Updates on Treating

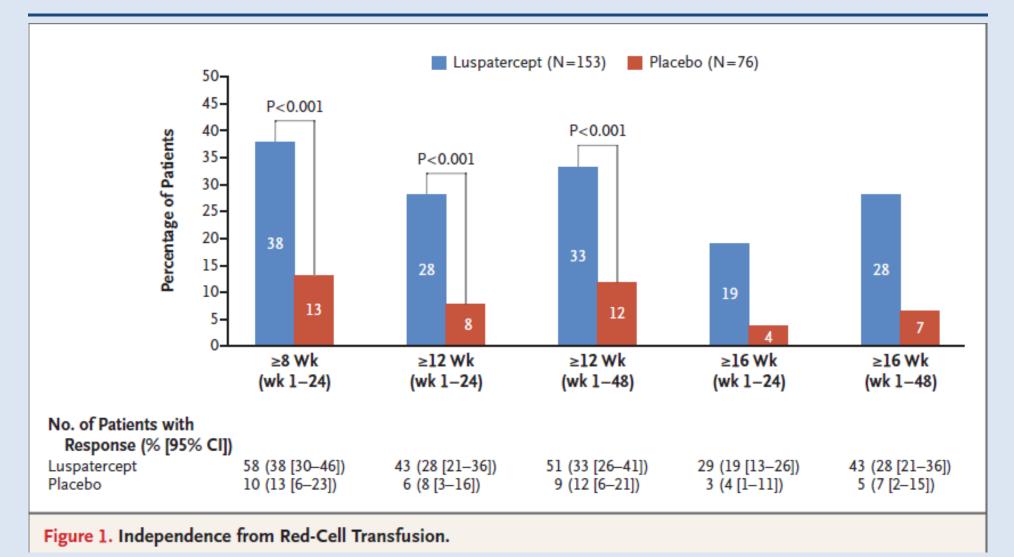
MDS and Secondary AML

Mikkael A. Sekeres, MD, MS

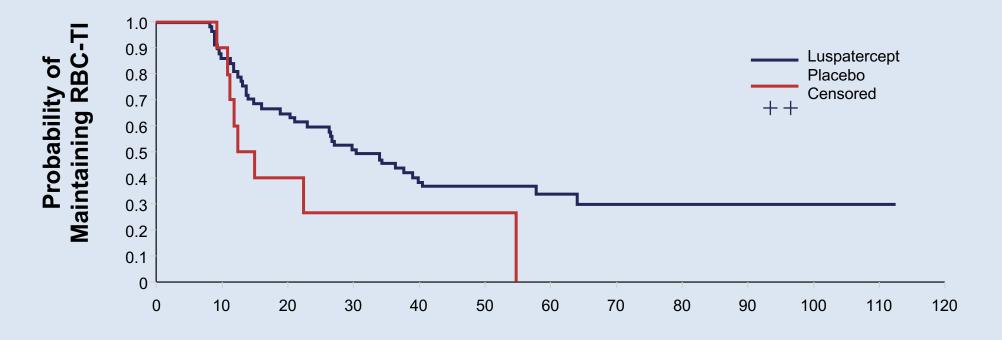
Chief, Division of Hematology Sylvester Comprehensive Cancer Center

Treating MDS | Agenda

- Treating Lower-risk MDS
- Treating Higher-risk MDS
- Treating sAML


Treating MDS | Agenda

- Treating Lower-risk MDS
- Treating Higher-risk MDS
- Treating sAML


MDS | Ameliorating Anemia: LUSPAT

Fenaux et al. NEJM 2020;382:140-151.

MDS | Ameliorating Anemia: LUSPAT

Median duration (weeks) (95% CI): 30.6 (20.6–40.6) vs 13.6 (9.1–54.9)

Duration of RBC-TI^a (week)

MDS | Ameliorating Anemia: LUSPAT

Impact on Patient Care and Treatment Algorithm:

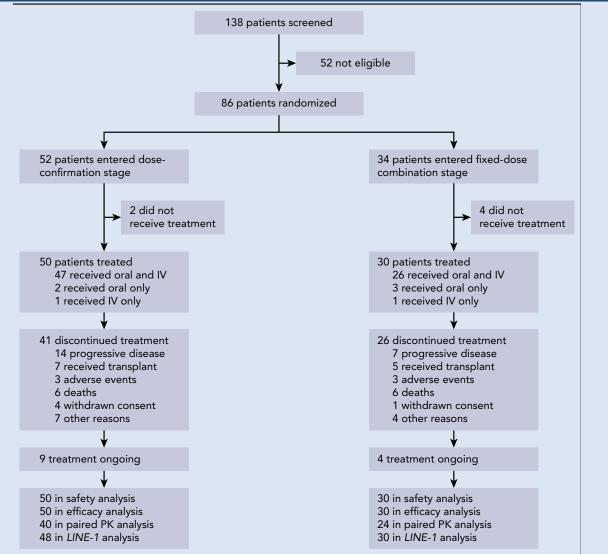
- Option post-ESA
- ORR/duration similar to ESA
- Few side effects
- *** But Does TI duration/definition offset time investment for shots? Is it worth the \$\$? ***

Implications for Future Research:

- Compare up-front to ESA
- Is having RS such a big deal?
- Combine with ESA, LEN, HMA...

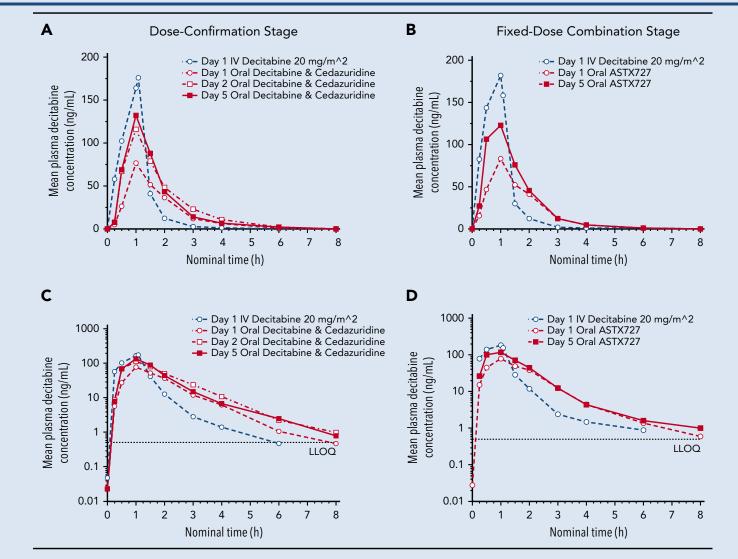
MDS | Ameliorating Anemia: Imetel

Imetelstat in HTB Lower-risk MDS


Parameter	Overall Population $(n = 57)$			Change in V Muta	
8-week TI ^a , No. (%)	21 (37)		60 -		
Median time to onset, weeks (range)	8.3 (0.1-100.6)		50 -		
Median duration of TI ^b , weeks (range)	65 (17.0-140.9)	_	40 -		
24-week TI ^a , No. (%)	13 (23)	VAF (%)	30 -		
HI-E per IWG 2006, No. (%)	37 (65)	/AF			
\geq 1.5 g/dL increase in Hgb lasting \geq 8 weeks	15 (26)	-	20 -		
Transfusion reduction by \geq 4 units/8 weeks	37 (65)		10 -		
Response per IWG 2018, No. (%)			0 ⊥	Baseline	Post-imetelstat
Major response: 16-week TI	16 (28)		_	K700E* — H662C	
Major response: 8-week TI	21 (37)		-	- R625C R625L	
Minor response ^c	28 (49)		_	 K700E K700E* K700E* K700E 	

Treating MDS | Agenda

- Treating Lower-risk MDS
- Treating Higher-risk MDS
- Treating sAML



Higher-risk MDS | HMAs: DAC/CED

Garcia-Manero et al. Blood 2020.

