# Year in Review: Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology

**Prostate Cancer** 

Tuesday, December 1, 2020 5:00 PM - 6:00 PM ET

**Faculty** 

**Emmanuel S Antonarakis, MD Andrew J Armstrong, MD, ScM** 

**Moderator Neil Love, MD** 



#### **Commercial Support**

This activity is supported by educational grants from Astellas and Pfizer Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Clovis Oncology, Merck, and Sanofi Genzyme.



#### **Dr Love** — **Disclosures**

**Dr Love** is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following commercial interests: AbbVie Inc, Acerta Pharma — A member of the AstraZeneca Group, Adaptive Biotechnologies Corporation, Agendia Inc, Agios Pharmaceuticals Inc, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Biodesix Inc, bioTheranostics Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Daiichi Sankyo Inc, Dendreon Pharmaceuticals Inc, Eisai Inc, EMD Serono Inc, Epizyme Inc, Exelixis Inc, Foundation Medicine, Genentech, a member of the Roche Group, Genmab, Genomic Health Inc, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Guardant Health, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Infinity Pharmaceuticals Inc, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lexicon Pharmaceuticals Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Merrimack Pharmaceuticals Inc, Myriad Genetic Laboratories Inc, Natera Inc, Novartis, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Prometheus Laboratories Inc, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sandoz Inc, a Novartis Division, Sanofi Genzyme, Seagen Inc, Sirtex Medical Ltd, Spectrum Pharmaceuticals Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Oncology, Tesaro, A GSK Company, Teva Oncology, Tokai Pharmaceuticals Inc and Verastem Inc.



## Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



#### **Dr Antonarakis** — **Disclosures**

| Consulting Agreements                      | Amgen Inc, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Clovis Oncology, Dendreon Pharmaceuticals Inc, ESSA Pharma Inc, GlaxoSmithKline, Janssen Biotech Inc, Lilly, Medivation Inc, a Pfizer Company, Merck, Sanofi Genzyme                                  |  |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Contracted Research                        | AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Dendreon Pharmaceuticals Inc, Genentech, a member of the Roche Group, Janssen Biotech Inc, Johnson & Johnson Pharmaceuticals, Merck, Novartis, Sanofi Genzyme, Tokai Pharmaceuticals Inc |  |  |  |  |
| Ownership Interest<br>(Licenser of Patent) | QIAGEN                                                                                                                                                                                                                                                                                       |  |  |  |  |



#### **Dr Armstrong — Disclosures**

| Advisory Committee    | Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Merck                                                                                                                                                                                                                   |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Consulting Agreements | Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare<br>Pharmaceuticals, Genomic Health Inc, Janssen Biotech Inc, Merck, Pfizer<br>Inc, Sumitomo Dainippon Pharma Oncology Inc                                                                                                                |  |  |  |
| Contracted Research   | Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare<br>Pharmaceuticals, Bristol-Myers Squibb Company, Constellation<br>Pharmaceuticals, Dendreon Pharmaceuticals Inc, Genentech, a member<br>of the Roche Group, Janssen Biotech Inc, Merck, Novartis, Pfizer Inc,<br>Roche Laboratories Inc |  |  |  |
| Speakers Bureau       | Bayer HealthCare Pharmaceuticals, Dendreon Pharmaceuticals Inc                                                                                                                                                                                                                                      |  |  |  |



#### We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.



## Familiarizing Yourself with the Zoom Interface How to answer poll questions

| El Gallery View 2             |                                                                                            |                                | V Participants (10) |                  |              |
|-------------------------------|--------------------------------------------------------------------------------------------|--------------------------------|---------------------|------------------|--------------|
|                               |                                                                                            |                                |                     | Q Search         |              |
|                               |                                                                                            |                                |                     | JS John Smith    | ₽ 🗅          |
| What is your patient with     | r usual treatment recomm                                                                   | mendation for a lowed by ASCT  |                     | Mary Major       | • Q 🗀        |
| and mainten                   |                                                                                            | years who then                 |                     | RM Richard Miles | . □1         |
| experiences                   | an ası Pomalidəmidə +/- dexamethasone                                                      | ical relapse?                  |                     | N John Noakes    | ₽ 🖂          |
| 1. Carfilzon                  | Carfizonib + ponalidonide «/- dexamethasone  Carfizonib + lenalidonide «/- dexamethasone   |                                |                     | AS Alice Suarez  | % 5%         |
| 2. Pomalido                   |                                                                                            |                                |                     | Jane Perez       | <b>¾</b> □1  |
| 3. Carfilzon                  | Darstumumab + lenslidomide +/- devamethasone  Darstumumab + pomalidomide +/- desamethasone | methasone                      |                     | Robert Stiles    | <b>¾</b> □11 |
| 4. Elotuzun                   |                                                                                            | nethasone                      |                     | Juan Fernandez   | <b>¾</b> □1  |
| 5. Elotuzun                   | nab + r C texzonib + Rd                                                                    | ımethasone                     |                     | AK Ashok Kumar   | <b>¾</b> □1  |
| 6. Daratum                    | umab                                                                                       | camethasone                    |                     | JS Jeremy Smith  | <b>¾</b> □1  |
| 7. Daratum                    | 7. Daratumumab + pomalidomide +/- dexamethasone                                            |                                |                     |                  |              |
| 8. Daratum                    | 8. Daratumumab + bortezomib +/- dexamethasone                                              |                                |                     |                  |              |
| 9. Ixazomib                   | + Rd                                                                                       |                                |                     |                  |              |
| 10. Other                     |                                                                                            | Research                       |                     |                  |              |
|                               | Co-prov                                                                                    | ided by USFHealth To Practice® |                     |                  |              |
|                               | 10                                                                                         | <b>••</b>                      | Leave Meeting       |                  |              |
| Join Audio Start Video Invite | Participants Share                                                                         | Chat Record                    | Leave Meeting       | Mute Me          | Raise Hand   |

When a poll question pops up, click your answer choice from the available options.

