzumab
- h. Idelalisib
- i. Duvelisib
- j. Other


Reimbursement and regulatory issues aside, which second-line systemic therapy would you recommend for a 75-year-old patient with IGHV-mutated CLL without del(17p) or TP53 mutation who responds to ibrutinib and then experiences disease progression 3 years later?



Survey of 50 US-based medical oncologists, June 2020


# Phase III Trial of Idelalisib + Rituximab in Relapsed CLL: Final Results of PFS (Primary Endpoint) and OS

- Phase III trial in patients with relapsed CLL after at least 1 prior line of tx
  - Primary study 116 with idelalisib/rituximab followed by extension study 117 with single agent idelalisib



# Phase III DUO Trial of Duvelisib vs Ofatumumab in R/R CLL

- Duvelisib is a dual inhibitor of PI3K delta and PI3K gamma<sup>[1]</sup>
- Administered orally twice daily<sup>[1]</sup>
- Prolonged PFS compared with ofatumumab in the DUO study<sup>[2]</sup>
- FDA approved for patients with R/R CLL/SLL and ≥2 previous therapies in September 2018



# **Major Pending Trials**

- GLOW: Ibr/Ven vs Clb/Obin registration study of novel/novel all oral combo
- CLL13: FCR/BR vs Ven with Obi or Rtx can Ven based regimen beat aggressive CIT and which CD20 is better
- ACE-CL-311: FCR/BR vs Acala/Ven +/- Obi Acala doublet or triplet vs CIT
- UNITY-CLL: Umbralisib/Ublituximab vs Clb/Obi can PI3 be salvaged as a drug class
- ELEVATE-RR: Ibrutinib vs Acalabrutinib clash of the BTK giants

#### Science Immunology

RESEARCH ARTICLES

Cite as: M. Roschewski *et al., Sci. Immunol.* 10.1126/sciimmunol.abd0110 (2020).

#### **CORONAVIRUS**

## **Inhibition of Bruton tyrosine kinase in patients with severe COVID-19**

Mark Roschewski<sup>1\*</sup>, Michail S. Lionakis<sup>2\*</sup>, Jeff P. Sharman<sup>3\*</sup>, Joseph Roswarski<sup>4\*</sup>, Andre Goy<sup>5</sup>, M. Andrew Monticelli<sup>6</sup>, Michael Roshon<sup>7</sup>, Stephen H. Wrzesinski<sup>8</sup>, Jigar V. Desai<sup>2</sup>, Marissa A. Zarakas<sup>2</sup>, Jacob Collen<sup>9</sup>, Keith Rose<sup>5</sup>, Ahmed Hamdy<sup>10</sup>, Raquel Izumi<sup>10</sup>, George W. Wright<sup>11</sup>, Kevin K. Chung<sup>9</sup>, Jose Baselga<sup>12</sup>, Louis M. Staudt<sup>1\*</sup>, Wyndham H. Wilson<sup>1\*†</sup>

<sup>1</sup>Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, MD; <sup>2</sup>Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD; <sup>3</sup>Willamette Valley Cancer Institute and Research Center, US Oncology, Eugene, OR; <sup>4</sup>Hematology-Oncology Department, Walter Reed National Military Medical Center, Bethesda, MD; <sup>5</sup>John Theurer Cancer Center, Hackensack Meridian and School of Medicine at Seton Hall, NJ; <sup>6</sup>Rocky Mountain Cancer Center, US Oncology, Colorado Springs, CO; <sup>7</sup>Department of Emergency Medicine, Penrose-St. Francis Health Services, Colorado Springs, CO; US Acute Care Solutions, Canton, OH; <sup>8</sup>Department of Medicine, St. Peter's Hospital and US Oncology, Albany, NY; <sup>9</sup>Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; <sup>10</sup>Acerta Pharma, South San Francisco, CA; <sup>11</sup>Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD, USA <sup>12</sup>AstraZeneca, One MedImmune Way, Gaithersburg, MD

## Dr Sharman Case Presentation: 66-Year-Old Man with CLL

- 66 y/o male
- ALC 7400 in 2016, CLL diagnosis in 2/2018 WBC 37K
- No organomegaly or LN, normal Hb, PLT
- HbcoreAb+, Hypertension, Gout, BPH, Vertigo
- 7/2019 STEMI PTCA + stent x2, 11/2019 PTCA x1
  - Paroxismal atrial fibrillation
  - Renal failure Cr 1.6 mg/dl
  - Mild LV dysfunction, normal relaxation, mildly dilated LA, mild-mod MR, EF 45%
- Medications: apixaban, clopidogrel, diltiazem, omeprazole, allopurinol, FISH neg, US spleen 16.5 cm
- Progressive lymphocytosis and anemia non bulky nodes

|        | WBC  | ALC  | Hb   | PLT  | Cr   |
|--------|------|------|------|------|------|
| 6/2018 | 47K  | 40K  | 15   | 128  | 1.3  |
| 5/2019 | 125K | 97K  | 14.5 | 102K | 1.58 |
| 5/2020 | 258K | 236K | 11.5 | 109K | 1.78 |

## Dr Sharman Case Presentation: 69-Year-Old Woman with CLL

- 69 year old female in good health. Initially presented with only lymph node but workup revealed ALC 500K, Hgb 12, Plt 120
- IgHV unmutated, trisomy 12
- Initially treated (2014) with FCR x6 complicated by prolonged cytopenias but ultimately recovered
- 2017 had rapid progression started on ibrutinib c/b drug related severe mucositis and neutropenia
- 2018 started on Ven/Rtx MRD pos at end of two years, therapy continued, but sequential MRD showed rising levels
- 2020 started on acalabrutinib monotherapy thus far (4 months) well tolerated