Higher-risk MDS | HMAs: DAC/CED

Garcia-Manero et al. Blood 2020.

Higher-risk MDS | HMAs: DAC/CED

Oral Cedazuridine/Decitabine Phase 2 In Int-1, Int-2, High, CMML

	Phase 2 overall (N=80)		
Type of response	n (%)	95% CI	
CR	17 (21)	13, 32	
PR	0		
mCR	18 (22)	14, 33	
With HI	6(7)	3, 16	
HI	13 (16)	9, 26	
HI-E	8 (10)	4, 19	
HI-N	2 (2)	0, 9	
HI-P	11 (14)	7, 23	
Overall response (CR + PR + mCR + HI)	48 (60)	48, 71	
No response	32 (40)	29, 52	

Garcia-Manero et al. Blood 2020.

Higher-risk MDS | HMAs

Impact on Patient Care and Treatment Algorithm:

- DAC/CED has similar ORR to AZA or DAC
- Lower-risk MDS patients included in studies
- Crossover to IV occurred
- *** But Long-term follow-up pending. Impact on OS? Is it worth the \$\$? ***

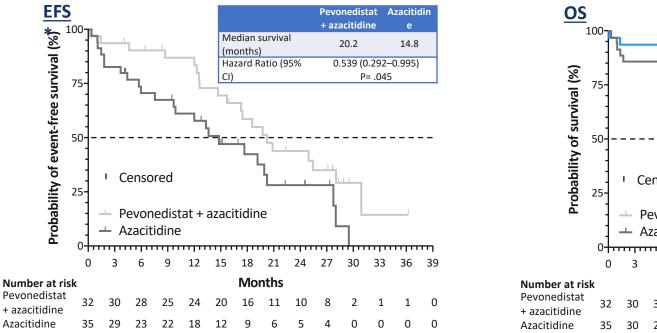
Implications for Future Research:

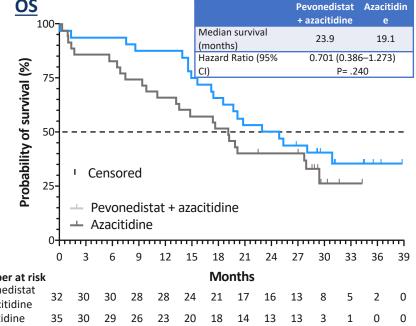
- Identifying molecular subtypes who did particularly well
- Combine with molecularly targeted drugs
- Give as easy maintenance post-HCT, post-IC

Garcia-Manero et al. Blood 2020; Fenaux P, et al. Lancet Oncology 2009;10:223-232; Lubbert et al. JCO 2011;29:1987.

Study design: AZA +/- Pevonedistat

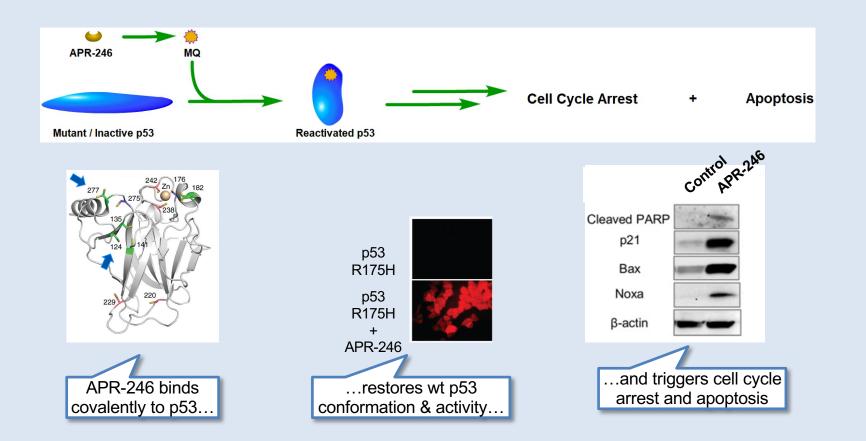
NCT02610777: Phase 2, randomized, open-label, global, multicenter study [proof of concept]



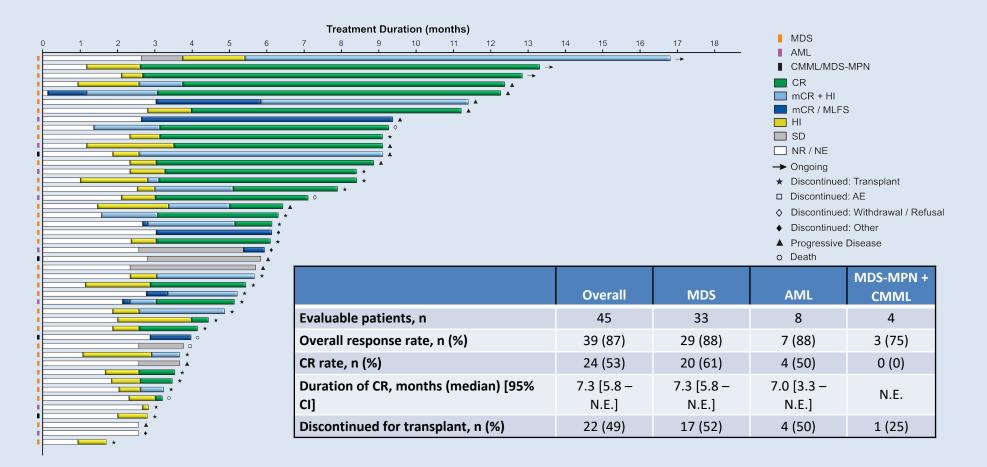

Study endpoints

- EFS (defined as time to death or transformation to AML in higher-risk MDS/CMML or death in low-blast AML): Trial was powered on EFS as the original primary endpoint
- **OS**: Original secondary endpoint, changed to primary endpoint based on regulatory feedback after enrollment
- **ORR**: Secondary endpoint

EFS, event-free survival; HMAs, hypomethylating agents; IPSS-R, Revised International Prognostic Scoring System; IV, intravenous; ORR, objective response rate; SC, subcutaneous; SCT, stem cell transplant

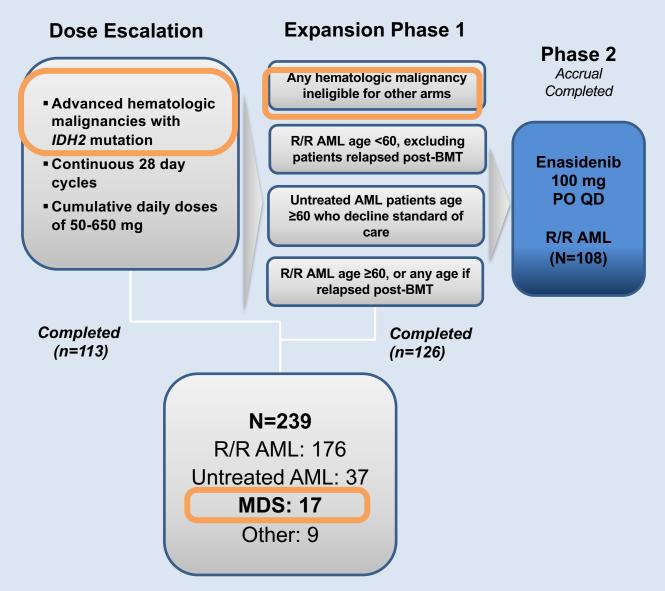

EFS and OS: Higher-risk MDS

*EFS defined as time to death or transformation to AML in higher-risk MDS/CMML or death in low-blast AML.


