Year In Review: Acute Myeloid Leukemia

Richard M Stone, MD Chief of Staff Director, Translational Research, Leukemia Division, Medical Oncology Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School Boston, MA

Outline: AML

- VENETOCLAX+ AZACITIDINE: NEW STANDARD

- VENETOCLAX+ Other CHEMO
- HYPOMETHYLATING AGENTS as MAINTENANCE
- USE OF the FLT3 inhibitor GILTERITINIB
- IDH INHIBITORS IN COMBINATION

Azacitidine ± Venetoclax (VIALE-A) Study Design

(NCT02993523) Eligibility **Endpoints Treatment** Inclusion **Primary** Patients with newly diagnosed 2:1 Overall survival Venetoclax + Azacitidine confirmed AML Randomization 2 N = 433 ° (n = 286)Ineligible for induction therapy defined Secondary Venetoclax 400 mg PO, daily, days 1–28 as either + Azacitidine 75 mg/m² SC /IV days 1–7 CR+CRi rate \clubsuit ≥75 years of age • CR+CRh rate ✤ 18 to 74 years of age with at least • CR+CRi and CR+CRh rates by one of the co-morbidities: initiation of cycle 2 - CHF requiring treatment or **Placebo + Azacitidine** • CR rate Ejection Fraction $\leq 50\%$ (n = 145) Transfusion independence Placebo daily, days 1–28 - Chronic stable angina • CR+CRi rates and OS in molecular + Azacitidine 75 mg/m² SC /IV days 1–7 - DLCO $\leq 65\%$ or FEV₁ $\leq 65\%$ subgroups - ECOG 2 or 3 Event-free survival Exclusion Prior receipt of any HMA, venetoclax, or chemotherapy for myelodysplastic Age (<75 vs. ≥75 years); Cytogenetic risk (intermediate, poor); region **Randomization Stratification Factors** syndrome Favorable risk cytogenetics per NCCN **Cycle 1 ramp-up** Day 1: 100 mg, Day 2: 200 mg, Day 3 - 28: 400 mg Active CNS involvement Venetoclax dosing ramp-up Cycle 2 Day 1-28: 400 mg

DiNardo CD et al. EHA 2020. Abstract LB2601; DiNardo CD et al. NEJM 2020

VIALE-A: AZA ± VEN in AML — Overall Survival

DiNardo CD et al. NEJM 2020

VIALE-A: AZA ± VEN in AML — Survival by Subgroups

	Aza+Ven n/N(%)	Aza+Pbo n/N(%)		HR [95% Cl] Aza+Ven vs. Aza+Pbo
All Subjects	161/286 (56.3)	109/145 (75.2)	⊢ ∎−1	0.64 (0.50, 0.82)
<u>Gender</u>				
Female	61/114 (53.5)	41/ 58 (70.7)	F	0.68(0.46, 1.02)
Male	100/172 (58.1)	68/ 87 (78.2)	⊢-■1	0.62 (0.46, 0.85)
Age (Years)				
< 75	66/112 (58.9)	36/ 58 (62.1)		0.89(0.59, 1.33)
≥ 75	95/174 (54.6)	73/ 87 (83.9)	⊢ ∎	0.54 (0.39, 0.73)
Type of AML				
De Novo	120/214 (56.1)	80/110 (72.7)	⊢ ∎−1	0.67 (0.51, 0.90)
Secondary	41/ 72 (56.9)	29/ 35 (82.9)	⊢	0.56(0.35, 0.91)
Cytogenetic Risk				
Intermediate	84/182 (46.2)	62/ 89 (69.7)	⊢-■1	0.57(0.41, 0.79)
Poor	77/104 (74.0)	47/ 56 (83.9)	⊢ ∎i	0.78(0.54, 1.12)
Molecular Marker				
FLT3	19/ 29 (65.5)	19/ 22 (86.4)	⊢	0.66(0.35, 1.26)
IDH1	15/ 23 (65.2)	11/ 11 (100.0)	F	0.28(0.12, 0.65)
IDH2	15/ 40 (37.5)	14/ 18 (77.8)	F	0.34(0.16, 0.71)
IDH1/2	29/61 (47.5)	24/ 28 (85.7)	⊨4	0.34 (0.20, 0.60)
TP53	34/ 38 (89.5)	13/ 14 (92.9)	⊢	0.76 (0.40, 1.45)
NPM1	16/ 27 (59.3)	14/ 17 (82.4)	F	H 0.73 (0.36, 1.51)
			Favors Aza+Ven	vors Aza+Pbo
			0.1 1	

DiNardo CD et al. NEJM 2020; DiNardo CD et al. EHA 2020. Abstract LB2601.

VIALE-C: Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy — a phase 3 randomized placebo-controlled trial

Andrew H. Wei, Blood, 2020.

Courtesy of Richard M Stone, MD

Copyright © 2020 American Society of Hematology

VIALE-C trial (Wei et al, EHA, 2020)

Median f/u 17.5 mo* (OS and EFS difference statistically significant) Note: prior HMA allowed

	Ven (600 mg/d)+ cytarabine 20 mg/²/d d1-10	Cytarabine 20 mg/m²/d d1-10
n	143	60
CR/CRh	48%	15%
Overall survival (months)	8.4	4.1
Event-free survival (months)	4.9	2.1

*w 6 add'n f/u months, OS diff became significant

VIALE-A: DiNardo CD et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N Engl J Med. 2020 Aug 13;383(7):617-629.