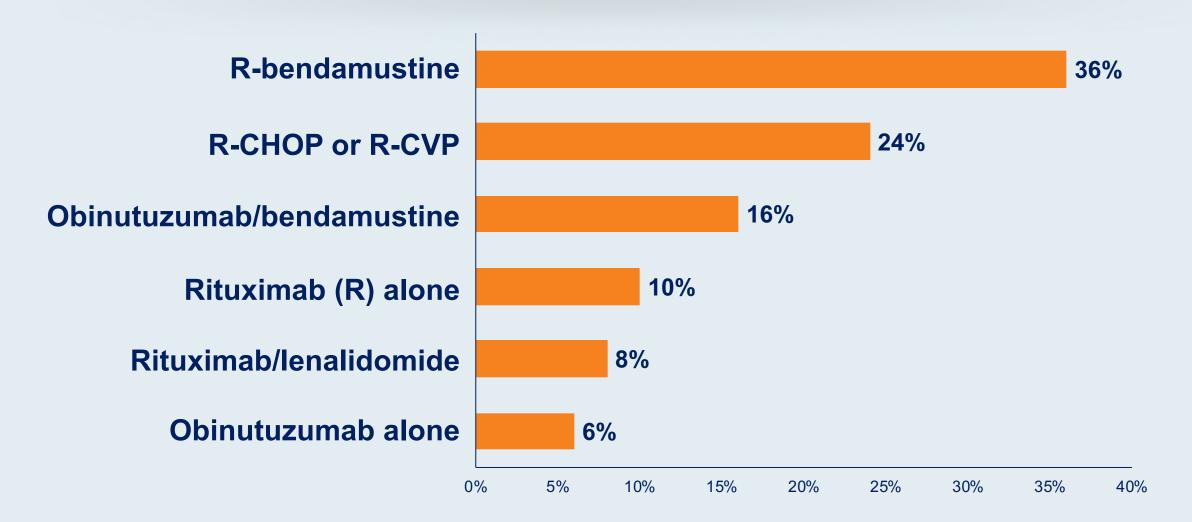
## Agenda

#### Module 1: Chronic Lymphocytic Leukemia (CLL) – Dr Sharman

- Phase III trials of ibrutinib-based therapy in younger (ECOG-E1912) and older (A041202, RESONATE-2) patients
- Acalabrutinib for treatment-naïve (ELEVATE-TN) and relapsed/refractory CLL (ASCEND)
- Long-term follow-up of venetoclax-based therapy for newly diagnosed (CLL14) and relapsed CLL (MURANO)
- PI3 kinase inhibitors idelalisib and duvelisib in relapsed CLL
- Ongoing trials

#### Module 2: Follicular Lymphoma – Dr Vose

- Role of obinutuzumab-based chemoimmunotherapy for treatment-naïve FL (GALLIUM)
- Lenalidomide/rituximab (R-squared) in the up-front (RELEVANCE) and relapsed/refractory settings (AUGMENT)
- Comparison of FDA-approved PI3 kinase inhibitors in FL: idelalisib, duvelisib and copanlisib

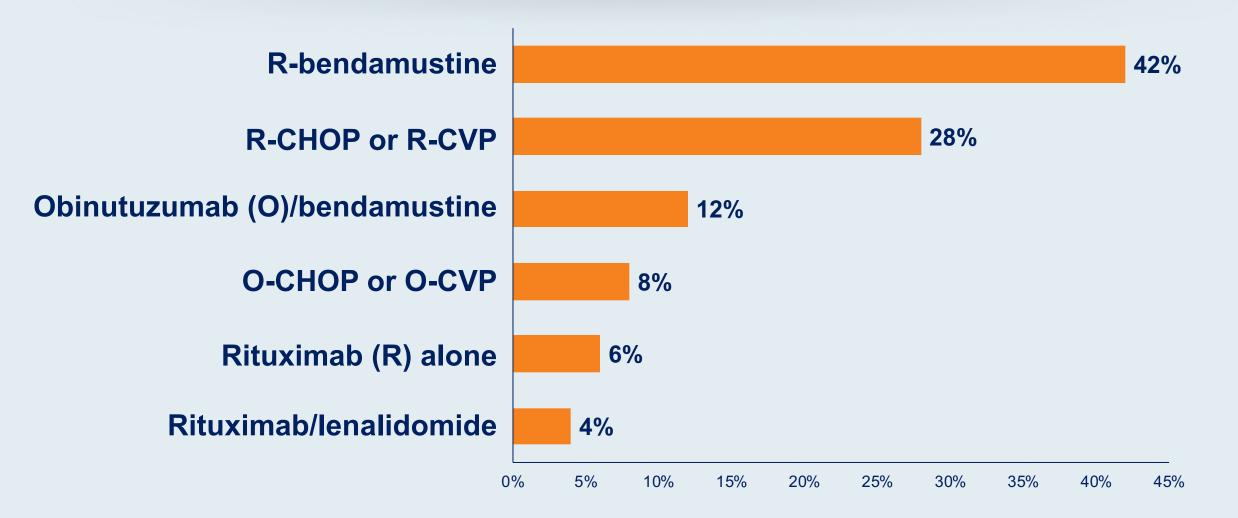

## Module 2: Follicular Lymphoma – Dr Vose

- Selection of first-line treatment (rituximab monotherapy)
- Selection of second-line treatment (rituximab/lenalidomide)
- Selection of third-line treatment (choice of PI3K inhibitor)
- Recent relevant publications

Regulatory and reimbursement issues aside, what would be your most likely initial treatment choice for a <u>78-year-old</u> patient with <u>Stage III, Grade 1/2</u> follicular lymphoma (FL) with fatigue and symptomatic bulky adenopathy who requires treatment?

- a. Rituximab (R) alone
- b. R-bendamustine
- c. R-CHOP or R-CVP
- d. Obinutuzumab (O) alone
- e. O-bendamustine
- f. O-CHOP or O-CVP
- g. Rituximab/lenalidomide
- h. Other

Regulatory and reimbursement issues aside, what would be your most likely initial treatment choice for a <u>78-year-old</u> patient with <u>Stage III, Grade 1/2</u> follicular lymphoma (FL) with fatigue and symptomatic bulky adenopathy who requires treatment?




Survey of 50 US-based medical oncologists, June 2020

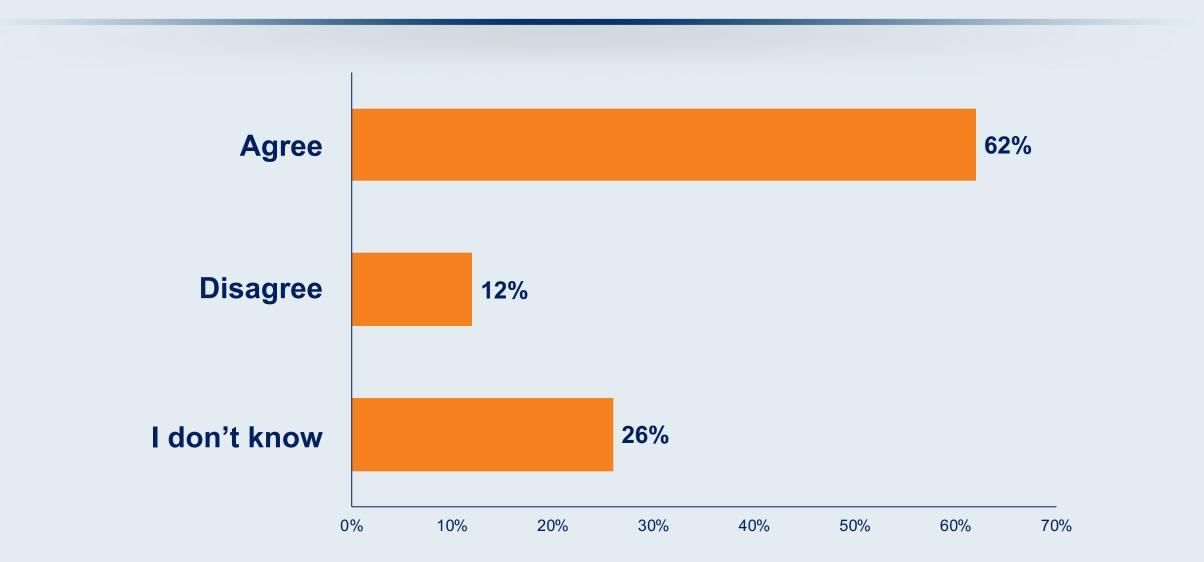
Regulatory and reimbursement issues aside, what would be your most likely initial treatment choice for a <u>60-year-old</u> patient with <u>Stage IV, Grade 3A</u> FL with fatigue and symptomatic bulky adenopathy who requires treatment?