Higher-risk MDS | Targeting TP53

A. Fersht et al. (2010) Prot. Sci; Q. Zhang et al, (2018) Cell Death Disease; H. Furukawa et al, (2018) Cancer Sci.

Sallman et al, Cluzeau et al. ASH 2019, Abstract 676-7.


Higher-risk MDS | Targeting TP53

Median duration of follow-up = 10.8 months

Sallman et al, Cluzeau et al. ASH 2019, Abstract 676-7.

Higher-risk MDS | Targeting IDH2

Stein et al. Lancet Haematology 2020.

Higher-risk MDS | Targeting IDH2

Overall response rate (CR + PR + mCR + HI)	MDS Patients (N=17) n (%)
Best Response	10/17 (59)
Complete remission	1/11 (9)
Partial remission	1/11 (9)
Marrow CR	3/11 (27)
Any hematologic improvement (HI) [†]	5/17 (29)
HI-E	3/15 (20)
HI-P	4/12 (33)
HI-N	4/10 (40)

Phase Ib of AZA + VEN in <u>R/R</u>higher-risk MDS Patients:

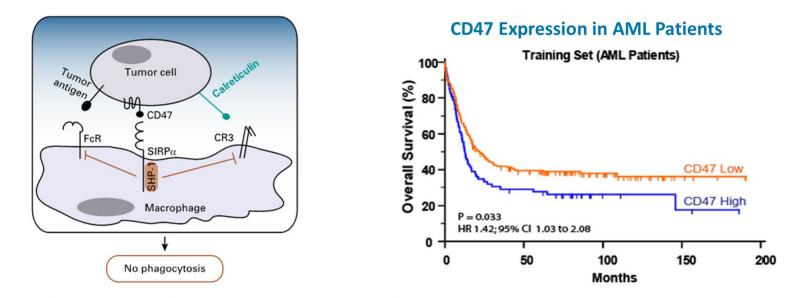
N=38 Median age = 74 years Median 8 cycles prior HMA Median follow-up = 6.8 months

Responses:

CR N=3 HI N=9 TI N=13 for median of 4.1 months Median PFS = 9.1 months

Phase Ib of AZA + VEN in treatment-naïve higher-risk MDS

Ven given in escalating dose (100, 200, and 400 mg) for 14 days of a 28-day cycle


Patients:

N=57 Median age = 71 years Median follow-up = 13 months

Responses:

CR 42% Marrow CR with HI 14% Median response duration 14.8 months TI N=13 for median of 4.1 months Median PFS = 17.5 months EORTC QLQ C30 improvement in fatigue and dyspnea

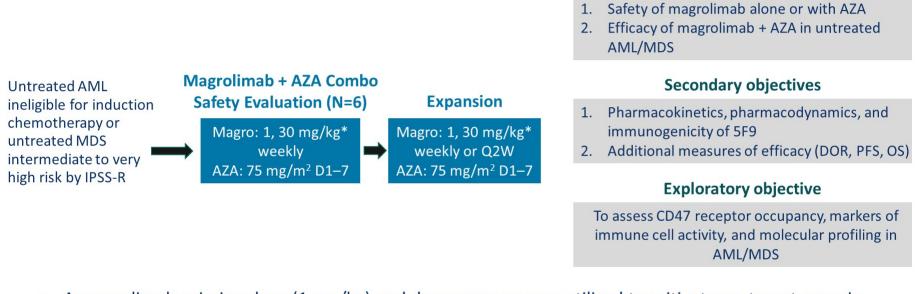
CD47 Is a Major Macrophage Immune Checkpoint and 'Do Not Eat Me' Signal in Myeloid Malignancies Including MDS and AML

- CD47 is a "do not eat me" signal on cancers that enables macrophage immune evasion
- Increased CD47 expression predicts worse prognosis in AML patients

Figure at left adapted from Veillette A, Tang Z. J Clin Onc. 2019;37(12)1012-1014, and Chao MP, et al. Current Opin Immunol. 2012; 24(2):225-232. Figure at right adapted from Majeti R, et al. Cell. 2009;138(2):286-299.

#ASCO20

lides are the property of the author


PRESENTED BY: DAVID A. SALLMAN, MD

Sallman et al. ASCO 2020;7507a.

PRESENTED AT:

2020ASCC

5F9005 Study Design: Magrolimab in Combination With AZA in MDS and AML

- A magrolimab priming dose (1 mg/kg) and dose ramp-up was utilized to mitigate on-target anemia
- Data from the expansion cohort is presented

2020ASCO

*Dose ramp-up from 1 mg/kg to 30 mg/kg by week 2, then 30 mg/kg maintenance dosing or 30 mg/kg Q2W starting Cycle 3+. IPSS-R: Revised International Prognostic Scoring System.

lides are the property of the author

#ASCO20

PRESENTED BY: DAVID A. SALLMAN, MD

5

PRESENTED AT

Patient Characteristics (N=68): Magrolimab + AZA in Untreated (1L) MDS and AML

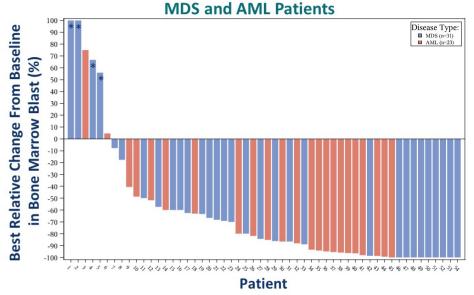
Characteristic	1L MDS 5F9+AZA (N=39)	1L AML 5F9+AZA (N=29)
Median age (range)	70 (47–80)	74 (60–89)
ECOG Performance Status: 0	11 (28%)	7 (24%)
1	26 (67%)	20 (69%)
2	2 (5%)	2 (7%)
Cytogenetic Risk: Favorable	0	0
Intermediate	11 (28%)	2 (7%)
Poor	25 (64%)	21 (72%)
Unknown/missing	3 (8%)	6 (21%)
WHO AML classification: MRC		19 (66%)
Recurrent genetic abnormalities	NA	2 (7%)
Therapy related	NA	3 (10%)
Not otherwise specified		5 (17%)
WHO MDS classification:		
RS and single/multilineage dysplasia	1 (3%)	
Multilineage dysplasia	7 (18%)	NA
RS with multilineage dysplasia	3 (8%)	NA
Excess blasts	22 (56%)	
Unclassifiable/unknown/missing	6 (15%)	
IPSS-R (MDS): Intermediate	13 (33%)	
High	19 (49%)	NA
Very High	6 (15%)	NA
Unknown/missing	1 (3%)	
Therapy related MDS	12 (31%)	
Unknown/missing	1 (3%)	
Harboring a TP53 mutation	5 (13%)	13 (45%)

- 64%–72% of MDS and AML patients were poor cytogenetic risk
- 66% of AML patients had underlying myelodysplasia (MRC)
- 31% of MDS patients were therapy related
- 45% of AML patients were *TP53* mutant

MRC, myelodysplasia-related changes; NA, not applicable; all patients enrolled on study are shown; WHO, World Health Organization.

2020 ASCO #ASCOO ANNUAL MEETING Slides are the prop

PRESENTED BY: DAVID A. SALLMAN, MD


Sallman et al. ASCO 2020;7507a.

PRESENTED AT:

Magrolimab + AZA Induces High Response Rates in MDS and AML

Best Overall Response	1L MDS N=33	1L AML N=25
ORR	30 (91%)	16 (64%)
CR	14 (42%)	10 (40%)
CRi	NA	4 (16%)
PR	1 (3%)	1 (4%)
MLFS/marrow CR	8 (24%) 4 with marrow CR + HI	1 (4%)
Hematologic improvement (HI)	7 (21%)	NA
SD	3 (9%)	8 (32%)
PD	0	1 (4%)

Response assessments per 2006 IWG MDS criteria and 2017 AML ELN criteria. Patients with at least 1 posttreatment response assessment are shown; all other patients are on therapy and are too early for first response assessment, except for 2 MDS patients not evaluable (withdrawal of consent) and 3 AML patients (1 AE, 2 early withdrawal)

Four patients not shown due to missing values; <5% blasts imputed as 2.5%. *Baseline bone marrow blasts ≤5%.