VIALE-C: Wei AH et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A Phase III randomized placebo-controlled trial. Blood 2020;135(24):2137-45.

Impact on Patient Care and Treatment Algorithm

- Azacitidine/venetoclax is the new standard of care for pts >75 years old with untreated AML
 - Decitabine/venetoclax or low dose cytarabine/venetoclax are acceptable alternatives, the latter relevant in countries without access to HMA
- Responses occurred in all genetic subgroups
 - Particularly effective in IDH mutant AML
- Toxicity manageable, though myelosuppression requires frequent dose modifications
- Implications for Future Research
 - Use in other patient populations (e.g , younger, MDS)
 - Combine ven/HMA in 'triplets' with target agents (e.g., FLT3i, IDHi, APR-246, magrolimab, pevonedistat)

Venetoclax + Cladribine/LDAC alternating with 5-AZA

Venetoclax Dosing (PO Daily)					
Dose Level	Patients on <u>strong</u> CYP3A inhibitor	Patients on <u>moderate</u> CYP3A inhibitor	Patients <u>not</u> on CYP3A inhibitor		
-1	50 mg	100 mg	200 mg		
1	100 mg	200 mg	400 mg		

Patients with MRD Negative remission received only 7 days of venetoclax

Kadia, abs #25, ASH 2020

Cladribine/LDAC + Venetoclax in Older AML

Responses

Response / Outcome	Ν	%	MRD(-)
Evaluable for Response	54	98	
CR	42	78	39 (<mark>93</mark>)
CRi	8	15	3 (38)
CR + CRi (CRc)	50	93	42 (<mark>84</mark>)
No Response	4	7	
Died ≤ 4 weeks	1	2	
Died ≤ 8 weeks	2	4	
Median # of cycles given (Range)	2 (1 – 14)		
Median # of cycles to response (Range)	1 (1 – 3)		

Kadia, abs #25, ASH 2020

Cladribine/LDAC + Venetoclax in Older AML

Responses by Selected Subgroup

Subgroup	N	CR/CRi (%)
Diploid Karyotype	31	28 (90)
Adverse Karyotype	6	6 (100)
Intermediate Karyotype	15	13 (87)
NPM1 Mutated	17	16 (94)
RAS Mutated	13	12 (92)
IDH2 Mutated	11	11 (100)
IDH1 Mutated	5	5 (100)
TP53 Mutated	4	4 (100)
FLT3 D835	5	4 (80)
FLT3-ITD	3	2 (67)

Kadia, abs #25, ASH 2020

Cladribine/LDAC + Venetoclax in Older AML

Survival by Selected Subgroup

Subgroup	Median OS (m)	6-month OS	12-month OS	P-value
Diploid karyotype	NR	90%	80%	
Adverse karyotype	7.8	83%	33%	
Intermediate karyotype	NR	71%	63%	
MRD Negative	NR	92%	83%	0.002
MRD Positive	11.8	82%	48%	0.003
Secondary AML	NR	83%	63%	0 642
de novo AML	NR	85%	74%	0.042
SCT in CR1	NR	100%	91%	0.050
No SCT in CR1	NR	86%	69%	0.059

Kadia, abs #25, ASH 2020

CPX351 + Venetoclax in AML (Kadia Abst #28, ASH 2020)

Study Design

٠

٠

•

٠

٠

Treatment Plan

- Induction
 - CPX-351 IV daily on D1, 3, 5
 - Venetoclax PO daily on D2-21
- **<u>Consolidation</u>** (Up to 4 consolidation cycles):
 - CPX-351 IV daily on D1,3
 - Venetoclax PO daily on D2-21

Dose-Escalation Table (Planned 28 day cycle)

	CPX-351 [mg/m ²]	Venetoclax Dosing (PO on D 2 – 21)			
Dose Level	All Patients	Patients on strong CYP3A inhibitor	Patients on moderate CYP3A inhibitor	Patients <u>not</u> on moderate or strong CYP3A inhibitor	
-1	44 [dauno] / 100 [araC] (induction); 29 [dauno] / 65 [araC] (consolidation)	50 mg	150 mg	300 mg	
1	44 [dauno] / 100 [araC] (induction); 29 [dauno] / 65 [araC] (consolidation)	100 mg	200 mg	400 mg	

Day 2	Day 3	Up Day 4	Target Dose
100mg	200 mg	400 mg	400 mg

CPX-351 + Venetoclax in AML (shortened ven schedule)

Treatment Plan

- Induction
 - CPX-351 IV daily on D1, 3, 5
 - Venetoclax PO daily on D2-21
- **<u>Consolidation</u>** (Up to 4 consolidation cycles):
 - CPX-351 IV daily on D1,3
 - Venetoclax PO daily on D2-21