- a. Rituximab (R) alone
- b. R-bendamustine
- c. R-CHOP or R-CVP
- d. Obinutuzumab (O) alone
- e. O-bendamustine
- f. O-CHOP or O-CVP
- g. Rituximab/lenalidomide
- h. Other

Regulatory and reimbursement issues aside, what would be your most likely initial treatment choice for a <u>60-year-old</u> patient with <u>Stage IV, Grade 3A</u> FL with fatigue and symptomatic bulky adenopathy who requires treatment?

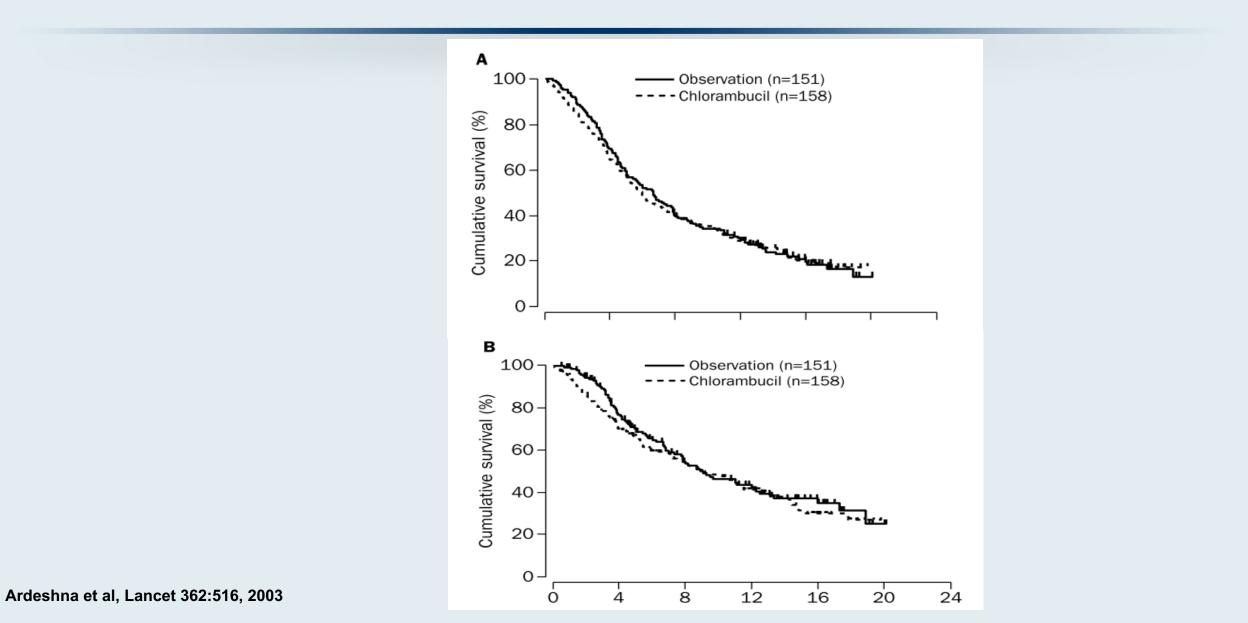


Survey of 50 US-based medical oncologists, June 2020

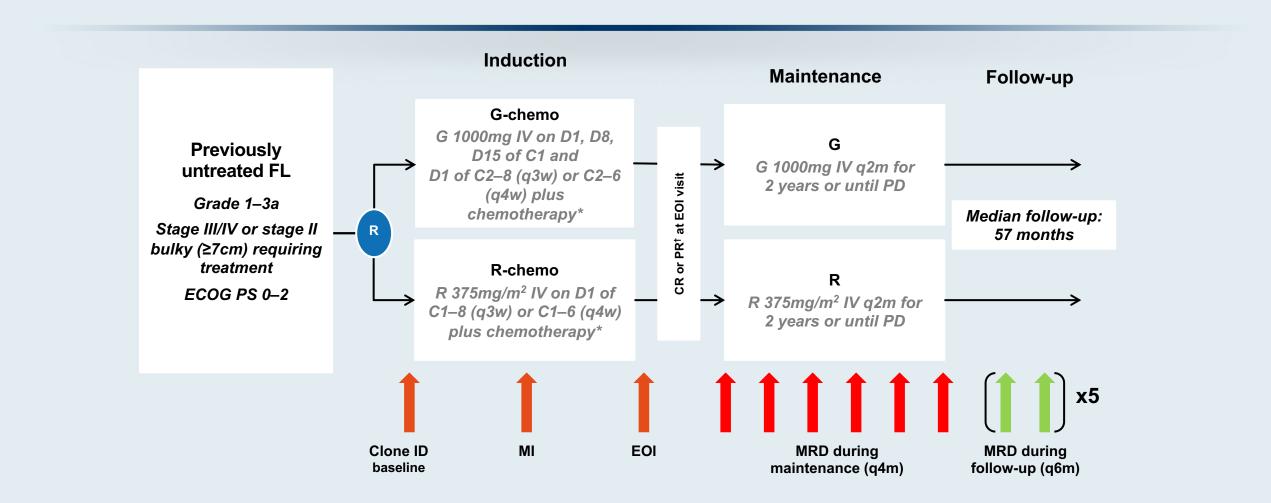

Obinutuzumab/chemotherapy results in fewer relapses prior to 24 months than rituximab/chemotherapy when used as initial treatment for FL.

a. Agree

b. Disagree

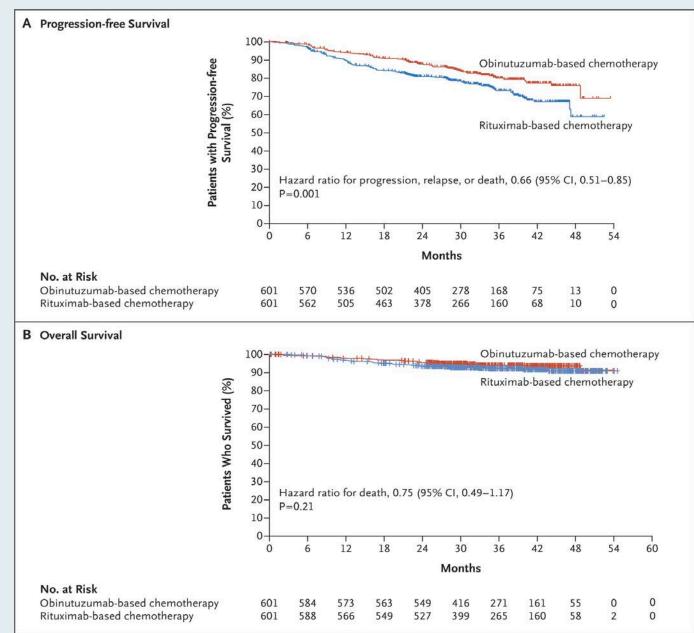

c. I don't know

Obinutuzumab/chemotherapy results in fewer relapses prior to 24 months than rituximab/chemotherapy when used as initial treatment for FL.