Results will be shown after everyone has answered.



#### **Upcoming Webinars**

Wednesday, December 2, 2020 12:00 PM – 1:00 PM ET

**Meet The Professor: Management of Lung Cancer** 

#### **Faculty**

Ramaswamy Govindan, MD

**Moderator** 

Neil Love, MD

Friday, December 4, 2020

Consensus or Controversy?
Investigators Discuss Clinical
Practice Patterns and
Available Research Data
Guiding the Management of
Hematologic Cancers

A 4-Part Friday Satellite Symposia Live Webinar Series Preceding the 62<sup>nd</sup> ASH Annual Meeting

**Moderator** 

#### **Upcoming Webinars**

Tuesday, December 8, 2020 5:00 PM - 6:00 PM ET

Year in Review: Clinical Investigators
Provide Perspectives on the Most
Relevant New Publications, Data Sets
and Advances in Oncology
Colorectal and Gastroesophageal
Cancers

#### **Faculty**

Peter C Enzinger, MD Zev Wainberg, MD, MSc

#### **Moderator**

Neil Love, MD

Thursday, December 10, 2020 8:30 PM - 10:00 PM ET

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of HER2-Positive Breast Cancer

#### **Faculty**

Carey K Anders, MD
Erika Hamilton, MD
Sara Hurvitz, MD
Mark D Pegram, MD
Sara M Tolaney, MD, MPH

#### **Moderator**

#### **Upcoming Webinars**

Friday, December 11, 2020 8:30 PM – 10:00 PM ET

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Triple-Negative Breast Cancer

#### **Faculty**

P Kelly Marcom, MD
Joyce O'Shaughnessy, MD
Hope S Rugo, MD
Professor Peter Schmid, MD, PhD

#### **Moderator**

#### Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.



### **ONCOLOGY TODAY**

WITH DR NEIL LOVE

CURRENT AND FUTURE ROLE OF IMMUNE CHECKPOINT INHIBITORS AND OTHER NOVEL THERAPIES IN UROTHELIAL BLADDER CANCER



DR ASHISH KAMAT

UNIVERSITY OF TEXAS

MD ANDERSON CANCER CENTER









# Year in Review: Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology

**Prostate Cancer** 

Tuesday, December 1, 2020 5:00 PM - 6:00 PM ET

**Faculty** 

Emmanuel S Antonarakis, MD Andrew J Armstrong, MD, ScM

Moderator Neil Love, MD



#### **YiR Prostate Cancer Faculty**



Emmanuel S Antonarakis, MD
Professor of Oncology and Urology
Johns Hopkins University
The Sidney Kimmel Comprehensive Cancer Center
Baltimore, Maryland



Andrew J Armstrong, MD, ScM
Professor of Medicine, Surgery, Pharmacology and Cancer Biology
Director of Research
Duke Cancer Institute Center for Prostate and Urologic Cancers
Divisions of Medical Oncology and Urology
Duke University
Durham, North Carolina



#### We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.



## Familiarizing Yourself with the Zoom Interface How to answer poll questions



When a poll question pops up, click your answer choice from the available options. Results will be shown after everyone has answered.



### **ONCOLOGY TODAY**

WITH DR NEIL LOVE

CURRENT AND FUTURE ROLE OF IMMUNE CHECKPOINT INHIBITORS AND OTHER NOVEL THERAPIES IN UROTHELIAL BLADDER CANCER



DR ASHISH KAMAT

UNIVERSITY OF TEXAS

MD ANDERSON CANCER CENTER









## **Meet The Professor**Management of Lung Cancer

Wednesday, December 2, 2020 12:00 PM - 1:00 PM ET

**Faculty** 

Ramaswamy Govindan, MD

**Moderator Neil Love, MD** 



#### Consensus or Controversy? Investigators Discuss Clinical Practice Patterns and Available Research Data Guiding the Management of Hematologic Cancers

A 4-Part Friday Satellite Symposia Live Webinar Series Preceding the 62<sup>nd</sup> ASH Annual Meeting

Friday, December 4, 2020

#### **Multiple Myeloma**

8:30 AM – 10:00 AM Pacific Time

(11:30 AM - 1:00 PM ET)

#### **Chronic Lymphocytic Leukemia**

12:00 PM – 1:30 PM Pacific Time

(3:00 PM - 4:30 PM ET)

#### **Acute Myeloid Leukemia**

3:00 PM – 4:30 PM Pacific Time

(6:00 PM - 7:30 PM ET)

#### **Hodgkin and Non-Hodgkin Lymphoma**

7:00 PM – 8:30 PM Pacific Time

(10:00 PM - 11:30 PM ET)