- Magrolimab + AZA induces a 91% ORR (42% CR) in MDS and 64% ORR (56% CR/CRi) in AML
- Responses deepened over time with a 56% 6-month CR rate in MDS patients (assessed in all patients 6 months after initial treatment)
- Median time to response is 1.9 months, more rapid than AZA alone

#ASCO20

Slides are the property of the author

Magrolimab + AZA efficacy compares favorably to AZA monotherapy (CR rate $6-17\%^{1,2}$)

1. Azacitidine USPI. 2. Fenaux P, et al. Lancet Oncol. 2009 ;10(3):223-232. 2020ASCC

PRESENTED BY: DAVID A. SALLMAN, MD

Sallman et al. ASCO 2020;7507a.

PRESENTED AT:

Treating MDS | Combinations

Impact on Patient Care and Treatment Algorithm:

- Modest ORR for AZA + Ven in previously treated
- Good ORR for AZA + Ven in untreated higher-risk MDS
- Good ORR for AZA + Mag in untreated Intermediate/Higher-risk MDS
- *** But Is ORR really better than AZA monotherapy in selected patients? Is durability of response any better? Is it worth the \$\$? ***

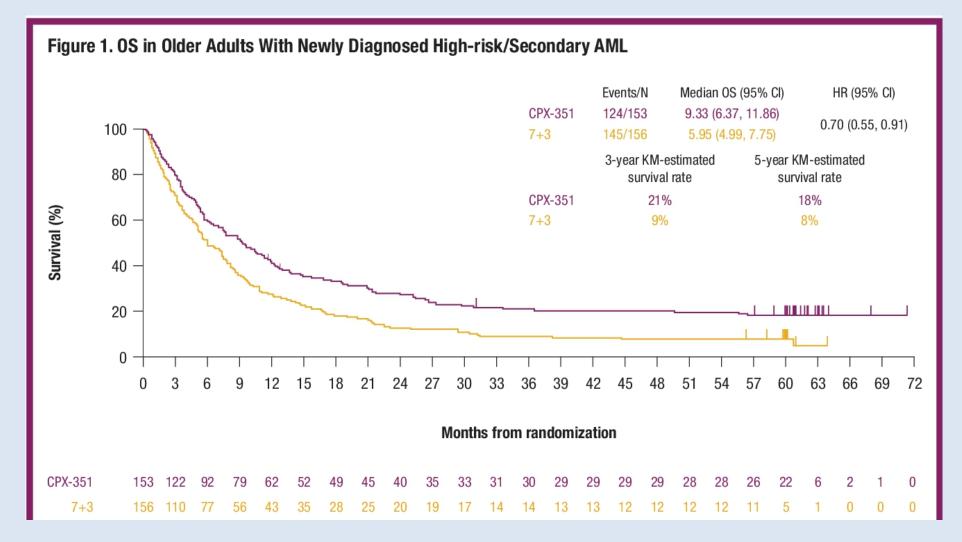
Implications for Future Research:

- Identifying molecular subtypes who did particularly well
- Optimizing Ven dose and schedule
- Combine with molecularly targeted drugs (Triplet therapy)

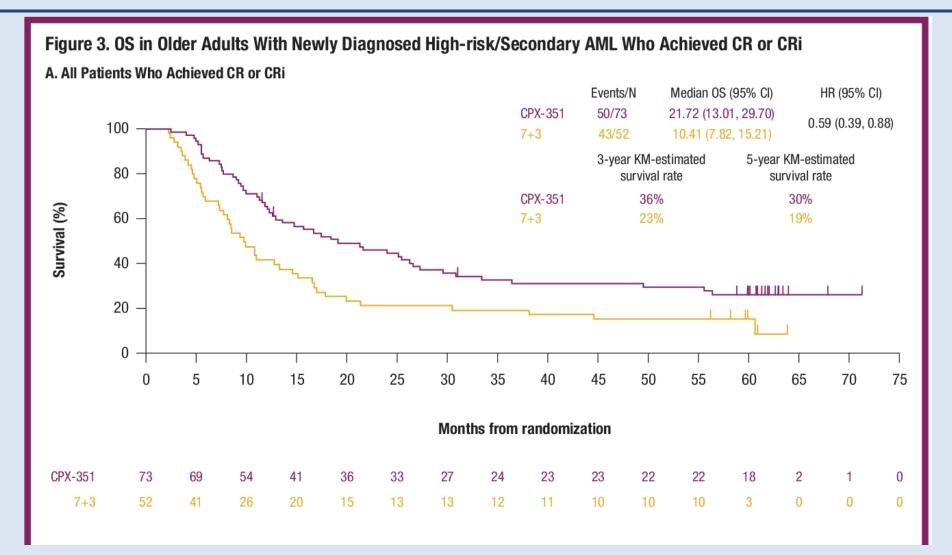
Zeiden et al. EHA 2020;S118. Garcia et al. ASH 2020;656a. Sallman et al. ASCO 2020;7507a.

Treating MDS | Agenda

- Treating Lower-risk MDS
- Treating Higher-risk MDS
- Treating sAML


Lancet et al. ASCO 2020;

7510a; ASH 2020; 635a


• In total, 309 patients were randomized to receive CPX-351 ($n = 153$) or 7 intent-to-treat population for efficacy analyses; the safety population inc	· ,	
Table 1. Baseline Characteristics in Older Adults With Newly Di	agnosed High-risk/Se	condary AML ⁶
Characteristic, n (%)	CPX-351 (n = 153)	7+3 (n = 156)
Demographic characteristics		
Age Mean (SD), years 60 to 69 years, n (%) 70 to 75 years, n (%)	67.8 (4.2) 96 (63) 57 (37)	67.7 (4.1) 102 (65) 54 (35)
Male, n (%)	94 (61)	96 (62)
ECOG performance status, n (%) 0 1 2	37 (24) 101 (66) 15 (10)	45 (29) 89 (57) 22 (14)
Clinical characteristics		
AML subtype, n (%) t-AML AML with antecedent MDS	30 (20)	33 (21)
With prior HMAs Without prior HMAs AML with antecedent CMML <i>de novo</i> AML with MDS karyotype	50 (33) 21 (14) 11 (7) 41 (27)	55 (35) 19 (12) 12 (8) 37 (24)
Prior HMA therapy, n (%) ^a	62 (41)	71 (46)
Cytogenetic risk by NCCN, n (%) Favorable Intermediate Unfavorable	62 (41) 143 7 (5) 64 (45) 72 (50)	71 (46) 146 5 (3) 58 (40) 83 (57)
Median bone marrow blasts (range), %	35 (5, 93)	35 (3, 97)
WBC count <20,000/µL, n (%)	131/153 (86)	131/155 (85)

AML, acute myeloid leukemia; SD, standard deviation; ECOG, Eastern Cooperative Oncology Group; t-AML, therapy-related AML; MDS, myelodysplastic syndrome; HMA, hypomethylating agent; CMML, chronic myelomonocytic leukemia; NCCN, National Comprehensive Cancer Network; WBC, white blood cell.

"Includes patients in the prespecified randomization strata of antecedent MDS with prior HMA exposure as well as patients in other strata (eg, t-AML, antecedent CMML) who had previously received HMAs.