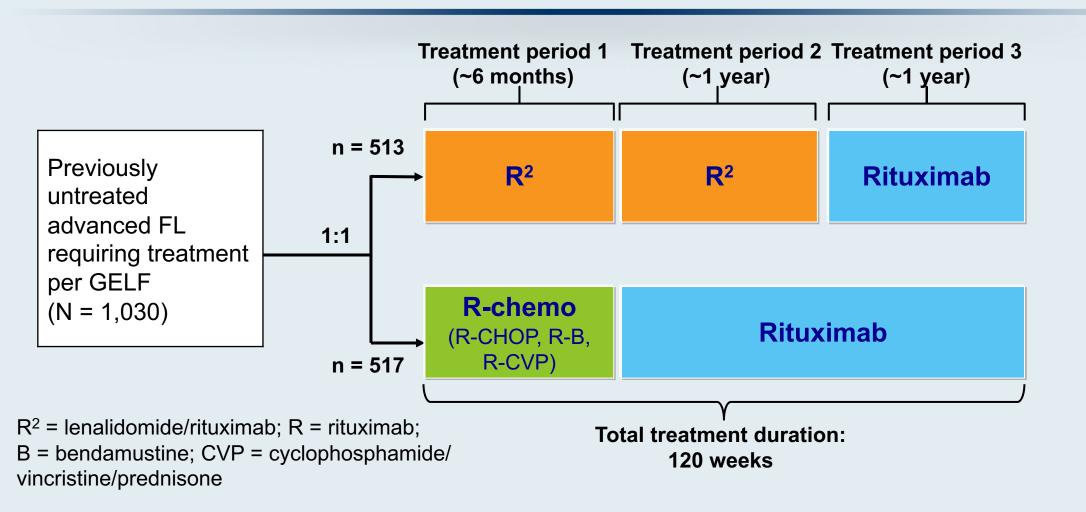

Survey of 50 US-based medical oncologists, June 2020

#### Watch and Wait in FL: BNLI (n = 309)




## **GALLIUM Study with MRD assessment**

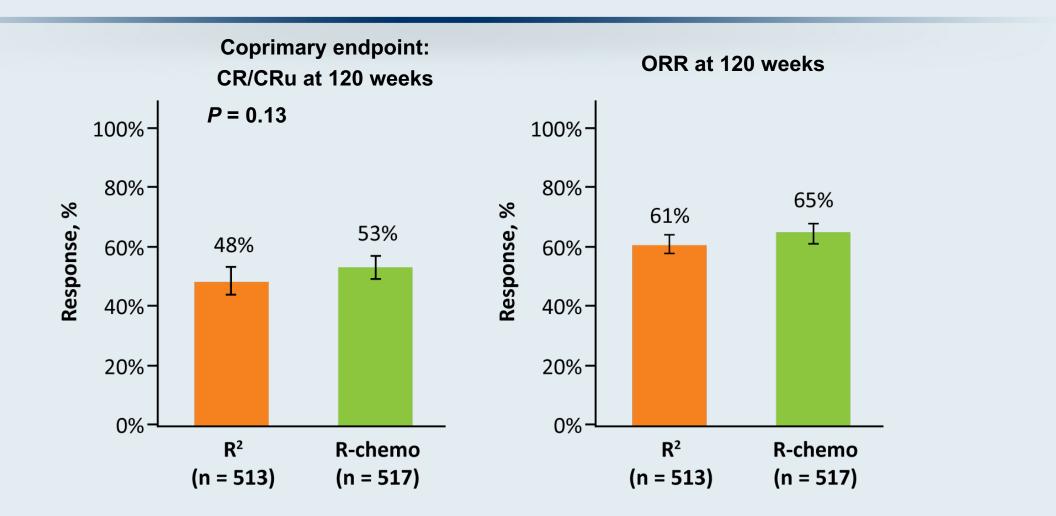



Marcus, et al NEJM 2017; 377(14): 1331-1344

#### GALLIUM: Kaplan–Meier Estimates of Investigator-Assessed Progression-free Survival and Overall Survival among Patients with Follicular Lymphoma



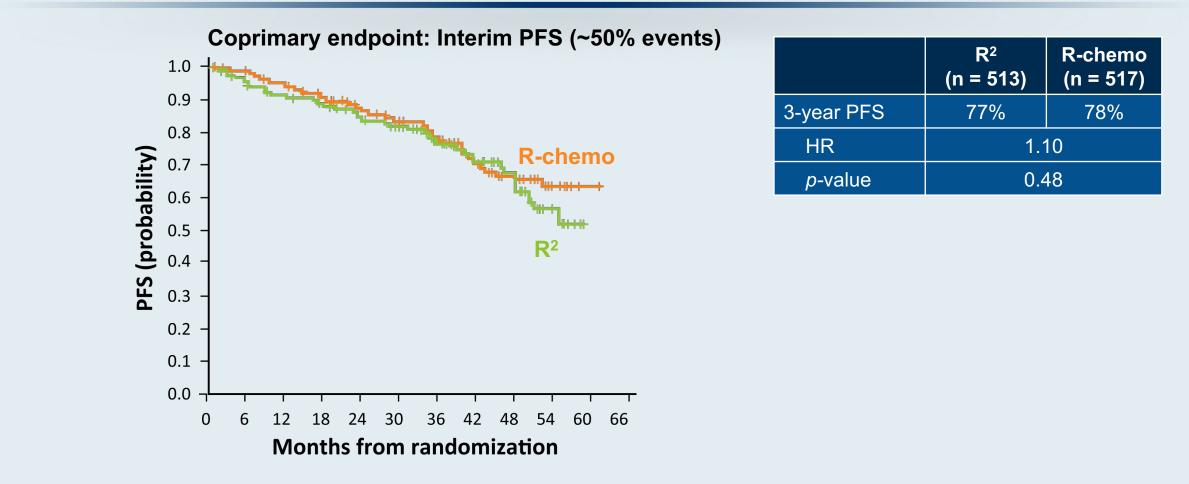
Marcus, et al NEJM 2017; 377(14):1331-1344