# Year in Review: Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology Colorectal and Gastroesophageal Cancers

Tuesday, December 8, 2020 5:00 PM - 6:00 PM ET

**Faculty** 

Peter C Enzinger, MD Zev Wainberg, MD, MSc

**Moderator Neil Love, MD** 



# Beyond the Guidelines: Clinical Investigator Perspectives on the Management of HER2-Positive Breast Cancer

Thursday, December 10, 2020 8:30 PM - 10:00 PM ET

#### **Faculty**

Carey K Anders, MD Mark D Pegram, MD Erika Hamilton, MD Sara M Tolaney, MD, MPH

Sara Hurvitz, MD

**Moderator** 



# Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Triple-Negative Breast Cancer

Friday, December 11, 2020 8:30 PM – 10:00 PM ET

**Faculty** 

P Kelly Marcom, MD
Joyce O'Shaughnessy, MD

Hope S Rugo, MD

Professor Peter Schmid, MD, PhD

Moderator



# Year in Review: Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology

**Prostate Cancer** 

Tuesday, December 1, 2020 5:00 PM - 6:00 PM ET

**Faculty** 

**Emmanuel S Antonarakis, MD Andrew J Armstrong, MD, ScM** 

**Moderator Neil Love, MD** 



### **Key Prostate Cancer Clinical Algorithms: What We've Learned This Year – Part 1**

#### In the treatment algorithm, when should the following generally be recommended?

- Post-prostatectomy radiation therapy Dr Armstrong
- Oral GnRH receptor antagonist relugolix Dr Antonarakis
- Androgen deprivation therapy (ADT) for PSA-only relapse after local therapy (M0) Dr Armstrong
- Adding an antiandrogen agent to ADT in castration-resistant M0 disease Drs Antonarakis and Armstrong
- Utilizing prostate-directed local therapy for metastatic hormone-sensitive prostate cancer (mHSPC) – Dr Antonarakis
- Adding an antiandrogen, abiraterone or docetaxel to ADT for mHSPC Drs Armstrong and Antonarakis



## **Key Prostate Cancer Clinical Algorithms: What We've Learned This Year – Part 2**

#### In the treatment algorithm, when should the following generally be recommended?

- Endocrine treatment versus chemotherapy after first-line endocrine therapy for metastatic castration-resistant prostate cancer (mCRPC) – Drs Antonarakis and Armstrong
- Radium-223 in mCRPC Dr Armstrong
- PARP inhibitors in mCRPC; recommended genomic evaluation Drs Antonarakis and Armstrong
- PSMA-targeted treatment and imaging Drs Armstrong and Antonarakis
- TMPRSS2 and COVID-19 Dr Antonarakis



#### Four Key Advances in 2019-20 in Advanced Prostate Cancer

- 1. Improved survival in nmCRPC with new AR therapies
- 2. Improved survival in mHSPC with new AR therapies
- 3. Cabazitaxel solidified as 3<sup>rd</sup> line therapy in mCRPC: the CARD trial
- Precision medicine comes in mCRPC: homologous repair and PARP inhibition





#### **Treatment Evolution in Metastatic Prostate Cancer**



<sup>1.</sup> Tannock IF, et al. N Engl J Med. 2004;351:1502-12. 2. Petrylak D, et al. N Engl J Med. 2004;351:1513-20. 3. de Bono J, et al. Lancet. 2010;376:1147-54. 4. Kantoff PW, et al. N Engl J Med. 2010;363:411-22. 5. de Bono JS, et al. N Engl J Med. 2011;364:1995-2005. 6. Scher HI, et al. N Engl J Med. 2012;367:1187-97. 7. Parker C, et al. N Engl J Med. 2013;369:213-23. 8. Ryan CJ, et al. N Engl J Med. 2013;368:138-48. 9. Beer TM, et al. N Engl J Med. 2014;371:424-33. 10. Sweeney CJ, et al. N Engl J Med. 2015;373:737-46. 11. James ND, et al. Lancet. 2016;387:1163-77. 12. Fizazi K, et al. N Engl J Med. 2017;377:352-60. 13. James ND, et al. N Engl J Med. 2017;377:338-51.



#### **Module 1**

In the treatment algorithm, when should postprostatectomy radiation therapy generally be recommended?

**Discussant: Dr Armstrong** 

#### 3 Trials, Same Result: Evidence-Based Medicine!



TROG 08: Kneebone et al Lancet Oncol 2020

GETUG-AFU 17: Sargos P et al Lancet Oncol 2020

RADICALS: Parker CS et al Lancet Oncol 2020

**Implications for men**: avoidance of the side effects of radiation in many situations without compromising cure, such as erectile dysfunction and bowel/bladder risks



#### **Module 2**

In the treatment algorithm, when should the oral GnRH receptor antagonist relugolix be recommended if it were available?

**Discussant: Dr Antonarakis** 

## HERO Phase III Trial: Results Comparing Relugolix, an Oral GnRH Receptor Antagonist, versus Leuprolide Acetate for Advanced Prostate Cancer<sup>1</sup>

## Oral Relugolix for Androgen-Deprivation Therapy in Advanced Prostate Cancer<sup>2</sup>

<sup>1</sup> Shore N et al. ASCO 2020; Abstract 5602.

<sup>2</sup> Shore ND et al. N Engl J Med 2020;382(23):2187-96.