Dose-Escalation Table (Planned 28 day cycle)						
	CPX-351 [mg/m ²]		Venetoclax Dosing (PO)			
Dose Level	All Patients	Patients on strong CYP3A inhibitor	Patients on moderate CYP3A inhibitor	Patients <u>not</u> on moderate or strong CYP3A inhibitor		
-2	44 (induction); 22 (consolidation)	50 mg on D <mark>2 – 8</mark>	150 mg on D 2 – 8	300 mg on D 2 – 8		
-1	44 (induction); 29 (consolidation)	50 mg on D 2 – 21	150 mg on D 2 – 21	300 mg D 2 – 21		
1	44 (induction); 29 (consolidation)	100 mg on D 2 – 21	200 mg on D 2 – 21	400 mg on D 2 – 21		
	Day 2	Day 3	Day 4	Target Dose		
	100mg	200 mg	300 mg	300 mg		

Responses

Response / Outcome	N	%
Evaluable for Response	18	90
CR	1	6
CRi	6	33
MLFS	1	6
ORR	8	44
Died ≤ 4 weeks	2	10
Died ≤ 8 weeks	4	20
Median # of cycles given [Range]	1 [1 – 2]	
Median # of cycles to response	1 [1-2]	
No. of Responding Pts Receiving SCT	7	88
Median time to count recover (days)	41 [23 – 60]	

Kadia Abst #28, ASH 2020

Serious Adverse Events

ADVERSE EVENT	TOTAL SAEs	GRADE 3 / 4	GRADE 5
INFECTIONS, NOT OTHERWISE SPECIFIED	7	7	
NAUSEA	4	4	
PNEUMONIA	4	3	1
PROLONGED THROMBOCYTOPENIA	3	3	
PROLONGED NEUTROPENIA	3	3	
VOMITING	2	2	
RASH	2	2	
BONE PAIN	1	1	
HYPOTENSION	1	1	
THRUSH	1	1	
STROKE	1	1	
RESPIRATORY FAILURE	1		1
CHOLECYSTITIS	1	1	
ELECTROLYTE ABNORMALITY	1	1	
SEPSIS	1		1
DIVERTICULITIS	1	1	

Kadia Abst #28, ASH 2020

Overall Survival

Kadia Abst #28, ASH 2020

Months

OS by Prior Venetoclax

Kadia Abst #28, ASH 2020

-Kadia TM et al. Phase II Study of Venetoclax Added to Cladribine + Low Dose AraC (LDAC) Alternating with 5-Azacitidine Demonstrates High Rates of Minimal Residual Disease (MRD) Negative Complete Remissions (CR) and Excellent Tolerability in Older Patients with Newly Diagnosed Acute Myeloid Leukemia (AML). ASH 2020; Abstract 25. -Kadia TM et al. Phase II Study of CPX-351 Plus Venetoclax in Patients with Acute Myeloid Leukemia (AML). ASH 2020; Abstract 28.

- Impact on Patient Care and Treatment Algorithm
 - Can safely add venetoclax to low or higher dose chemo
 - See also FLAG-ida/ven (MDA abst #332) and 3+7 (DFCI, abstract 1038)
 - Venetoclax duration with more intensive chemo needs to be shortened
 - Is cladribine/cytarabine a better low dose chemo than HMA alone? It is more toxic
 - Would not use these regimens outside clinical trial
- Implications for Future Research
 - Randomized trials of ven/HMA v ven/alternative non-intensive chemo (e.g cladribine/cytarabine) required
 - Response rate with FLAG-IDA/VEN, 3+7/VEN, and CPX/VEN are high but clearly toxic. Randomized trials needed

QUAZAR AML-001: Study design and eligibility criteria

International, multicenter, placebo (PBO)-controlled, double-blind, randomized, phase III study of Oral-AZA as maintenance Tx in pts with AML in first remission post-IC

Courtesy of Richard M Stone, MD

^aBM aspirates were collected every 3 cycles through cycle 24, at cycle 30 and cycle 36, and as clinically indicated thereafter. BM assessments were also performed as clinically indicated. ^bPatients were followed until death, withdrawal of consent, study termination, or loss to follow-up.

AML, acute myeloid leukemia; ANC, absolute neutrophil count; AZA, azacitidine; BM, bone marrow; CMML, chronic myelomonocytic leukemia; CR, complete remission; CRi, CR with incomplete blood count recovery; ECOG PS, Eastern Cooperative Oncology Group performance status; HRQoL, health-related quality of life; HSCT, hematopoietic stem cell transplant; IC, induction chemotherapy; IWG, International Working Group; MDS, myelodysplastic syndromes; PBO, placebo.

QUAZAR AML-001: Overall and relapse-free survival

 Oral-AZA 300 mg QD was associated with significantly improved overall survival (OS) (P = 0.0009) and relapse-free survival (RFS) (P = 0.0001) vs. PBO¹

1. Wei et al. *Blood* 2019;134(Supplement 2):LBA-3.

OS was defined as the time from randomization to death by any cause. Kaplan-Meier estimated OS was compared for Oral-AZA vs. placebo by stratified log-rank test. HRs and 95%Cls were generated using a stratified Cox proportional hazards model.

AZA, azacitidine; mo, months; No., number; OS, overall survival; PBO, placebo; RFS, relapse-free survival.