Lancet et al. ASCO 2020; 7510a; ASH 2020; 635a

Lancet et al. ASCO 2020; 7510a; ASH 2020; 635a

	N = 52
Best response	
CR	
n (%)	15 (29)
95% CI	17.1–43.1
CRi	
n (%)	8 (15)
95% CI	6.9–28.1
CR + CRi	
n (%)	23 (44)
95% CI	30.5–58.7
Time to CR or CRi	
n	23
Median (range), d	37.0 (15–72)
Mean (SD), d	41.5 (15.24)

Roboz et al. Leuk Lymph 2020;61:1188-94.

Impact on Patient Care and Treatment Algorithm:

- Continued improved OS among patients with sAML
- Particularly improved OS for those achieving CR/CRi and in those undergoing HCT.
- Suggests deeper responses.

*** But – did comparison arm perform as well as historically? Was drug intensity similar? Is it worth the \$\$? ***

Implications for Future Research:

- Identifying molecular subtypes who did particularly well
- Outpatient therapies
- Combine with molecularly targeted drugs

Lancet et al. ASCO 2020; 7510a; ASH 2020; 635a Roboz et al. Leuk Lymph 2020;61:1188-94.

Treating sAML | Magrolimab

Phase Ib of AZA + Mag in <u>treatment-naïve AML</u> Patients:

N=52 Median age = 73 years TP53 + in 65% Median follow-up = ??? 34 evaluable for response

Responses:

CR 44%, 48% among TP53+ CRi 12%, 19% among TP53+ Median response duration 9.9 months Median OS for TP53+ = 12.9 months, for non-TP53 18.9 months

Treating sAML | Magrolimab

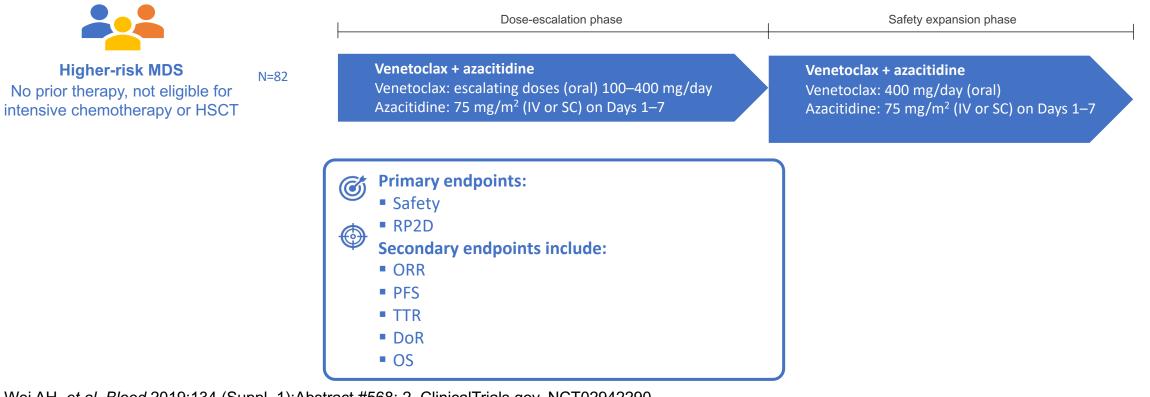

Impact on Patient Care and Treatment Algorithm:

- Good ORR for AZA + Mag in AML
- Good responses in TP53+
- Response duration good, c/w other single arm combo studies
- *** But Is ORR really better than AZA monotherapy in selected patients? Is durability of response any better? Is it worth the \$\$? ***

Implications for Future Research:

- Identifying molecular subtypes who did particularly well
- Combine with molecularly targeted drugs (Triplet therapy)
- Is it better than AZA + Ven???

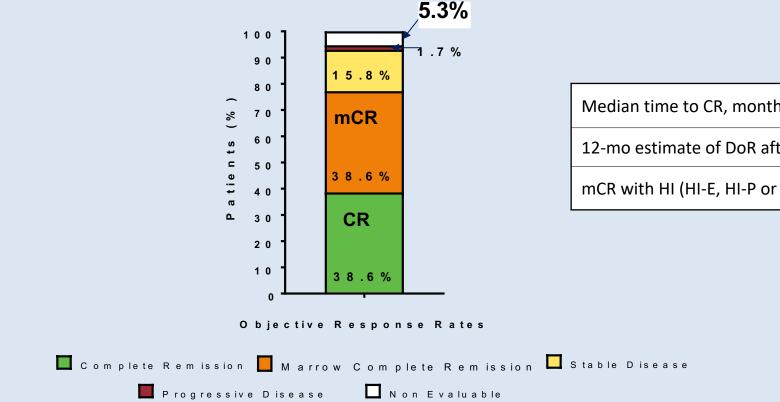
Thanks!!!



 Additional Recent Data Set Provided by Dr Sekeres

Venetoclax/azacitidine has been evaluated in a Phase I study

Ongoing Phase 1b, open-label, dose-escalation,* multicenter study^{1,2}



1. Wei AH, et al. Blood 2019;134 (Suppl. 1):Abstract #568; 2. ClinicalTrials.gov, NCT02942290

*Originally a 3-arm, randomized study; amended to dose-escalation safety study after two deaths

TTR, time to response

Wei et al, Abstract 568 – AZA plus Venetoclax for HR-MDS: Response Rates

Median time to CR, months (range)	2.2 (1.2-11.1)
12-mo estimate of DoR after CR, % (95% CI)	83.3 (2.3, 97.5)
mCR with HI (HI-E, HI-P or HI-N), n/N (%)	10/22 (45.5)

Excludes patients of arm C (Aza only); Objective response rate (ORR) includes [complete remission (CR) + marrow complete remission (mCR) + partial remission (PR)]; # of patients with PR=0; per IWG (Cheson et al., *Blood* 2006;108:419-425) DoR: Duration of response; HI: hematological improvement; HI-E: hematologic improvement in erythroids; HI-N: hematologic improvement in neutrophils; HI-P: hematologic improvement in platelet count; n: patients with favorable outcomes; N: patients eligible for evaluating outcomes

Wei et al. ASH 2019 Abstract #568.

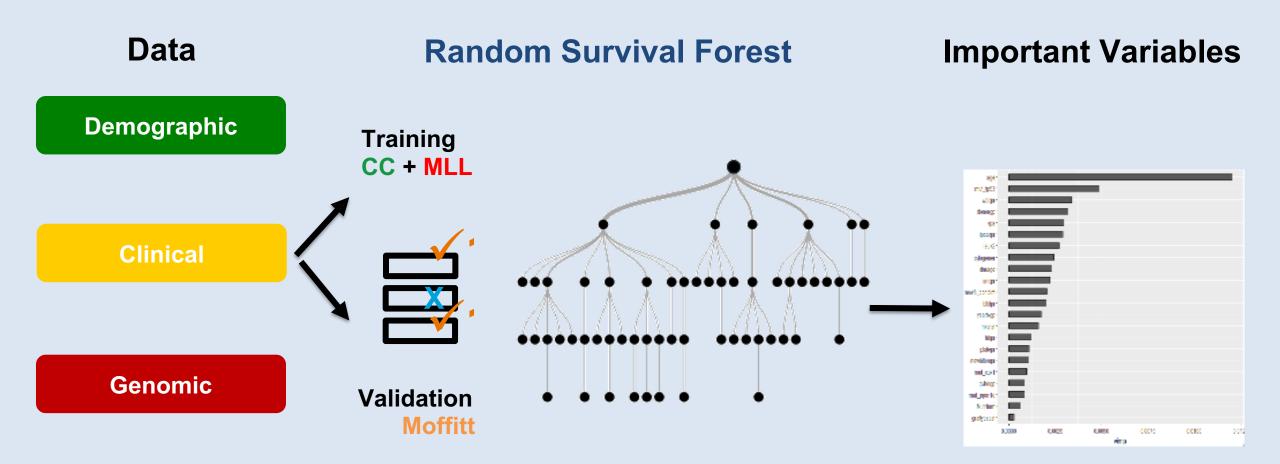
- AML Overview slides
- Prognostic/Predictive Tools slides
- Additional Historic Data Sets Provided