## HERO: Ongoing Phase III Trial of Relugolix versus Leuprolide Acetate for Advanced HSPC





#### HERO: Primary Endpoint – Sustained Castration Key Secondary Endpoint – Noninferiority to Leuprolide





#### **HERO: Mean Testosterone Level among All Patients**





## **HERO: Mean Testosterone Level in Subgroup Followed for Testosterone Recovery**





### **HERO: Cardiovascular Adverse Events**

|                                               | Relugolix<br>(N = 622) | Leuprolide<br>(N = 308) |
|-----------------------------------------------|------------------------|-------------------------|
| <b>Adverse Cardiovascular Events</b>          | 3.9%                   | 7.1%                    |
| Major Adverse Cardiovascular<br>Events (MACE) | 2.9%                   | 6.2%                    |
| Ischemic Heart Disease                        | 2.4%                   | 1.6%                    |

| History of MACE                                                    | Yes                            |                          | No                              |                                  |
|--------------------------------------------------------------------|--------------------------------|--------------------------|---------------------------------|----------------------------------|
| N (%)                                                              | <b>Relugolix</b><br>84 (13.5%) | Leuprolide<br>45 (14.6%) | <b>Relugolix</b><br>538 (86.5%) | <b>Leuprolide</b><br>263 (85.4%) |
| MACE                                                               | 3.6%                           | 17.8%                    | 2.8%                            | 4.2%                             |
| Odds Ratio<br>Leuprolide vs Relugolix<br>(95% confidence interval) | 5.8 (1.5, 23.3)                |                          | 1.5 (0.                         | 7, 3.4)                          |

MACE = non-fatal myocardial infarction + non-fatal stroke + all-cause mortality



## HERO: Cumulative Incidence of Major Adverse Cardiovascular Events (MACE)





## **Module 3**

In the treatment algorithm, when should ADT for PSA-only relapse (M0) after local therapy be recommended?

**Discussant: Dr Armstrong** 

## What PSA doubling time will generally lead you to initiate ADT for hormone-naïve M0 prostate cancer?

- a. Less than 4 months
- b. Less than 6 months
- c. Less than 10 months
- d. Less than 12 months
- e. Less than 18 months
- f. Less than 24 months
- g. I don't generally use PSA doubling time as the critical decision factor



## **Module 4**

In the treatment algorithm, when should an antiandrogen agent be added to ADT for castration-resistant M0 prostate cancer? (Selection of agent)

**Discussants: Drs Antonarakis and Armstrong** 

# In general, which is your preferred antiandrogen agent to add to ADT for patients with castration-resistant M0 prostate cancer?

- a. I don't have a preferred antiandrogen agent in this setting
- b. Enzalutamide
- c. Darolutamide
- d. Apalutamide



## Recent FDA Approvals of Next-Generation Antiandrogens in Nonmetastatic Castration-Resistant Prostate Cancer

| Agent        | Approval date     | Pivotal study |
|--------------|-------------------|---------------|
| Darolutamide | July 30, 2020     | ARAMIS        |
| Enzalutamide | July 12, 2018     | PROSPER       |
| Apalutamide  | February 14, 2018 | SPARTAN       |



The NEW ENGLAND JOURNAL of MEDICINE

N Engl J Med 2020;383:1040-9.

#### ORIGINAL ARTICLE

### Nonmetastatic, Castration-Resistant Prostate Cancer and Survival with Darolutamide

K. Fizazi, N. Shore, T.L. Tammela, A. Ulys, E. Vjaters, S. Polyakov, M. Jievaltas,M. Luz, B. Alekseev, I. Kuss, M.-A. Le Berre, O. Petrenciuc, A. Snapir,T. Sarapohja, and M.R. Smith, for the ARAMIS Investigators\*

The NEW ENGLAND JOURNAL of MEDICINE

N Engl J Med 2020;382(23):2197-206.

#### ORIGINAL ARTICLE

### Enzalutamide and Survival in Nonmetastatic, Castration-Resistant Prostate Cancer

Cora N. Sternberg, M.D., Karim Fizazi, M.D., Ph.D., Fred Saad, M.D., Neal D. Shore, M.D., Ugo De Giorgi, M.D., Ph.D., David F. Penson, M.D., M.P.H., Ubirajara Ferreira, M.D., Ph.D., Eleni Efstathiou, M.D., Ph.D., Katarzyna Madziarska, M.D., Ph.D., Michael P. Kolinsky, M.D., Daniel I. G. Cubero, M.D., Ph.D., Bettina Noerby, M.D., Fabian Zohren, M.D., Ph.D., Xun Lin, Ph.D., Katharina Modelska, M.D., Ph.D., Jennifer Sugg, M.S., Joyce Steinberg, M.D., and Maha Hussain, M.D., for the PROSPER Investigators\*



Eur J Cancer 2020; [Online ahead of print].