QUAZAR AML-001: Escalated dosing (Dohner H et al, Abs #111, ASH 2020)

- BM aspirates and PB smears were reviewed centrally to assess CR/CRi status (IWG 2003 criteria¹)
 - Unscheduled BM assessments allowed for pts who exhibited signs of relapse at routine clinic visits (every 2 weeks)
- Pts who had 5-15% blasts in BM or blood could receive study drug for 21 days per cycle at the investigator's discretion

1. Cheson et al. *J Clin Oncol*. 2003;21(24):4642-9.

Courtesy of Richard M Stone, MD

AML, acute myeloid leukemia; AZA, azacitidine; BM, bone marrow; CR, complete remission; CRi, CR with incomplete blood count recovery; IWG, International Working Group; PB, peripheral blood; pts, patients; Tx, treatment.

QUAZAR AML-001: Escalated dosing cohort – Overall survival

Overall survival estimated using Kaplan-Meier methods. The hazard ratio (HR) and 95% confidence intervals comparing Oral-AZA vs. placebo are from a Cox proportional hazards model, and the *P* value is from an unstratified log-rank test.

95%CI, 95% confidence interval; AZA, azacitidine; HR, hazard ratio; mo, months; OS, overall survival; No., number.

Dohner H et al, Abs #111, ASH 2020

QUAZAR AML-001: Second CR/CRi

- 10/43 (23%) Oral-AZA pts and 4/35 (11%) PBO pts regained CR/CRi (CR2) during dose-escalation^a
- 6 pts in the Oral-AZA arm became MRD-negative at CR2 (0 in the PBO arm)

^aAmong 78 pts with a centrally confirmed marrow with \geq 5% blasts on or before the first day of 21-day dosing.

BM blast percentages are reported at baseline, at the visit nearest to the start of dose-escalation, and while receiving escalated dosing. Data cutoff: 15 July 2019.

AZA, azacitidine; BL, baseline BM, bone marrow; CR, complete remission; CR2, second CR/CRi; CRi, CR with incomplete blood count recovery; MRD, measurable residual disease; PBO, placebo; pts, patients.

Dohner H et al, Abs #111, ASH 2020

Adverse events (all grades) reported during escalated dosing with <u>first onset</u> in \geq 10% of patients in either Tx arm

	Oral-AZA n = 51	Placebo n = 40	Dra
Preferred term	n	(%)	≥1
Febrile neutropenia	12 (24)	1 (3)	Fe
Thrombocytopenia	11 (22)	9 (23)	Ne
Anemia	11 (22)	8 (20)	Th
Neutropenia	10 (20)	4 (10)	Ar
Fatigue	7 (14)	1 (3)	Fa
Pyrexia	7 (14)	8 (20)	
Diarrhea	6 (12)	3 (8)	
Asthenia	6 (12)	0	
Hypokalemia	2 (4)	5 (13)	Se

Grade 3-4 adverse events reported during escalated dosing with <u>first onset</u> in \geq 5% of patients in either Tx arm

	Oral-AZA n = 51	Placebo n = 40
Preferred term	n ((%)
≥1 grade 3-4 AE	16 (31)	14 (35)
Febrile neutropenia	12 (24)	1 (3)
Neutropenia	11 (22)	5 (13)
Thrombocytopenia	9 (18)	12 (30)
Anemia	8 (16)	7 (18)
Fatigue	3 (6)	0
Constipation	3 (6)	0
Pneumonia	2 (4)	2 (5)
Sepsis	1 (2)	2 (5)

Adverse events coded using Medical Dictionary for Regulatory Activities (MedDRA) version 22.0 and graded using National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) version 4.0. A patient is counted only once for multiple events within a preferred term/system organ class.

AE, adverse event; AZA, azacitidine; Tx, treatment.

Dohner H et al, Abs #111, ASH 2020

– Wei AH et al. The QUAZAR AML-001 Maintenance Trial: Results of a Phase III International, Randomized, Double-Blind, Placebo-Controlled Study of CC-486 (Oral Formulation of Azacitidine) in Patients with Acute Myeloid Leukemia (AML) in First Remission. Proc ASH 2019; Abstract LBA-3.

Dohner H et al. Escalated Dosing Schedules of CC-486 Are Effective and Well Tolerated for Patients
 Experiencing First Acute Myeloid Leukemia (AML) Relapse: Results from the Phase III QUAZAR AML-001
 Maintenance Trial. ASH 2020; Abstract 111.

Impact on Patient Care and Treatment Algorithm

- CC-486 (oral azacitidine) new option for maintenance rx in AML
 - In pts >55 yo who ach CR with stnd chemo and rec'd 0-2 consol cycles
- This is not the same as IV or sc azacitidine and should not yet be used in MDS or with ven as primary therapy in older unfit adults
- Toxicity manageable, though myelosuppression requires dose mods
- Activity in early relapse
- Implications for Future Research
 - Can oral aza replace consolidation chemo in older AML?
 - Need to define broader use of oral aza in other settings (? Combine with ven?, early relapse, MDS)

Gilteritinib: Phase 3 ADMIRAL Trial

Perl, A et al, NEJM, 2019

LACEWING Study Design (Wang E, et al, ASH #27, 2020)

^aProtocol versions 6.0 and earlier included a 1:1:1 randomization ratio to receive Arm A (gilteritinib monotherapy), AC (gilteritinib + azacitidine), or C (azacitidine monotherapy). Randomization to Arm A was removed in protocol version 7.0. Patients previously randomized to Arm A should continue following treatment and assessments as outlined in the protocol. AML, acute myeloid leukemia; *FLT3*^{mut+}, FMS-like tyrosine kinase 3 mutation-positive; IV, intravenously; PO, orally; SC, subcutaneously.