Treating MDS | Agenda

- Prognostic/Predictive tools
- Treating Lower-risk MDS
- Treating Higher-risk MDS
- Treating sAML

Predictive Tools | Mutation Risk

Driver genes can be classified into molecular subtypes differentially associated with disease severity

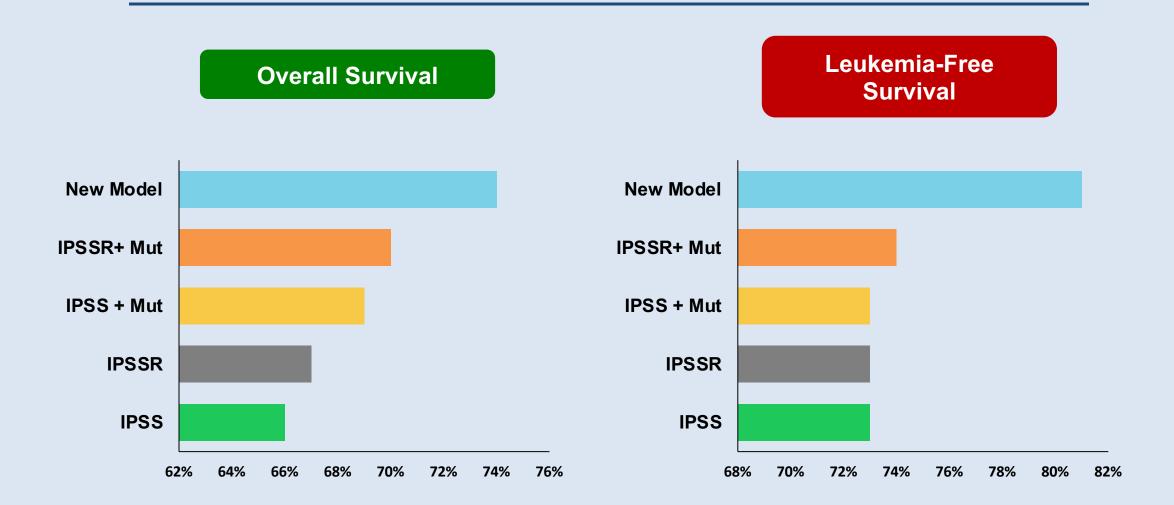

High-risk Low-risk q value 7 (0.6) 51 (7.5) NRAS < 0.001 KRAS 7 (0.6) 24 (3.5) < 0.001 CEBPA 3 (0.2) 11 (1.6) 0.003 47 (3.9) RUNX1 118 (17.3) < 0.001 GATA2 5 (0.4) 14 (2) 0.002 19 (1.6) 46 (6.7) IDH2 < 0.001 STAG2 41 (3.4) 92 (13.5) < 0.001 ASXL1 145 (12) 190 (27.8) < 0.001 110 (9.1) 150 (22) SRSF2 < 0.001 57 (4.7) TP53 77 (11.3) < 0.001 BCOR нен 37 (3.1) 45 (6.6) 0.001 10 (0.8) 12 (1.8) PTPN11 0.11 FLT3 11 (0.9) 13 (1.9) 0.11 74 (6.1) 71 (10.4) U2AF1 0.002 48 (4) 46 (6.7) EZH2 --0.017 ZRSR2 59 (4.9) 56 (8.2) 0.008 23 (1.9) 22 (3.2) PHF6 0 11 NPM1 17 (1.4) 15 (2.2) 0.29WT1 7 (0.6) 6 (0.9) 0.59 CBL 38 (3.1) 32 (4.7) 0.12 287 (23.8) 210 (30.7) TET2 0.002 IDH1 24 (2) 19 (2.8) 0.29 13 (1.1) 9 (1.3) 0.66 KIT 156 (12.9) 66 (9.7) DNMT3A 0.055 433 (35.9) 71 (10.4) SF3B1 < 0.001 0.01 0.1 100 1000 Odds ratio (95%CI)

Low-risk MDS vs. High-risk MDS (univariate)

Courtesy of Mikkael A Sekeres, MD, MS

Makishima et al. Nat Genetics 2017;49:204.

MDS | Machine Learning


Nazha A, et al. ASH 2018 [#793]

MDS | Machine Learning

Parameter	Training No. (%) / [range]	Validation No. (%) / [range]	p
Total	1471	831	
Median age, years	71 [19-99]	69 [4-93]	NS
Clinical Variables			
Median WBC, 10 ⁹ /L	4.2 [0.6-82.6]	4 [0.1-25.6]	NS
Median ANC, 10 ⁹ /L	2.1 [0-65.1]	2 [0-8.5]	NS
Median Hb, g/dL	9.9 [3.9-15.6]	10 [3.4-17.1]	NS
Median Plts, 10 ⁹ /L	120 [4-975]	117 [7-1280]	NS
Median BM Blasts %	4 [0-19]	3 [0-19]	NS
2008 WHO Category			
RCMD / RCUD	578 (38)	350 (42)	NS
RARS	209 (11)	128 (15)	
RAEB-1 / RAEB-2	573 (37)	302 (36)	
MDS-U	49 (9)	18 (2)	
MDS with del (5q)	62 (5)	33 (4)	

Nazha A, et al. ASH 2018 [#793]

MDS | Machine Learning

Nazha A, et al. ASH 2018 [#793]

Predictive Tools | Mutations/Response

Training

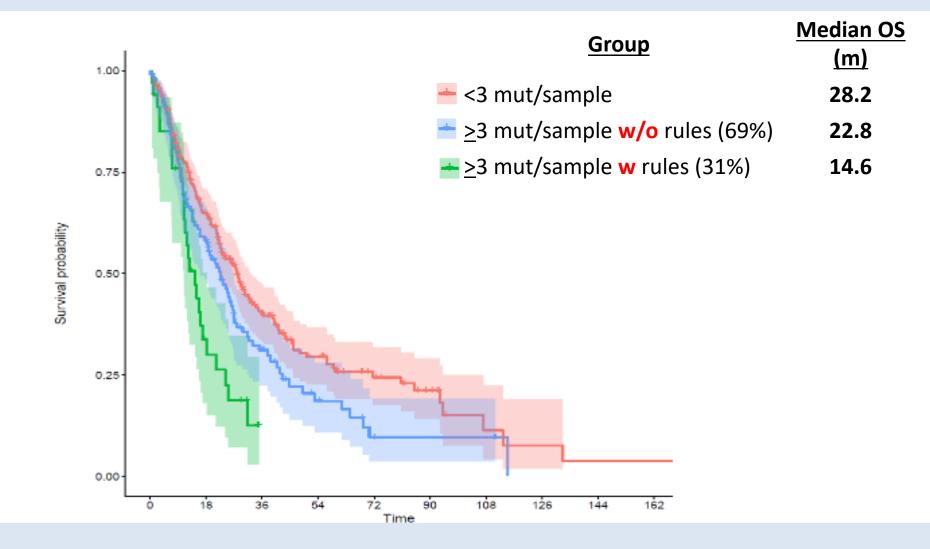
Association Rules (Resistance)
ASXL1, NF1
ASXL1, EZH2, TET2
ASXL1, EZH2, RUNX1
EZH2, SRSF2, TET2
ASXL1, EZH2, SRSF2
ASXL1, RUNX1, SRSF2
ASXL1, TET2, SRSF2
ASXL1, BCOR, RUNX1

Association Rules (Response)

TET2, RUNX1, SRSF2

Results: Association Rules

31% pts > 3 mutations/sample


29% pts Very Low/Low risk by IPSS-R

ORR to HMAs = 43%

Median # mutations per patient = 3 (range, 0-9)