### **RELEVANCE:** Phase III Trial Design



#### Primary endpoints: CR/CRu at 120 weeks and PFS

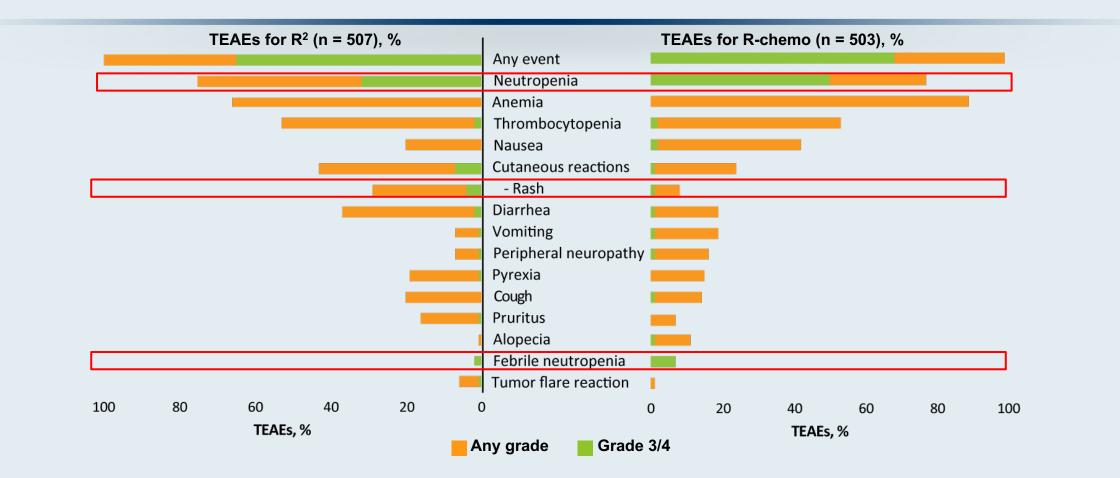
Fowler NH et al. Proc ASCO 2018; Abstract 7500.


#### **RELEVANCE:** Response



• 3-year duration of response = 77% (R<sup>2</sup>) versus 74% (R-chemo)

Fowler NH et al. *Proc ASCO* 2018;Abstract 7500; Morschhauser F et al. *N Engl J Med* 2018;379(10):934-47.


#### **RELEVANCE: Interim PFS by Independent Review Committee**



- At median follow-up of 37.9 mo, interim PFS was similar in both arms
- 3-y OS (immature in ITT) = 94% (R<sup>2</sup>) vs 94% (R-chemo); HR = 1.16

Fowler NH et al. Proc ASCO 2018; Abstract 7500.

### **RELEVANCE: Select Treatment-Emergent AEs (TEAEs)**



- Early discontinuation of trial treatment: 11% with R<sup>2</sup> versus 3% with R-chemo
- Second primary cancers: 7% with R<sup>2</sup> versus 10% with R-chemo

Fowler NH et al. *Proc ASCO* 2018;Abstract 7500; Morschhauser F et al. *N Engl J Med* 2018;379(10):934-47. Printed by Julie Vose on 6/14/2020 10:09:14 PM. For personal use only. Not approved for distribution. Copyright © 2020 National Comprehensive Cancer Network, Inc., All Rights Reserved.



NCCN Guidelines Version 1.2020
 Follicular Lymphoma (grade 1–2)



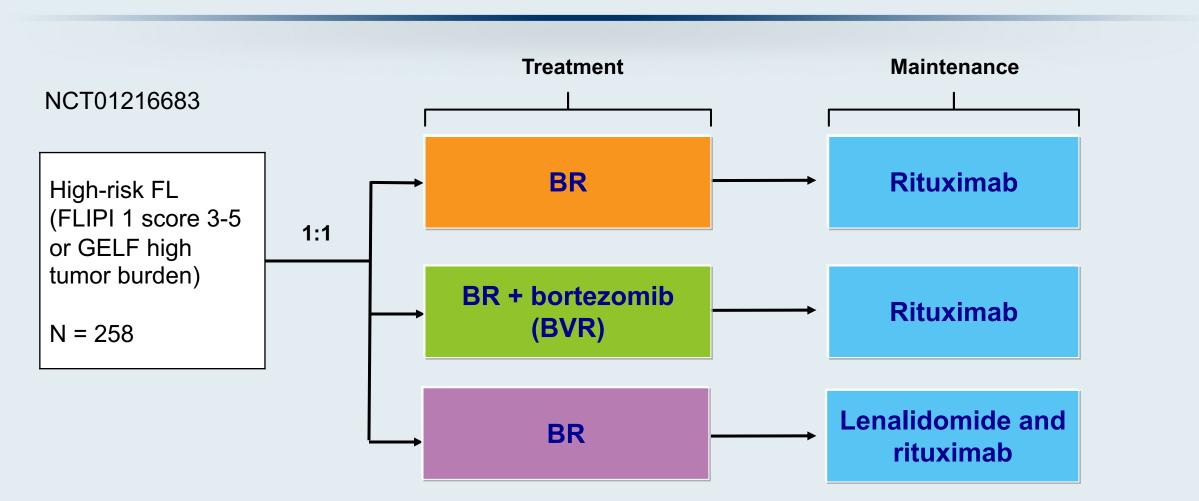
#### SUGGESTED TREATMENT REGIMENS<sup>a,b,c</sup> An FDA-approved biosimilar is an appropriate substitute for rituximab.

#### First-line Therapy

- · Preferred regimens (in alphabetical order)
- Bendamustine<sup>d</sup> + obinutuzumab<sup>e</sup> or rituximab
- CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) + obinutuzumab<sup>e</sup> or rituximab
- CVP (cyclophosphamide, vincristine, prednisone) + obinutuzumab<sup>e</sup> or rituximab
- Lenalidomide + rituximab
- Other recommended regimens
- Lenalidomide + obinutuzumab (category 2B)
- Rituximab (375 mg/m<sup>2</sup> weekly for 4 doses) (consider for low tumor burden)<sup>f</sup>
- First-line Therapy for Elderly or Infirm (if none of the above are expected to be tolerable in the opinion of treating physician)
- Preferred regimen
- Rituximab (375 mg/m<sup>2</sup> weekly for 4 doses)
- Other recommended regimens
- Chlorambucil ± rituximab
- Cyclophosphamide ± rituximab
- Ibritumomab tiuxetan<sup>g</sup> (category 2B)

- First-line Consolidation or Extended Dosing (optional)
- Preferred regimens following chemoimmunotherapy
- Rituximab maintenance 375 mg/m<sup>2</sup> one dose every 8–12 weeks for 12 doses for patients initially presenting with high tumor burden (category 1)<sup>h</sup>
- Obinutuzumab maintenance (1000 mg every 8 weeks for 12 doses)
- Other recommended regimens
- If initially treated with single-agent rituximab, consolidation with rituximab 375 mg/m<sup>2</sup> one dose every 8 weeks for 4 doses
- Ibritumomab tiuxetan<sup>g,i</sup> (category 2B)

See Second-line and Subsequent Therapy on FOLL-B 2 of 4


Consider prophylaxis for tumor lysis syndrome (<u>See NHODG-B</u>) See monoclonal antibody and viral reactivation (<u>NHODG-B</u>)