Type and Duration of Response of Gilteritinib in Combination With AZA and End of Treatment Reasons *Safety Cohort (N=15)*

AZA, azacitidine; CR, complete remission; CRc, composite complete remission; CRi, complete remission with incomplete hematologic recovery; CRp, complete remission with incomplete platelet recovery; ITD, internal tandem duplication; NR, not reached; PR, partial remission; TKD, tyrosine kinase domain; WT, wild type.

Wang E, et al, ASH #27, 2020

Summary of Treatment-Emergent Adverse Events and Deaths Safety Cohort (N=15)

Safety Cohort
(N=15)
15 (100)
14 (93.3)
15 (100)
6 (40.0)
12 (80.0)
7 (46.7)
0 (0)
0 (0)
14 (93.3)
9 (60.0)
5 (33.3)

40% of patients experienced a TEAE that led to treatment withdrawal; however, none of these were judged to be drug-related

TEAE, treatment-emergent adverse event.

Wang E, et al, ASH #27, 2020

Perl AE et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N Engl J Med.
 2019 Oct 31;381(18):1728-1740.

– Wang ES et al. Phase 3, Multicenter, Open-Label Study of Gilteritinib, Gilteritinib Plus Azacitidine, or Azacitidine Alone in Newly Diagnosed FLT3 Mutated (FLT3mut+) Acute Myeloid Leukemia (AML) Patients Ineligible for Intensive Induction Chemotherapy. ASH 2020; Abstract 27.

Impact on Patient Care and Treatment Algorithm

- Gilteritinib is a reasonable option for R/R FLT3 mut AML (better than chemo)
- But Gilteritinib alone does not lead to a high rate of good outcomes in R/R AML.
- In upfront unfit FLT3 mutant AML: gilt +aza is safe to combine but no results yet for aza v aza/gilt (gilt alone dropped)

Implications for Future Research

- Need to develop gilteritinb plus other drugs in R/R FLT mut AML
 - Understand mechanism of relapse
- Major question in the field; How to treat chemo unfit newly diagnosed mut FLT3 AML: gilteritinib+aza or gilt+ven (Daver, #333) vs new SOC: aza/ven
- Major interest in the 'triplet': gilt/aza/ven

Summary of studies involving IDH inhib c/w aza/ven in IDH mut ds

- Isocitrate dehydrogenase 1/2 (IDH1/2) mutations are found in 15-20% of patients with newly diagnosed (ND) acute myeloid leukemia (AML)^{1,2}
- Additional detail regarding the depth and duration of response with the various active single and combination therapies for *IDH1/2*-mutated (IDH1/2^{mut}) AML are desired

Published response rates in treatment-naive *IDH1/2*mutated (IDH1/2^{mut}) AML in patients *ineligible for intensive chemotherapy*:³⁻⁸

Azacitidine	Venetoclax	Enasidenib	Ivosidenib	CR+CRi
				10.7%
		\checkmark		21.0%
	_		\checkmark	48.5%
\checkmark	\checkmark	_		78.5%
\checkmark		\checkmark	_	53.0%
\checkmark	_		\checkmark	69.6%
			\checkmark	75.0%

1. Patel JP, et al. *N Engl J Med*. 2012;366(12):1079-1089. 2. Wang J, et al. *Blood*. 2016;128(22):5058-5058. 3. Pollyea DA, et al. *Blood* 2020; 136 (suppl 1; abstr 461): 5–7. 4. Roboz GJ, et al. *Blood*. 2020;135(7):463-471. 5. DiNardo CD, et al. J *Clin Oncol*. 2020:JCO2001632. **6. Lachowiez CA, et al. J** *Clin Oncol* **2020 (suppl; abstr 7500)*.** 7. Pollyea DA, et al. *Leukemia*. 2019;33(11):2575-2584. 8. DiNardo CD, et al. *J Clin Oncol*. 2020 (suppl; abstr 7501)

*Describes ivo/ven and ivo/ven aza combos

• ORR and CR rate were both significantly higher with ENA + AZA vs. AZA Only

	ENA + AZA (n=68)	AZA Only (n=33)
Overall response (CR, CRi/CRp, PR, MLFS), n (%)	48 (71)	14 (42)
[ORR 95%CI]	[58, 81]	[26, 61]
<i>P</i> value	0.0	064
CR, n (%)	36 (53)	4 (12)
[CR rate 95%CI]	[41, 65]	[3, 28]
P value	0.0	001
CRi/CRp, n (%)	7 (10)	4 (12)
PR, n (%)	3 (4)	4 (12)
MLFS, n (%)	2 (3)	2 (6)
Stable disease, n (%)	13 (19)	13 (39)
Disease progression, n (%)	2 (3)	1 (3)
Not evaluable / Missing, n (%)	5 (7)	5 (15)
Time to first response, months, median (range)	1.9 (0.7–9.0)	2.0 (0.8–5.8)
Time to CR, months, median (range)	5.5 (0.7–19.5)	3.7 (3.0–4.1)
Duration of response, months, median [95%CI]	24.1 [11.1, NR]	12.1 [2.8, 14.6]

Data cutoff: August 19, 2019.