#### **Prostate Cancer**

#### Apalutamide and Overall Survival in Prostate Cancer

Matthew R. Smith <sup>a,\*</sup>, Fred Saad <sup>b</sup>, Simon Chowdhury <sup>c</sup>, Stéphane Oudard <sup>d</sup>, Boris A. Hadaschik <sup>e</sup>, Julie N. Graff <sup>f</sup>, David Olmos <sup>g</sup>, Paul N. Mainwaring <sup>h</sup>, Ji Youl Lee <sup>i</sup>, Hiroji Uemura <sup>j</sup>, Peter De Porre <sup>k</sup>, Andressa A. Smith <sup>l</sup>, Sabine D. Brookman-May <sup>m,n</sup>, Susan Li <sup>l</sup>, Ke Zhang <sup>o</sup>, Brendan Rooney <sup>p</sup>, Angela Lopez-Gitlitz <sup>m</sup>, Eric J. Small <sup>q</sup>



### Overall Survival: Darolutamide, Enzalutamide, Apalutamide

|                  | ARAMIS <sup>1</sup> | PROSPER <sup>2</sup> | SPARTAN <sup>3</sup> |
|------------------|---------------------|----------------------|----------------------|
| Antiandrogen     | Darolutamide        | Enzalutamide         | Apalutamide          |
| Median follow-up | 49 mo               | 47 mo                | 52 mo                |
| Median OS        | Not estimated       | 57 vs 56 mo          | 74 vs 60 mo          |
| OS hazard ratio  | 0.69 (p = 0.003)    | 0.73 (p = 0.001)     | 0.78 (p = 0.0161)    |



<sup>&</sup>lt;sup>1</sup> Fizazi K et al; ARAMIS Investigators. *N Engl J Med* 2020;383:1040-9.

<sup>&</sup>lt;sup>2</sup> Sternberg CN et al; PROSPER Investigators. *N Engl J Med* 2020;382(23):2197-206.

<sup>&</sup>lt;sup>3</sup> Smith MR et al; SPARTAN Investigators. *Eur Urol* 2020;[Online ahead of print].

### Comparison of Toxicities: Darolutamide, Enzalutamide, Apalutamide

|                   | ARAMIS       |         | PROSPER      |         | SPARTAN     |         |
|-------------------|--------------|---------|--------------|---------|-------------|---------|
| Toxicity          | Darolutamide | Placebo | Enzalutamide | Placebo | Apalutamide | Placebo |
| Fatigue/asthenia  | 16%          | 11%     | 33%          | 14%     | 30%         | 21%     |
| Falling           | 4%           | 5%      | 11%          | 4%      | 16%         | 9%      |
| Dizziness         | 5%           | 4%      | 10%          | 4%      | 9%          | 6%      |
| Mental impairment | 1%           | 2%      | 5%           | 2%      | 5%          | 3%      |





## **Module 5**

In the treatment algorithm, when do you use prostate-directed local therapy for mHSPC?

**Discussant: Dr Antonarakis** 

## **Module 6**

In the treatment algorithm, when do you add an antiandrogen agent, abiraterone or docetaxel to ADT for mHSPC? (Selection of agent)

**Discussants: Drs Antonarakis and Armstrong** 

# What is your most likely treatment approach for a 75-year-old man presenting de novo with prostate cancer with multiple symptomatic bone metastases and 2 lung metastases?

- a. ADT alone
- b. ADT and enzalutamide
- c. ADT and apalutamide
- d. ADT and abiraterone
- e. ADT and docetaxel
- f. ADT with docetaxel and endocrine treatment



## Recent FDA Approvals of Next-Generation Antiandrogens in Metastatic Hormone-Sensitive Prostate Cancer

| Agent        | Approval date      | Pivotal study |  |
|--------------|--------------------|---------------|--|
| Enzalutamide | December 16, 2019  | ARCHES        |  |
| Apalutamide  | September 17, 2019 | TITAN         |  |



# ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy With Enzalutamide or Placebo in Men With Metastatic Hormone-Sensitive Prostate Cancer

Andrew J. Armstrong, MD, ScM<sup>1</sup>; Russell Z. Szmulewitz, MD<sup>2</sup>; Daniel P. Petrylak, MD<sup>3</sup>; Jeffrey Holzbeierlein, MD<sup>4</sup>; Arnauld Villers, MD<sup>5</sup>; Arun Azad, MBBS, PhD<sup>6</sup>; Antonio Alcaraz, MD, PhD<sup>7</sup>; Boris Alekseev, MD<sup>8</sup>; Taro Iguchi, MD, PhD<sup>9</sup>; Neal D. Shore, MD<sup>10</sup>; Brad Rosbrook, MS<sup>11</sup>; Jennifer Sugg, MS<sup>12</sup>; Benoit Baron, MS<sup>13</sup>; Lucy Chen, MD<sup>12</sup>; and Arnulf Stenzl, MD<sup>14</sup>

J Clin Oncol 2019;37(32):2974-86.

# The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 4, 2019

VOL. 381 NO. 1

### Apalutamide for Metastatic, Castration-Sensitive Prostate Cancer

Kim N. Chi, M.D., Neeraj Agarwal, M.D., Anders Bjartell, M.D., Byung Ha Chung, M.D., Andrea J. Pereira de Santana Gomes, M.D., Robert Given, M.D., Álvaro Juárez Soto, M.D., Axel S. Merseburger, M.D., Mustafa Özgüroğlu, M.D., Hirotsugu Uemura, M.D., Dingwei Ye, M.D., Kris Deprince, M.D., Vahid Naini, Pharm.D., Jinhui Li, Ph.D., Shinta Cheng, M.D., Margaret K. Yu, M.D., Ke Zhang, Ph.D., Julie S. Larsen, Pharm.D., Sharon McCarthy, B.Pharm., and Simon Chowdhury, M.D., for the TITAN Investigators\*

N Engl J Med 2019;381(1):13-24.