Accuracy: 87%

Predictive Tools | Mutations/Response

Nazha A, et al. JCO Prec Oncol 2019;3

Treating MDS | **Disease Biology**

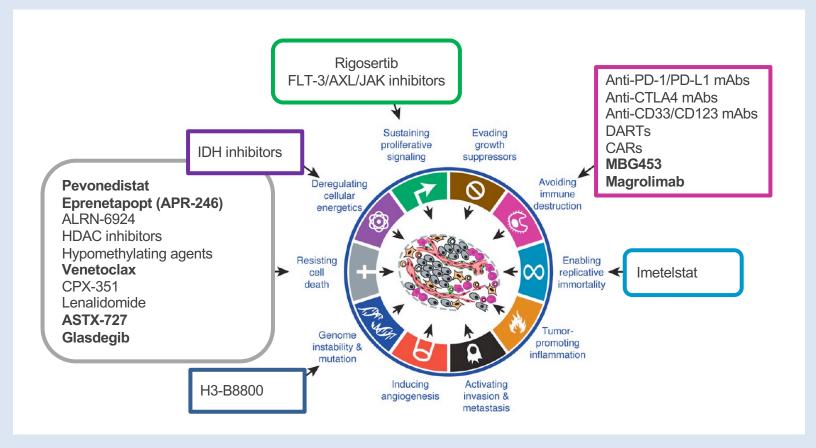
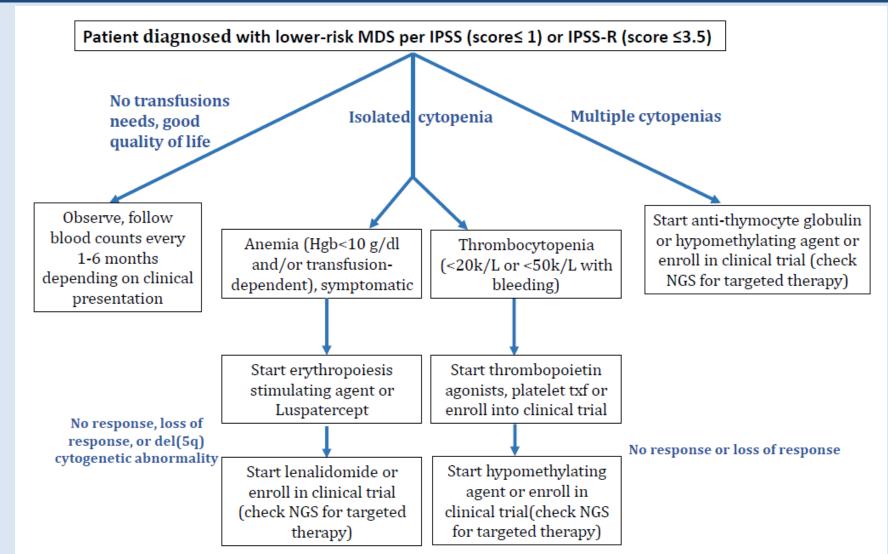



Figure adapted from Hanahan D, Weinberg RA. Cell 2011;144:646–74

Courtesy of Mikkael A Sekeres, MD, MS

BH3, bcl homology domain 3; CTLA4, cytotoxic T-lymphocyte-associated protein 4; DARTs, dual affinity retargeting agents; EGFR, epidermal growth factor receptor; HGF, hepatocyte growth factor; mAb, monoclonal antibody; PARP, poly adenosine diphosphate ribose polymerase; VEGF, vascular endothelial growth factor

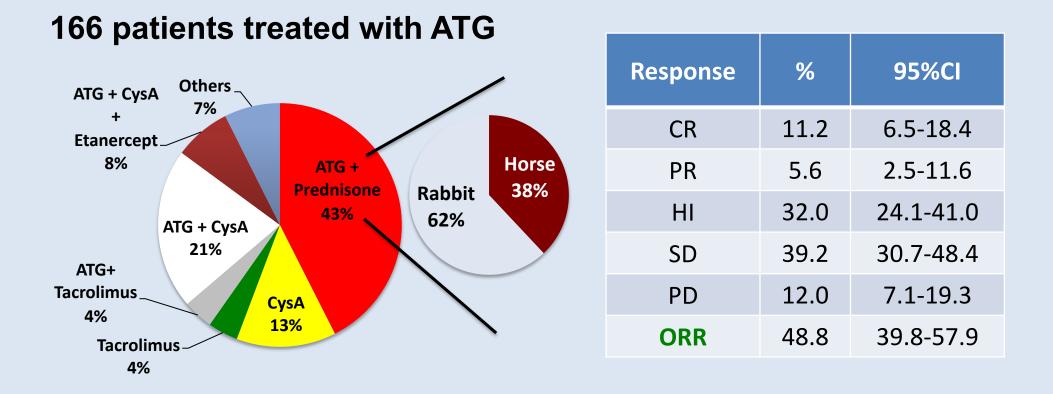
MDS | Treatment – Lower-risk

Sekeres and Patel Hematology (ASH Educ Book) 2019.

Lower-risk MDS | Modifying MLD: HMA

- Regimens:
 - DAC 20 mg/m² IV D1-3 every 4 weeks
 - AZA 75 mg/m² IV/SC D1-3 every 4 weeks
- 113 pts with LR-MDS treated and evaluable for response
- Median duration of follow-up = 14 months (range: 2-30 months)
- Randomized follow-up study NCT02269280

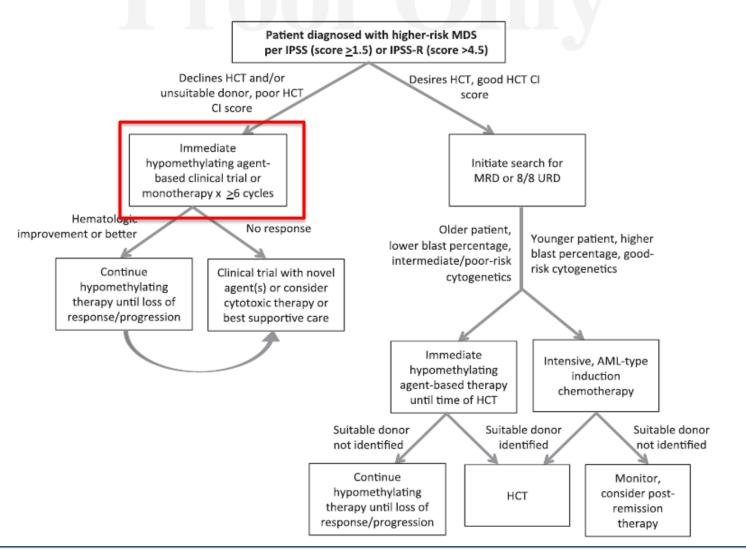
Jabbour et al. for MDS CRC Blood 2017;130:1514


Lower-risk MDS | Modifying MLD: HMA

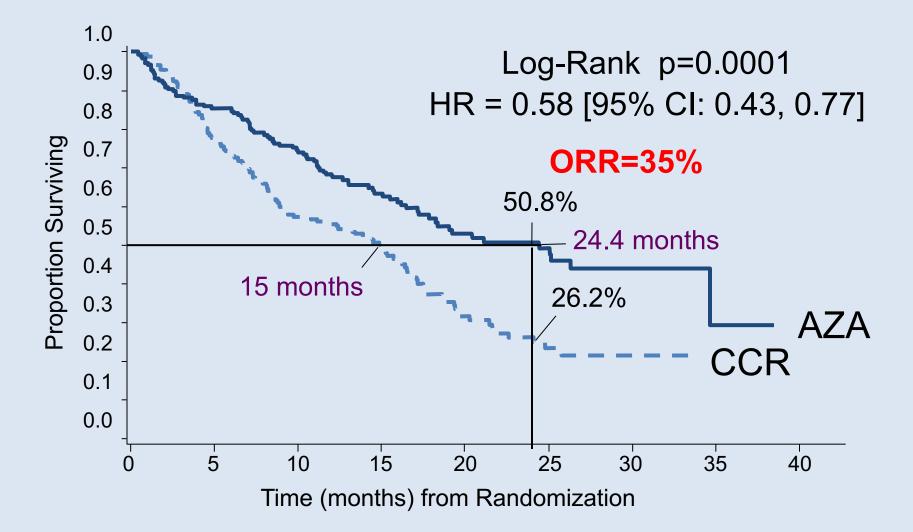
Response	N (%)
CR	33 (36)
mCR	8 (9)
ні	13 (14)
ORR	54 (59)
SD	31 (34)
PD	6 (7)