95%CI, 95% confidence interval; AZA, azacitidine; CR, complete remission; CRi/CRp, CR with incomplete hematologic or platelet recovery; ENA, enasidenib; MLFS, morphologic leukemia-free state; NR, not reached; ORR, overall response rate; PR, partial remission.

- Median follow-up was 14 months in both treatment arms
- Median OS in the ENA + AZA group was 22.0 months, and in the AZA Only group was 22.3 months (HR 0.99 [95%CI 0.52, 1.87], P=0.9686)
 - Among pts in the ENA + AZA arm who achieved CR, median OS was not reached and estimated 1-year survival was over 90%
- Median EFS was 17.2 months in the ENA + AZA group, vs. 10.8 months in the AZA Only group (HR 0.59 [95%CI 0.30, 1.17], P=0.1278)
- In the AZA Only arm, 7 patients (21%) received subsequent treatment with enasidenib monotherapy

Data cutoff: August 19, 2019

EFS: time from randomization to AML relapse, disease progression (IWG AML 2003 criteria), or death from any cause, whichever occurred first.

TABLE 3. Hematologic Response, Time to Response, and Response Duration (N = 23)

Response Category	Response		
CR + CRh, ^a No. (%) [95% CI]	16 (69.6) [47.1 to 86.8]		
Median time to CR/CRh, months (range)	2.8 (0.8-11.5)		
Median duration of CR/CRh, months [95% CI]	NE [12.2 to NE]		
CR, No. (%) [95% CI]	14 (60.9) [38.5 to 80.3]		
Median time to CR, months (range)	3.7 (0.8-15.7)		
Median duration of CR, months [95% CI]	NE [9.3 to NE]		
CRh, ^a No. (%)	2 (8.7)		
ORR, ^b No. (%) [95% CI]	18 (78.3) [56.3 to 92.5]		
Median time to response, months (range)	1.8 (0.7-3.8)		
Median duration of response, months [95% CI]	NE [10.3 to NE]		
Best response, ^c No. (%)			
CR	14 (60.9)		
CRi/CRp	2 (8.7)		
MLFS	2 (8.7)		
SD	4 (17.4)		
NA	1 (4.3)		

Aza/ivo combo in mutant IDH1 AML

Abbreviations: CR, complete remission; CRh, CR with partial hematologic recovery; CRi, CR with incomplete hematologic recovery; CRp, CR with incomplete platelet recovery; MLFS, morphologic leukemia-free state; NA, not assessed; NE, not estimable; PR, partial response; ORR, objective response rate. ^aCRh derived by sponsor.

^bORR comprises CR + CRi + CRp + PR + MLFS.

°Modified International Working Group criteria.

TABLE 3. Hematologic Response, Time to Response, and Response Duration (N = 23)

Published in: Courtney D. DiNardo; Anthony S. Stein; Eytan M. Stein; Amir T. Fathi; Olga Frankfurt; Andre C. Schuh; Hartmut Döhner; Giovanni Martinelli; Prapti A. Patel; Emmanuel Raffoux; Peter Tan; Amer M. Zeidan; Stéphane de Botton; Hagop M. Kantarjian; Richard M. Stone; Mark G. Frattini; Frederik Lersch; Jing Gong; Diego A. Gianolio; Vickie Zhang; Aleksandra Franovic; Bin Fan; Meredith Goldwasser; Scott Daigle; Sung Choe; Bin Wu; Thomas Winkler; Paresh Vyas; *Journal of Clinical Oncology* Ahead of Print DOI: 10.1200/JCO.20.01632 Copyright © 2020 American Society of Clinical Oncology

B) If given for new MRD+/rising MRD by FC - converting back from MRD+ to MRD- (2 cases)

Hammond, D et al ASH abst 590, 2020

3+7 + IDH inhib (Stein et al, Blood, 2020)

Phase I trial: No safety signal

	Chemo+ ivosidenib (500 mg/d for mut IDH1)	Chemo + enasidenib (100 mg/d for mutant IDH2)
n	60	91
CR/CRh	55%	47%
IDH mut clearance in responders	39%	23%
Flow MRD neg in responders	80%	67%

4.1 – Stein EM et al. Ivosidenib or enasidenib combined with intensive chemotherapy in patients with newly diagnosed AML: a phase 1 study. Blood. 2020 Sep 5: Epub ahead of print.
4.2 – DiNardo CD et al. Mutant Isocitrate Dehydrogenase 1 Inhibitor Ivosidenib in Combination With Azacitidine for Newly Diagnosed Acute Myeloid Leukemia. J Clin Oncol. 2020 Oct 29: Epub ahead of print.
4.3 – Lachoweiz CA et al. Phase Ib/II study of the IDH1-mutant inhibitor ivosidenib with the Bcl-2 inhibitor venetoclax ± azacitidine in IDH1-mutated hematologic malignancies. ASCO 2020;Abstract 7500. DiNardo C et al. EHA 2020; Abstract S143. Oral

4.4 – DiNardo CD et al. Effect of enasidenib plus azacitidine on complete remission and overall response versus azacitidine monotherapy in mutant-IDH2 newly diagnosed AML. ASCO 2020;Abstract 7501.