## Survival Analyses for ARCHES and TITAN: ADT + Enzalutamide or Apalutamide in Metastatic HSPC

|                                                                                                                 | ARCHES (N = 1,150)                                                                                      |                                                                                                                                           | TITAN (N = 1,052)                                                                                                                   |                  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Characteristics                                                                                                 | <ul> <li>2/3<sup>rd</sup> high volume</li> <li>17% prior docetaxel</li> <li>25% prior RP/XRT</li> </ul> |                                                                                                                                           | <ul> <li>2/3<sup>rd</sup> high volume</li> <li>10% prior docetaxel</li> <li>17% prior RP/XRT</li> </ul>                             |                  |
|                                                                                                                 | ADT + enzalutamide ADT (n = 574) (n = 576)                                                              |                                                                                                                                           | ADT + apalutamide<br>(n = 955)                                                                                                      | ADT<br>(n = 554) |
|                                                                                                                 | NR                                                                                                      | 19.0 mo                                                                                                                                   | NR                                                                                                                                  | 22.1 mo          |
| Radiographic PFS  HR (overall): 0.39  HR (prior docetaxel): 0.52  HR (high volume): 0.43  HR (low volume): 0.25 |                                                                                                         | <ul> <li>HR (overall): 0.48</li> <li>HR (prior docetaxel): 0.47</li> <li>HR (high volume): 0.53</li> <li>HR (low volume): 0.36</li> </ul> |                                                                                                                                     |                  |
|                                                                                                                 | NR                                                                                                      | NR                                                                                                                                        | NR                                                                                                                                  | NR               |
| Overall survival  HR: 0.81 (immature)                                                                           |                                                                                                         | ature)                                                                                                                                    | <ul> <li>HR (overall):</li> <li>HR (prior docetaxel): 1.2</li> <li>HR (high volume): 0.68</li> <li>HR (low volume): 0.67</li> </ul> |                  |

NR = not reached



## Abiraterone Acetate plus Prednisolone for Hormone-Naïve Prostate Cancer (PCa): Long-Term Results from Metastatic (M1) Patients in the STAMPEDE Randomised Trial (NCT00268476)

James N et al.

ESMO 2020; Abstract 6110.



### STAMPEDE — SOC + AAP vs SOC: Overall Survival

HR 0.60

95%CI 0.50 to 0.71

P-value 0.000000003

Median survival (years)

SOC=3.8 SOC+AAP=6.6

Events

SOC=329 SOC+AAP=244

2017 (M1 only)

HR 0.61

95%CI 0.49 to 0.75





### **STAMPEDE: Overall Survival by Risk Group (LATITUDE)**





## **Module 7**

In the treatment algorithm, how do you generally approach the selection of endocrine treatment versus chemotherapy after first-line endocrine therapy for mCRPC?

**Discussants: Drs Antonarakis and Armstrong** 

A 75-year-old man presents with prostate cancer (BRCA wild type) metastatic to the bone and receives ADT + docetaxel with disease progression 1 year later. He responds to enzalutamide for 9 months, then has symptomatic progression in the bone along with new lung lesions. What is your most likely treatment?

- a. Abiraterone
- b. Apalutamide
- c. Docetaxel
- d. Cabazitaxel
- e. Other



# CARD: Overall Survival Analysis of Patients with Metastatic Castration-Resistant Prostate Cancer Receiving Cabazitaxel vs Abiraterone or Enzalutamide

Tombal B et al.

ASCO 2020; Abstract 5569.



### **CARD Study of Cabazitaxel: Survival Analyses**

### rPFS (primary endpoint)



### OS (key secondary endpoint)





## **Module 8**

In the treatment algorithm, how do you generally approach the use of radium-223 for mCRPC?

**Discussant: Dr Armstrong** 

# Safety and Overall Survival in Patients with mCRPC Treated with Radium-223 plus Subsequent Taxane Therapy: Second Interim Analysis of REASSURE

Higano CS et al.

ASCO 2020; Abstract 5542.



### **REASSURE: Overall Survival**





## REASSURE: Incidence of Treatment-Emergent Adverse Events with Radium-223 and Grade 3/4 Hematologic AEs During Subsequent Chemotherapy





### **Conclusions: REASSURE**

- Clinical Implications:
  - ☐ Radium-223 can be administered safely either before or after docetaxel
  - ☐ If docetaxel is given *after* radium-223, myelosuppression remains minimal
  - ☐ Remember to co-administer with denosumab (fragility fracture risk)
- Future Directions:
  - ☐ What combinations will be synergistic (and safe) with radium-223?
    - radium-223 + enzalutamide (PEACE III)
    - o radium-223 + sipuleucel-T
    - radium-223 + PARP/ATR inhibitors
  - ☐ We still need biomarkers (clinical, genomic) of radium-223 sensitivity



## **Module 9**

In the treatment algorithm, how do you generally approach the use of PARP inhibitors for mCRPC?

**Discussants: Drs Antonarakis and Armstrong** 

# At what point, if any, do you generally recommend a PARP inhibitor to a patient with metastatic prostate cancer and a germline BRCA mutation?