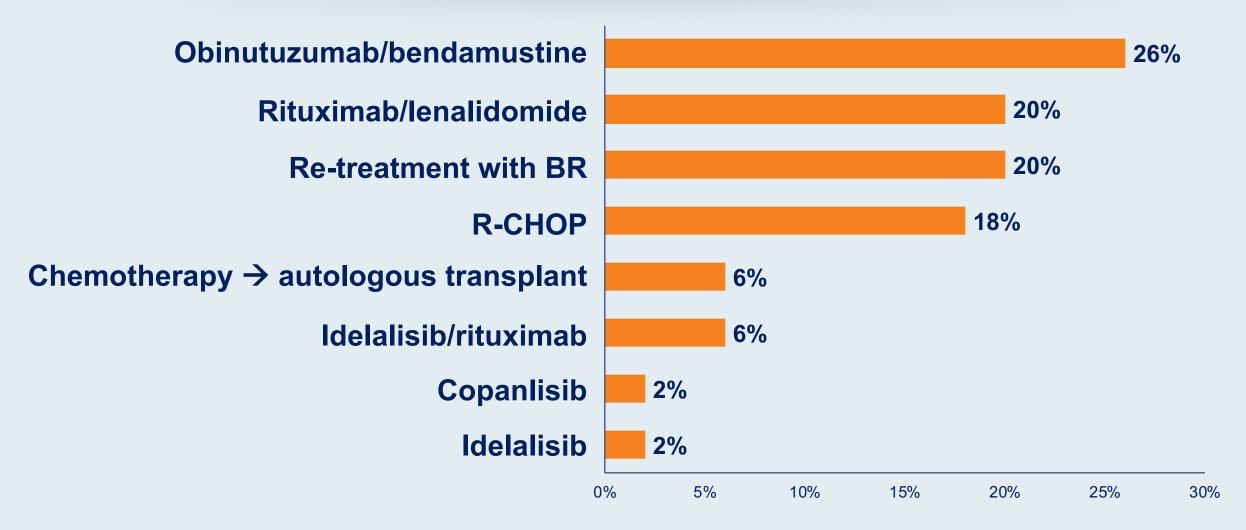
## A 3-Arm Randomized Phase II Study of Bendamustine/Rituximab with Bortezomib Induction or Lenalidomide Continuation in Untreated Follicular Lymphoma: ECOG-ACRIN E2408

Andrew M. Evens<sup>1</sup>, Fangxin Hong<sup>2</sup>, Thomas M. Habermann<sup>3</sup>, Ranjana H. Advani<sup>4</sup>, Randy D. Gascoyne<sup>5</sup>, Thomas E. Witzig<sup>3</sup>, Andrew Quon<sup>6</sup>, Erik Ranheim<sup>7</sup>, Stephen M. Ansell<sup>3</sup>, Puneet Singh Cheema<sup>8</sup>, Philip A. Dy<sup>9</sup>, Timothy E. O'Brien<sup>10</sup>, Jane N. Winter<sup>11</sup>, Terrence P. Cescon<sup>12</sup>, Julie E. Chang<sup>7</sup>, Brad S. Kahl<sup>13</sup>

Clin Cancer Res 2020;[Online ahead of print].

### **ECOG-ACRIN E2408: Phase II Trial Design**



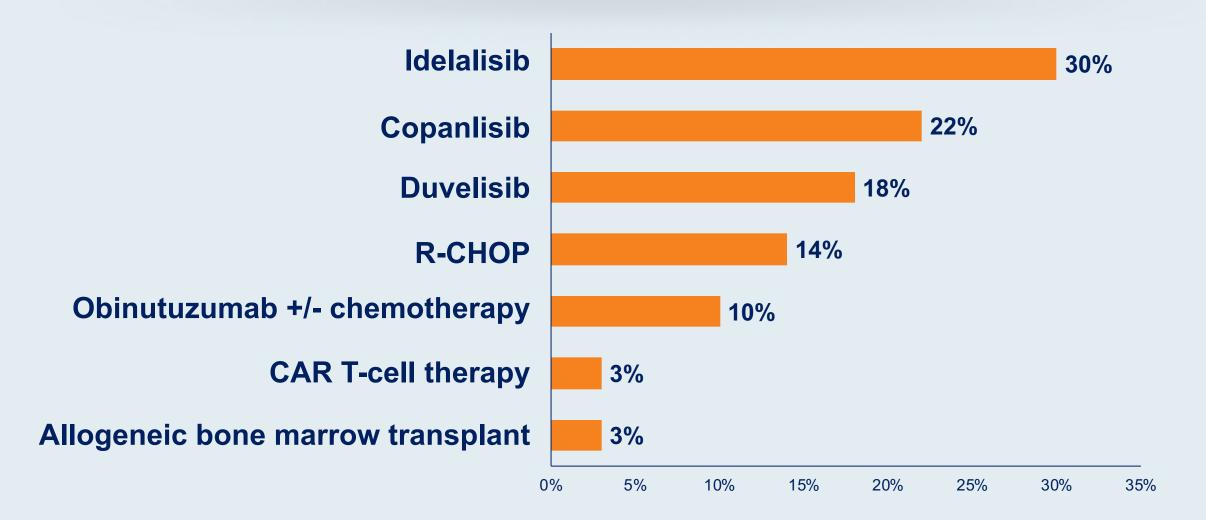

Primary endpoints: Complete remission rate of BR vs BVR induction 1-year DFS with maintenance rituximab vs rituximab and lenalidomide

Sharman J et al. Clin Cancer Res 2020;[Online ahead of print].

Regulatory and reimbursement issues aside, what is your usual second-line therapy for a 65-year-old patient with FL who achieves a complete response to BR followed by 2 years of rituximab maintenance but then experiences disease relapse 4 years later?

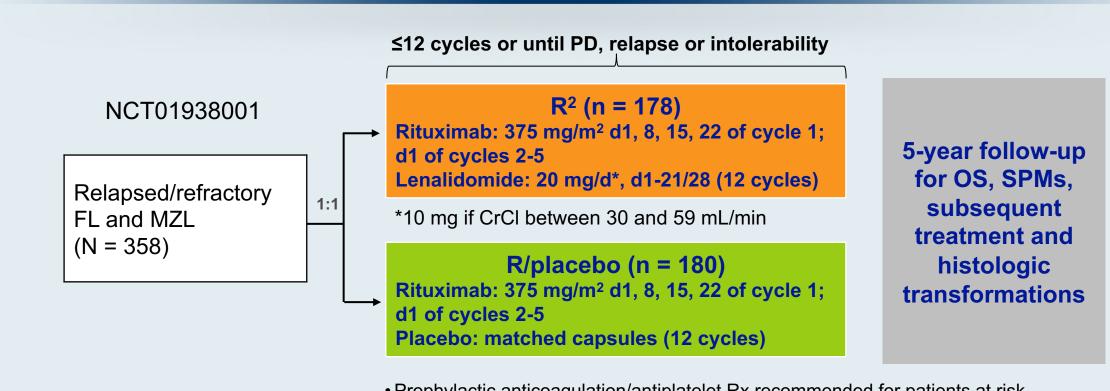
- a. Re-treatment with BR
- b. Obinutuzumab/bendamustine
- c. R-CHOP
- d. Rituximab/lenalidomide
- e. Idelalisib
- f. Idelalisib/rituximab
- g. Copanlisib
- h. Duvelisib
- i. Chemotherapy  $\rightarrow$  autologous transplant
- j. Other

Regulatory and reimbursement issues aside, what is your usual second-line therapy for a 65-year-old patient with FL who achieves a complete response to BR followed by 2 years of rituximab maintenance but then experiences disease relapse 4 years later?