- Impact on Patient Care and Treatment Algorithm
 - IDH inhibitor combinations are being intensively studied
 - In fit adults ivo or ena can be combined with chemo
 - lvo+ aza safe and has activity: are there pts for whom it is 'easier' yet reasonably effective in pts who are not good candidate for aza/ven
 - Ivo or ena +aza > response rate than ivo or ena alone: superiority re survival unclear
- Implications for Future Research
 - 3+7+/- IDH inhibitor trial ongoing (HOVON and others) but requires large net since only 20% of AML pts will have IDH 1 or IDH2 mutations
 - Major question: Is there a role for IDH inhibitors alone in newly diagnosed unfit pts given robust activity of aza/ven in that subset
 - Development of ivo/ven doublet and 'triplet': aza/ven/ivo or ena of major interest
 - ?Give aza/ven first, save ivo for relapse

AML: Novel Promising Strategies

Schurch CM. Front Oncol. 2018;8:152.

Acute Myeloid Leukemia: Conclusions

- Mutations/Cytogenetics/Host factors
- Still don't know how to use MRD
- Recent Approvals
 - Midostaurin (+ chemo in FLT3 mutant upfront)
 - Gilteritinib (single agent R/R FLT3 mutant)
 - Enasidenib/(ivosidenib) (R/R *IDH2 (1)* mutant)
 - Ivo recently approved for upfront use
 - Gemtuzumab (+chemo in CD33+ upfront)
 - CPX-351 (upfront secondary)
 - Venetoclax +low dose chemo (upfront, unfit)
 - Glasdegib + low dose cytarabine (upfront, unfit)
 - Oral aza (maint, older)
- Lots of new combos on the way, esp: aza/ven+/targeted rx and ven+intensive chemo

Acknowledgements

- Slide senders
 - Courtney DiNardo, MD
 - Tapan Kadia, MD
 - Eunice Wang, MD
 - Hartmut Dohner, MD

Appendix

Back-up Slides for Live Webinar

Venetoclax: BCL-2 Selective Inhibitor

BCL-2 overexpression allows cancer cells to evade apoptosis by sequestering pro-apoptotic proteins

Courtesy of Richard M Stone, MD

Konopleva M, et al. Cancer Discov. 2016. Epub ahead of print. Lin T, et al. ASCO 2016. Abstract 7007.

Response Rates of CR/CRi by Patient Subgroups

Venetoclax with HMAs induces rapid, deep, and durable responses in older patients with AML | ASH 2018

Pollyea D, et al, ASH 2018; Dinardo C, Blood, 2019

Venetoclax Dose Adjustments

Antifungal	Package Insert Recommendation (Ven mg/D)	MDACC Dose Adjustment (Ven mg/D)
Posaconazole	70	50
Voriconazole	100	100
Isavuconazole, fluconazole	200	200
Caspofungin, echinocandins	400	400

Cladribine/LDAC + Venetoclax in Older AML (Kadia, abs 25, ASH 2020)

Inclusion Criteria

- Untreated AML
 - Age ≥ **60 yrs**
 - Age < 60 if unsuitable for standard induction
 - Isolated dose of AraC / ATRA / hydrea allowed
- Adequate organ function
 - Bili < 2; Creat < 1.5x ULN
- ECOG ≤ 2
- Negative pregnancy test

Exclusion Criteria

- Uncontrolled intercurrent
 illness
- Hypersensitivity to component drugs
- Pts of childbearing age who do not practice contraception for the duration of the study

CPX-351

- CPX-351 is a liposomal co-formulation of cytarabine and daunorubicin designed to achieve synergistic antileukemia activity
 - 5:1 molar ratio of cytarabine:daunorubicin provides synergistic leukemia cell killing *in vitro*¹
 - In patients, CPX-351 preserved delivery of the 5:1 drug ratio for over 24 hours, with drug exposure maintained for 7 days²
 - Selective uptake of liposomes by bone marrow leukemia cells in xenograft models³

Tardi P et al. *Leuk Res.* 2009;33(1):129–139.
 Feldman EJ et al. *J Clin Oncol.* 2011;29(8):979–985;
 Lim WS et al. *Leuk Res.* 2010;34(9):1245–1223.

CPX-351 Phase III Study Design

- Randomized, open-label, parallel-arm, standard therapy–controlled
 - 1:1 randomization, enrolled from December 2012 to November 2014
 - Patients with CR or CRi could be considered for allogeneic HCT, based on institutional criteria

Courtesy of Richard M Stone, MD

AML, acute myeloid leukemia; CMML, chronic myelomonocytic leukemia; CR, complete response; CRi, CR with incomplete platelet or neutrophil recovery; ECOG PS, Eastern Cooperative Oncology Group performance status; HMA, hypomethylating agents; MDS, myelodysplastic syndrome.

1. World Health Organization. WHO Classification of Tumours of Haematopoitic and Lymphoid Tissues. Swerdlow S et al (ed). Lyon, IRAC Press, 2008.

	CPX-351 $(n = 153)$	7+3 (n = 156)	Odds ratio	P value
CR+CRi	47.7%	33.3%	1.77 (1.11, 2.81)	0.016
HSCT rate	34.0%	25.0%	1.54 (0.92, 2.56)	0.098
Deaths ≤30 days [*]	5.9%	10.3%		
Deaths ≤60 days*	13.7%	21.2%		

*Based on Kaplan-Meier estimate for the intent-to-treat population.