- a. As part of first-line treatment, alone or as maintenance therapy
- b. After 1 line of hormonal therapy
- c. After 1 line of chemotherapy
- d. After at least 1 line of both hormonal therapy and chemotherapy
- e. Other
- f. I generally would not administer a PARP inhibitor



## **Recent FDA Approvals of PARP Inhibitors for mCRPC**

| PARP inhibitor | Approval date | Pivotal study |
|----------------|---------------|---------------|
| Olaparib       | May 19, 2020  | PROfound      |
| Rucaparib      | May 15, 2020  | TRITON2       |



### The NEW ENGLAND JOURNAL of MEDICINE

#### ORIGINAL ARTICLE

## Olaparib for Metastatic Castration-Resistant Prostate Cancer

J. de Bono, J. Mateo, K. Fizazi, F. Saad, N. Shore, S. Sandhu, K.N. Chi, O. Sartor, N. Agarwal, D. Olmos, A. Thiery-Vuillemin, P. Twardowski, N. Mehra, C. Goessl, J. Kang, J. Burgents, W. Wu, A. Kohlmann, C.A. Adelman, and M. Hussain

N Engl J Med 2020;382:2091-102.



# PROfound Primary Endpoint: Imaging-Based PFS with Olaparib for Patients with mCRPC Who Had at Least 1 Alteration in BRCA1, BRCA2 or ATM (Cohort A)





#### The NEW ENGLAND JOURNAL of MEDICINE

#### ORIGINAL ARTICLE

## Survival with Olaparib in Metastatic Castration-Resistant Prostate Cancer

M. Hussain, J. Mateo, K. Fizazi, F. Saad, N. Shore, S. Sandhu, K.N. Chi, O. Sartor, N. Agarwal, D. Olmos, A. Thiery-Vuillemin, P. Twardowski, G. Roubaud, M. Özgüroğlu, J. Kang, J. Burgents, C. Gresty, C. Corcoran, C.A. Adelman, and J. de Bono, for the PROfound Trial Investigators\*

N Engl J Med 2020; [Online ahead of print].



## PROfound: Overall Survival with Olaparib for Patients with mCRPC Who Had at Least 1 Alteration in BRCA1, BRCA2 or ATM (Cohort A)

### **Overall survival**



### **Cross-over adjusted overall survival**





### Lancet Oncol 2020;21:162-74.



# Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial



Joaquin Mateo\*, Nuria Porta\*, Diletta Bianchini, Ursula McGovern, Tony Elliott, Robert Jones, Isabel Syndikus, Christy Ralph, Suneil Jain, Mohini Varughese, Omi Parikh, Simon Crabb, Angus Robinson, Duncan McLaren, Alison Birtle, Jacob Tanguay, Susana Miranda, Ines Figueiredo, George Seed, Claudia Bertan, Penny Flohr, Berni Ebbs, Pasquale Rescigno, Gemma Fowler, Ana Ferreira, Ruth Riisnaes, Rita Pereira, Andra Curcean, Robert Chandler, Matthew Clarke, Bora Gurel, Mateus Crespo, Daniel Nava Rodrigues, Shahneen Sandhu, Aude Espinasse, Peter Chatfield, Nina Tunariu, Wei Yuan, Emma Hall†, Suzanne Carreira†, Johann S de Bono†



# TOPARP-B: Antitumour Activity by Gene Aberration Subgroup (ITT Population, Pooled 300 mg and 400 mg Cohorts)





# TOPARP-B: Duration of Response by Gene Aberration Subgroup (ITT Population, Pooled 300 mg and 400 mg Cohorts)





# Rucaparib in Men With Metastatic Check for **Castration-Resistant Prostate Cancer Harboring** a BRCA1 or BRCA2 Gene Alteration

Wassim Abida, MD, PhD1; Akash Patnaik, MD, PhD, MMSc2; David Campbell, MBBS3; Jeremy Shapiro, MBBS4; Alan H. Bryce, MD5; Ray McDermott, MD, PhD, MBA<sup>6</sup>; Brieuc Sautois, MD, PhD<sup>7</sup>; Nicholas J. Vogelzang, MD<sup>8</sup>; Richard M. Bambury, MD<sup>9</sup>; Eric Voog, MD<sup>10</sup>; Jingsong Zhang, MD, PhD<sup>11</sup>; Josep M. Piulats, MD<sup>12</sup>; Charles J. Ryan, MD<sup>13</sup>; Axel S. Merseburger, PhD<sup>14</sup>; Gedske Daugaard, DMSc<sup>15</sup>; Axel Heidenreich, MD<sup>16</sup>; Karim Fizazi, MD, PhD<sup>17</sup>; Celestia S. Higano, MD<sup>18</sup>; Laurence E. Krieger, MBChB<sup>19</sup>; Cora N. Sternberg, MD<sup>20</sup>; Simon P. Watkins, PhD<sup>21</sup>; Darrin Despain, MStat<sup>22</sup>; Andrew D. Simmons, PhD<sup>23</sup>; Andrea Loehr, PhD<sup>23</sup>; Melanie Dowson, BA<sup>24</sup>; Tony Golsorkhi, MD<sup>25</sup>; and Simon Chowdhury, MD, PhD<sup>26,27</sup>; on behalf of the TRITON2 investigators

J Clin Oncol 2020; [Online ahead of print].



updates

# TRITON2: Response to Rucaparib in Patients with mCRPC Harboring a BRCA1 or BRCA2 Gene Alteration

#### **ORR per independent radiology review: 43.5%**



#### **Confirmed PSA response rate: 54.8%**





## **Conclusions: TRITON2**

### Clinical Implications:

- ☐ Rucaparib has robust activity in mCRPC pts with *BRCA1/2* mutations
- ☐ TRITON2 led to accelerated FDA approval of rucaparib in prostate cancer
- ☐ Side effects: myelosuppression, fatigue, anorexia, rash, teratogenic

#### Future Directions:

- ☐ Initial FDA approval is contingent upon positive Phase III TRITON3 trial
- ☐ Unlikely to get approved for non-BRCA and non-ATM mutations
- ☐ CASPAR trial: rucaparib + enzalutamide for first-line mCRPC
- ☐ CheckMate 9KD: rucaparib + nivolumab in second-line mCRPC



# **Module 10**

What is known about PSMA-targeted treatment and imaging in prostate cancer?