- Median time to best response: 2 months (range: 1-20)
- Median number of cycles received: 9 (range: 2-32)

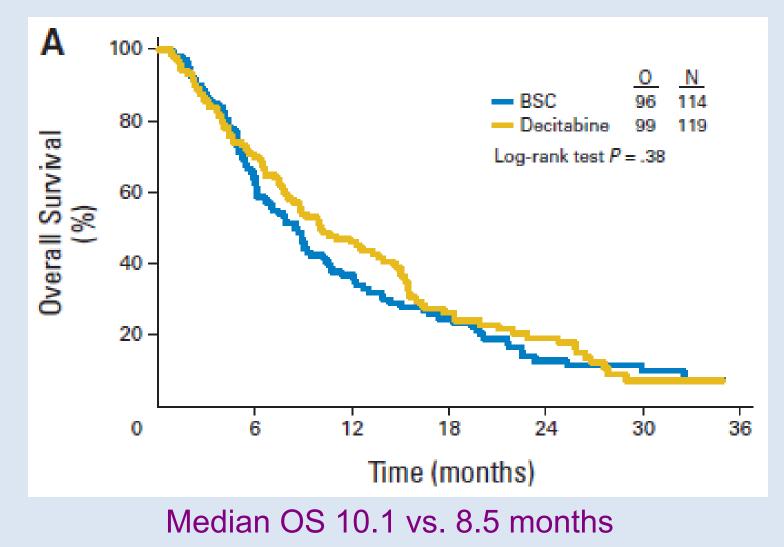
Jabbour et al. for MDS CRC Blood 2017;130:1514


Lower-risk MDS | Modifying MLD: ATG

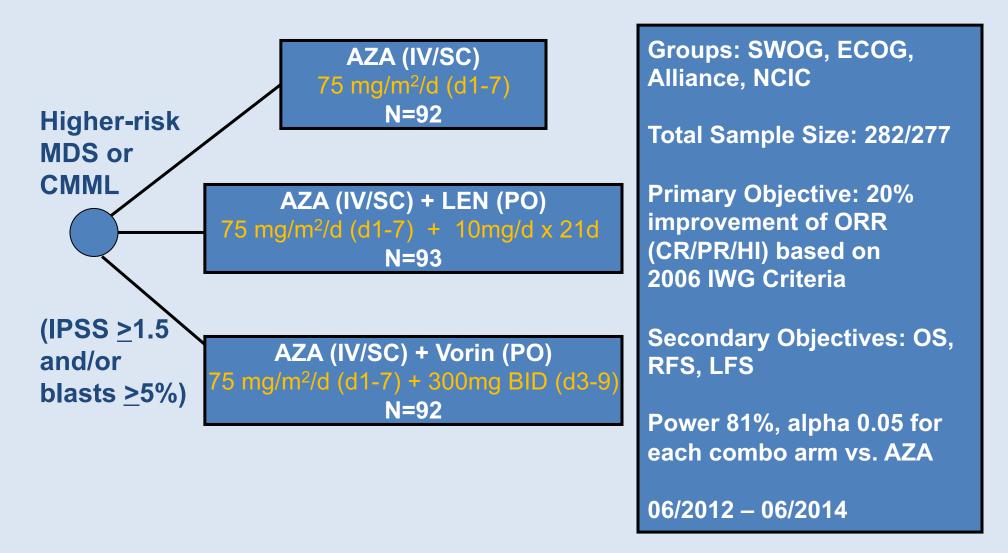
Type of IST used (N=217) and responses


Stahl M et al. Blood Advances 2018;2:1765.

Higher-risk MDS | HMA and HCT

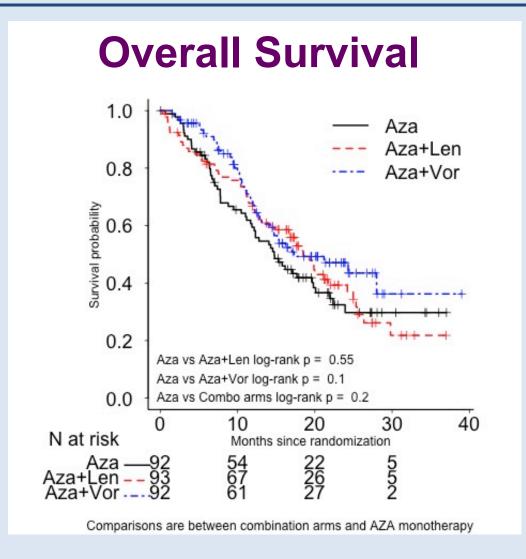


Sekeres and Cutler Blood 2014;123:829.


Treating MDS | AZA

Treating MDS | DAC

Lubbert et al. JCO 2011;29:1987.


Variable Median and N (%)	AZA n=92 (33%)	AZA+LEN n=93 (34%)	AZA+VOR n=92 (33%)	Total n=277 (100%)
Age (yrs, range)	69 (42 <i>,</i> 88)	70 (51, 86)	70 (28, 93)	70 (28, 93)
Female	31 (34)	32 (34)	22 (24)	81 (31)
CMML	18 (20)	19 (20)	16 (18)	53 (19)
tMDS	7 (8)	6 (6)	5 (5)	19 (7)
Baseline ANC (x10 ³)	2 (0, 110)	1 (0, 336)	2 (0, 36)	2 (0, 336)
Baseline Platelet count (x10 ³)	70 (8, 4000)	75 (3 <i>,</i> 452)	62 (3, 1462)	68 (3 <i>,</i> 4000)
Baseline Median Blast %	8 (0, 22)	10 (0, 20)	10 (1, 18)	9 (0, 22)

Sekeres et al. JCO 2017;35:2745-53.

Toxicity Variable	AZA	AZA+LEN (P-value vs. AZA)	AZA+VOR (P-value vs. AZA)	Total n=271
Febrile neutropenia (n)	10	13 (.66)	12 (.51)	36
GI (n)	4	12 (.10)	14 (.02)	28
Rash (n)	3	14 (<.01)	1 (1)	17
Off Tx due to Toxicity/Side Effect/Complication	8%	20% (.05)	21% (.03)	18%
Non-protocol defined dose modifications	24%	43% (.002)	42% (.01)	33%

Response Variable	AZA	AZA+LEN (P-value vs. AZA)	AZA+VOR (P-value vs. AZA)	Total n=277
Median Tx Duration (Wks)	25	24	20	22
Overall Response Rate (%)	38	49 (.16)	27 (.16)	38%
CR/PR/HI (%)	24/0/14	24/1/ <mark>25</mark>	17/1/9	22/1/16%
CMML ORR (%)	5 (28)	13 (68) (.02)	2 (12) (.41)	37%
ORR Duration (median)	10 months	14 months (.41)	15 months (.31)	14 months
CMML ORR Duration (median)	15 months	14 months (.87)	24 months (.69)	15 months

Sekeres et al. JCO 2017;35:2745-53.

Sekeres et al. JCO 2017;35:2745-53.