Median follow-up in patients who were alive: CPX-351 (n = 49): 589 days (range: 44-1007); 7+3 (n = 24): 601 days (range: 417-917). CI, confidence interval; CR, complete response; CRi, CR with incomplete platelet or neutrophil recovery; HSCT, hematopoietic stem cell transplant.

QUAZAR AML-001: Oral azacitidine

- Oral azacitidine (Oral-AZA [CC-486]):
 - Oral HMA with a distinct PK/PD profile from injectable AZA; the two are not bioequivalent^{1,2}
 - Approved in the United States for continued Tx of adult pts with AML in first CR/CRi post-IC and not able to complete intensive curative therapy (eg, HSCT)³
- Oral dosing allows for extended drug exposure during each Tx cycle to prolong AZA activity^{1,2}

1. Garcia-Manero et al. J Clin Oncol. 2011;29(18):2521–7. 2. Laille et al. PLoS One. 2015;10(8):e0135520. 3. ONUREG[®] (azacitidine) tablets [package insert]. Princeton, NJ: Bristol-Myers Squibb Company; Rev. 9/2020. 4. Savona et al. Am J Hematol. 2018;93(10):1199–206. 5. Stresemann et al. Mol Cancer Ther. 2008;7:2998–3005. 6. Hollenbach et al. PLoS One. 2010;5(2):e9001. 7. Scott LJ. Drugs. 2016;76(8):889–900. 8. Stresemann C, Lyko F. Int J Cancer. 2008;123(1):8–13. 9. Aimiuwu et al. Blood. 2012;119(22):5229–38.

AML, acute myeloid leukemia; AZA, azacitidine; CR, complete remission; CRi, CR with incomplete blood count recovery; HMA, hypomethylating agent; HSCT, hematopoietic stem cell transplant; IC, intensive chemotherapy; PD, pharmacodynamic; PK, pharmacokinetic; pts, patients; Tx, treatment.

FLT3 Structure and Activating Mutations

Both mutations cause spont dimerization,

ligand independent growth, and MPD in murine model

Quizartinib and Gilteritinib: Second Generation FLT3 Inhibitors

- Quizartinib is potent in vivo than any other FLT3 inhibitor to date^{4,5}
- But selection of resistance with FLT3-TKD mutations
- Possible QT prolongation at higher doses
- Gilteritinib 'hits' both ITD and TKD subtypes
- Well tolerated

Antileukemic Response to \geq 80 mg/day Gilteritinib in FLT3^{mut+} Patients by Mutation Type and TKI Status

Patient Characteristics Safety Cohort (N=15)

	Safety Cohort
Characteristic	(N=15)
Age, y	
Median (range)	75 (65–86)
≥75, n (%)	9 (60)
Female, n (%)	8 (53)
Race, n (%)	
Asian	2 (13)
White	11 (73)
FLT3 mutation status, n (%)	
ITD alone	10 (67)
TKD alone	3 (20)
ITD/TKD	1 (7)
Wild type	1 (7)
ECOG PS ≤1 at screening, n (%)	6 (40)

- As of 29 June 2020:
 - 15 patients were enrolled
 - 14 patients died since enrollment on 10 July 2017
 - 1 patient continues treatment for over 3 years
- Median (range) treatment duration was 6 (<1–34) cycles
- >12 cycles of treatment were received by 40% (n=6/15) of patients

ECOG PS, Eastern Cooperative Oncology Group performance status; *FLT3*, FMS-like tyrosine kinase 3; ITD, internal tandem duplication; TKD, tyrosine kinase domain.

Wang E, et al, ASH #27, 2020

Isocitrate Dehydrogenase (IDH) Mutations as a Target in AML

- IDH is an enzyme of the citric acid cycle
- Mutant *IDH2* produces 2hydroxyglutarate (2-HG), which alters DNA methylation and leads to a block in cellular differentiation
- AG-221 (CC-90007) is a selective, oral, potent inhibitor of the mutant *IDH2* (m*IDH2*) enzyme

IDH single agent Inhibitor Data in R/R mut IDH AML

AG120=ivosidenib

- Most common AEs: diarrhea, fatigue, and pyrexia
- Overall response rate of 35% and a complete remission rate of 15%
- In all response evaluable patients, an estimated 55% had treatment duration of at least 33%
- Differentiation syndrome

AG221=enasidenib

- Most common AEs: nausea, fatigue, increase in bilirubin, diarrhea
- ORR 37% in 159 adults w R/R
 AML
 - CR 18%
 - Median duration of response of 6.9 months
- Differentiation syndrome

AG-221-AML-005: STUDY DESIGN (DINARDO, ASH 2019)

*Dose finding for ENA or IVO; AZA dose remained constant.

AML, acute myeloid leukemia; AZA, azacitidine; CR, complete remission; EFS, event-free survival; ENA, enasidenib; HMA, hypomethylating agent; IVO, ivosidenib; mIDH1/mIDH2, mutant-IDH1/mutant-IDH2; ND, newly diagnosed; ORR, overall response rate; OS, overall survival; SC, subcutaneous.

AG-221-AML-005: DISPOSITION

Data cutoff: August 19, 2019 AML, acute myeloid leukemia; AZA, azacitidine; ENA, enasidenib; HSCT, hematopoietic stem cell transplant; Tx, treatment.