**Discussants: Drs Armstrong and Antonarakis** 

# FDA Approves First PSMA-Targeted PET Imaging Drug for Men with Prostate Cancer

Press Release: December 1, 2020

"The U.S. Food and Drug Administration approved Gallium 68 PSMA-11 (Ga 68 PSMA-11) – the first drug for positron emission tomography (PET) imaging of prostate-specific membrane antigen (PSMA) positive lesions in men with prostate cancer.

Ga 68 PSMA-11 is indicated for patients with suspected prostate cancer metastasis (when cancer cells spread from the place where they first formed to another part of the body) who are potentially curable by surgery or radiation therapy. Ga 68 PSMA-11 is also indicated for patients with suspected prostate cancer recurrence based on elevated serum prostate-specific antigen (PSA) levels. Ga 68 PSMA-11 is a radioactive diagnostic agent that is administered in the form of an intravenous injection.

Once administered via injection, Ga 68 PSMA-11 binds to PSMA, which is an important pharmacologic target for prostate cancer imaging because prostate cancer cells usually contain elevated levels of the antigen. As a radioactive drug that emits positrons, Ga 68 PSMA-11 can be imaged by PET to indicate the presence of PSMA-positive prostate cancer lesions in the tissues of the body."



TheraP: A Randomised Phase II Trial of <sup>177</sup>Lu-PSMA-617 (LuPSMA) Theranostic versus Cabazitaxel in Metastatic Castration Resistant Prostate Cancer (mCRPC) Progressing After Docetaxel: Initial Results (ANZUP Protocol 1603)

Hoffman S et al.

ASCO 2020; Abstract 5500.



# <sup>177</sup>Lu-PSMA-617 is a small molecule RLT targeting PSMA





### TheraP: 177Lu-PSMA-617 Theranostic versus Cabazitaxel

R

#### **KEY ELIGIBILITY**

- mCRPC post docetaxel suitable for cabazitaxel
- Progressive disease with rising PSA and PSA ≥ 20 ng/mL
- Adequate renal, haematologic and liver function
- ECOG performance status 0-2

#### <sup>68</sup>Ga-PSMA + <sup>18</sup>F-FDG PET/CT

- PSMA SUVmax > 20 at any site
- Measurable sites SUVmax > 10
- No FDG positive/PSMA negative sites of disease
- Centrally reviewed

### <sup>177</sup>Lu-PSMA-617</sup>

#### SPECT/CT @ 24 hours

suspend Rx if exceptional response; recommence upon progression

#### 200 men 1:1 randomisation 11 sites in Australia

Stratified by:

- Disease burden (>20 sites vs ≤ 20 sites)
- Prior enzalutamide or abiraterone
- Study site

#### **CABAZITAXEL**

20mg/m<sup>2</sup> IV q3 weekly, Up to 10 cycles

80% power to detect a true absolute difference of 20% in the PSA response rate (from 40% to 60%), with a 2-sided type 1 error of 5% and allowance of 3% for missing data.



# **TheraP: Primary Endpoint** — PSA Response ≥50% (PSA50-RR)

#### **Primary endpoint: PSA ≥50% response (PSA50-RR)**



Lu-PSMA: 29% absolute (95% CI 16%-42%, p<0.0001) greater **PSA50-RR** compared to cabazitaxel For sensitivity analysis per-protocol, the difference was 23% (95% Cl 9%-37%; p=0.0016)



# **Module 11**

# What is known about TMPRSS2 and COVID-19?

**Discussant: Dr Antonarakis** 

## Compared to women, men...

- a. Are more likely to contract COVID-19
- b. Are more likely to contract COVID-19 and develop complications
- c. Are not more likely to contract COVID-19 but are more likely to develop complications if they do contract COVID-19
- d. There are currently not enough data
- e. I don't know



**VIEWS** 

## IN FOCUS

# TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention?

Konrad H. Stopsack<sup>1</sup>, Lorelei A. Mucci<sup>2</sup>, Emmanuel S. Antonarakis<sup>3</sup>, Peter S. Nelson<sup>4</sup>, and Philip W. Kantoff<sup>1</sup>

**Summary:** *TMPRSS2* is both the most frequently altered gene in primary prostate cancer and a critical factor enabling cellular infection by coronaviruses, including SARS-CoV-2. The modulation of its expression by sex steroids could contribute to the male predominance of severe infections, and given that *TMPRSS2* has no known indispensable functions, and inhibitors are available, it is an appealing target for prevention or treatment of respiratory viral infections.

Cancer Discov 2020;10(6):779-82.



# **Meet The Professor**Management of Lung Cancer

Wednesday, December 2, 2020 12:00 PM - 1:00 PM ET

**Faculty** 

Ramaswamy Govindan, MD

**Moderator Neil Love, MD** 



# Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