Survey of 50 US-based medical oncologists, June 2020

What is your usual third-line treatment for a patient with FL who received first-line BR, second-line lenalidomide/rituximab and then develops disease progression?


- a. Idelalisib
- b. Copanlisib
- c. Duvelisib
- d. R-CHOP
- e. Radioimmunotherapy
- f. Obinutuzumab +/- chemotherapy
- g. Other

What is your usual third-line treatment for a patient with FL who receives first-line BR, second-line lenalidomide/rituximab and then develops disease progression?

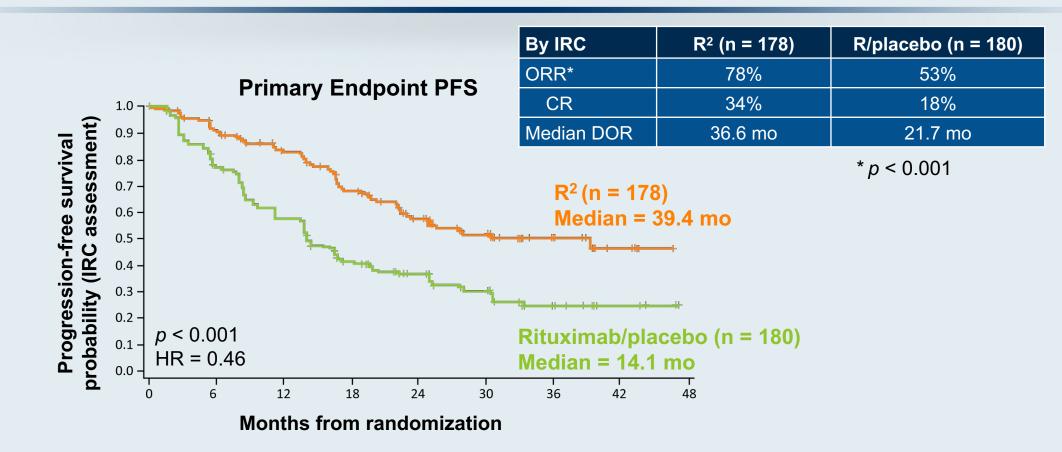


Survey of 50 US-based medical oncologists, June 2020

## **AUGMENT: A Randomized, Double-Blind Phase III Trial**



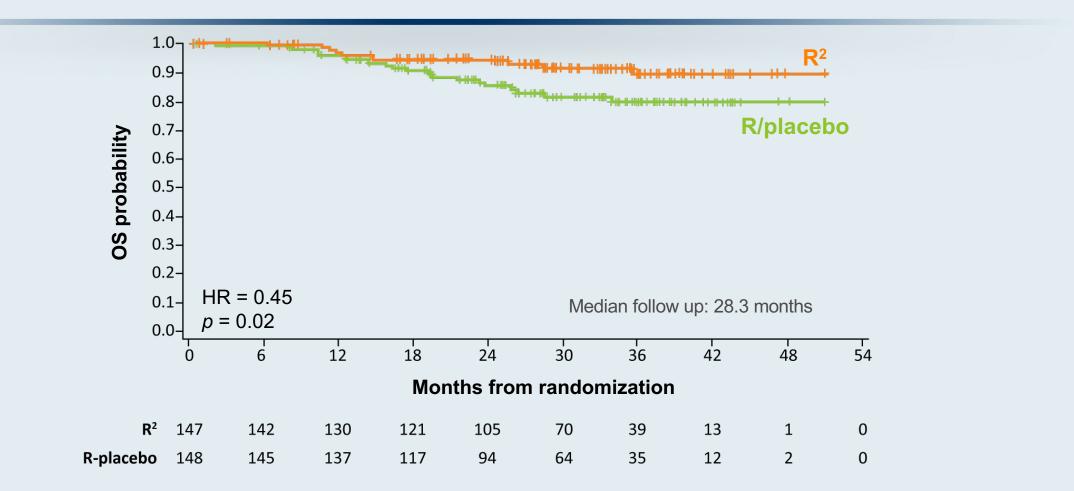
Prophylactic anticoagulation/antiplatelet Rx recommended for patients at risk


Growth factor use was allowed per ASCO/ESMO guidelines<sup>1,2</sup>

#### Primary endpoint: PFS by IRC (2007 IWG criteria w/o PET)

<sup>1</sup> Crawford J et al. Ann Oncol 2010;21(Suppl 5):248-51. <sup>2</sup> Smith TJ et al. J Clin Oncol 2015;33:3199-212.

Leonard JP et al. J Clin Oncol 2019; 1188-1199; Proc ASH 2018; Abstract 445.


## AUGMENT: R<sup>2</sup> versus Rituximab/Placebo for R/R FL or Marginal Zone Lymphoma



- Grade 3 or 4 treatment-emergent adverse events: 69% with R<sup>2</sup> versus 32% with R/placebo
  - Neutropenia: 50% with R<sup>2</sup> versus 13% with R/placebo
  - Leukopenia: 7% with R<sup>2</sup> versus 2% with R/placebo

Leonard JP et al. J Clin Oncol 2019; 1188-1199

## AUGMENT: Overall Survival for Patients with FL (Prespecified Subgroup Analysis)



• 35 total deaths (11 R<sup>2</sup>, 24 R/placebo)

2-year OS was 95% for R<sup>2</sup> and 86% for R/placebo

Leonard JP et al. J Clin Oncol 2019; 1188-1199

## **Comparison of FDA-Approved PI3 Kinase Inhibitors**

| Agent       | Idelalisib                                                                                         | Copanlisib                                                                                               | Duvelisib                                                                                     |
|-------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Route       | Oral- BID                                                                                          | IV                                                                                                       | Oral- BID                                                                                     |
| Indication  | Relapsed CLL/SLL, FL                                                                               | Relapsed FL                                                                                              | Relapsed CLL/SLL, FL                                                                          |
| Toxicities  | Diarrhea – 14%<br>Pneumonitis – 4%<br>Cytopenias – 28%<br>Hepatotoxicity – 18%<br>Infections – 21% | Hyperglycemia – 41%<br>Hypertension – 26%<br>Cytopenias – 24%<br>Rash – 3%<br>Diarrhea<br>Hepatotoxicity | Diarrhea – 18%<br>Cytopenias – 24-42%<br>Rash – 5%<br>Pneumonitis – 5%<br>Hepatotoxicity – 5% |
| Efficacy    | FL: ORR – 54%<br>CR – 8%<br>CLL: ORR – 58%                                                         | ORR – 59%<br>CR – 20%                                                                                    | ORR 78% (CLL/SL),<br>42% (FL)                                                                 |
| Prophylaxis | PJP prophylaxis<br>CMV monitoring or<br>prophylaxis                                                | PJP prophylaxis<br>CMV monitoring or<br>prophylaxis                                                      | PJP prophylaxis<br>CMV monitoring or<br>prophylaxis                                           |

Printed by Julie Vose on 6/14/2020 10:17:58 PM. For personal use only. Not approved for distribution. Copyright © 2020 National Comprehensive Cancer Network, Inc., All Rights Reserved.



#### National Comprehensive Cancer Network<sup>®</sup> NCCN Guidelines Version 1.2020 Follicular Lymphoma (grade 1–2)

#### SUGGESTED TREATMENT REGIMENS<sup>a,b,c</sup>

An FDA-approved biosimilar is an appropriate substitute for rituximab.

- Second-line and Subsequent Therapy
- Preferred regimens<sup>j</sup> (alphabetical order)
- Bendamustine<sup>k</sup> + obinutuzumab<sup>l</sup> or rituximab
- ► CHOP + obinutuzumab<sup>I</sup> or rituximab
- ► CVP + obinutuzumab<sup>I</sup> or rituximab
- Lenalidomide + rituximab
- Other recommended regimens (alphabetical order)
- Ibritumomab tiuxetan<sup>g</sup>
- Lenalidomide (if not a candidate for anti-CD20 monoclonal antibody therapy)
- Lenalidomide + obinutuzumab
- Obinutuzumab
- PI3K inhibitors (relapsed/refractory after 2 prior therapies)
- ◊ Copanlisib<sup>m</sup>
- 0 Duvelisib<sup>m</sup>
- ◊ Idelalisib<sup>m</sup>
- Rituximab
- See Second-line Therapy for DLBCL (BCEL-C 2 of 4) without regard to transplantability

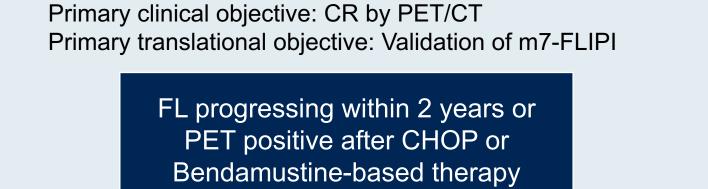
Consider prophylaxis for tumor lysis syndrome (<u>See NHODG-B</u>) See monoclonal antibody and viral reactivation (<u>NHODG-B</u>) Second-line and Subsequent Therapy for Elderly or Infirm

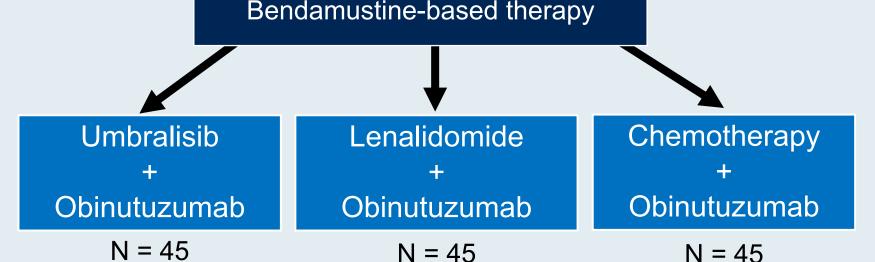
(if none of the therapies are expected to be tolerable in the opinion of treating physician)

- Preferred regimen
- Rituximab (375 mg/m<sup>2</sup> weekly for 4 doses)
- Other recommended regimens
- Chlorambucil ± rituximab
- Cyclophosphamide ± rituximab
- Ibritumomab tiuxetan<sup>g</sup> (category 2B)
- Second-line Consolidation or Extended Dosing (optional)
- Preferred regimen
- Rituximab maintenance 375 mg/m<sup>2</sup> one dose every 12 weeks for 2 years (category 1)
- Obinutuzumab maintenance for rituximab-refractory disease (1 g every 8 weeks for total of 12 doses)
- Other recommended regimens
- High-dose therapy with autologous stem cell rescue
- Allogeneic hematopoietic cell transplant for highly selected patients

#### Histologic Transformation to DLBCL

- Anti-CD19 CAR T-cell therapy (only after ≥2 prior chemoimmunotherapy regimens)<sup>n,o</sup>
- Axicabtagene ciloleucel
- Tisagenlecleucel


## FDA Granted Acclerated Approval to Tazemetostat for R/R FL Press Release – June 18, 2020


"On June 18, 2020, the Food and Drug Administration granted accelerated approval to tazemetostat, an EZH2 inhibitor, for adult patients with relapsed or refractory (R/R) follicular lymphoma (FL) whose tumors are positive for an EZH2 mutation as detected by an FDA-approved test and who have received at least 2 prior systemic therapies, and for adult patients with R/R FL who have no satisfactory alternative treatment options. Today, the FDA also approved the cobas EZH2 Mutation Test (Roche Molecular Systems, Inc.) as a companion diagnostic for tazemetostat.

Approval was based on two open-label, single-arm cohorts (Cohort 4 - EZH2 mutated FL and Cohort 5 - EZH2 wild-type FL) of a multi-center trial (Study E7438-G000-101, NCT01897571) in patients with histologically confirmed FL after at least 2 prior systemic therapies. The prescribing information includes a warning and precaution for secondary malignancies. The recommended tazemetostat dose is 800 mg taken orally twice daily with or without food."

https://www.fda.gov/drugs/fda-granted-accelerated-approval-tazemetostat-follicular-lymphoma

## SWOG-S1608: Randomized trial in early progressing/refractory FL





www.clinicaltrials.gov (Accessed June 2020).

## **Dr Vose Case Presentation: 60-Year-Old Man with FL**

- 60 y/o Male who presented with Stage IVA FL extensive lymphadenopathy and pancytopenia
- Bendamustine/Obinutuzumab X 6 cycles CR
- Followed by Obinutuzumab maintenance 2 years
- Acyclovir and trimethoprim-sulfamethoxazole prophylaxis
- Remains in CR 1 year after stopping Obinutuzumab

## **Dr Vose Case Presentation: 72-Year-Old Woman with FL**

- 72 y/o female patient who had stage IIIA FL diagnosed 7 years ago
- She received Bendamustine/Rituximab X 6 at diagnosis, then Rituximab maintenance X 2 yrs
- She relapsed 5 years after finishing maintenance
- She was started on Rituximab/Lenalidomide (R<sup>2</sup>) in CR at 9 months after starting

## Thank you for joining us!

# CME and MOC credit information will be emailed to each participant within 5 days.