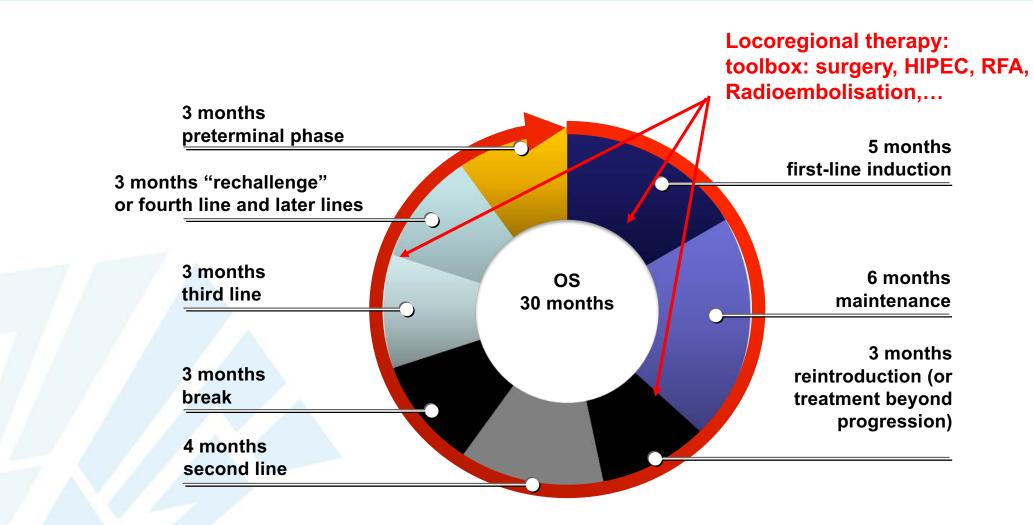


Key Considerations in the Selection and Sequencing of Therapies for Patients with mCRC; Novel Investigational Approaches

Prof Eric Van Cutsem, MD, PhD Digestive Oncology Leuven, Belgium Eric.VanCutsem@uzleuven.be


Herestraat 49 B - 3000 Leuven

www.uzleuven.be tel. +32 16 33 22 11 UNIVERSITY HOSPITALS LEUVEN


A classical case of mCRC in 2021 CONTINUUM OF CARE

1991: OS 6 months

The continuum of care of mCRC

Cetuximab/panitumumab Regorafenib Pembrolizumab/nivolumab ± ipilimumab Encorafenib (+ binimetinib); vemurafenib; cobimetinib Trastuzumab + lapatinib or pertuzumab; Trastuzumab/Deruxtecan Larotrectinib;

Courtesy of Eric Van Cutsem, MD, PhD

many are also valid in later line

Tour com the set of a static time	Deficient also as a familation	Treatment	
Tumour characteristics	Patient characteristics	characteristics	
Clinical presentation:			
Tumour burden	Age	Toxicity profile	
Tumour localisation			
Tumour biology	Performance status	Flexibility of treatment administration	
RAS mutation status	Organ function	Socio-economic factors	
BRAF mutation status	Comorbidities, patient attitude, expectation and preference	Quality of life	

Patient and treatment characteristics become even more relevant in later lines

Van Cutsem E, Cervantes A, Arnold D et al, ESMO Consensus 2016 Ann Oncol, July 2016



Treatment Options in First-line of mCRC determines later lines of strategy

Regimen	Sidedness restriction	Molecular restriction	Preferred indication
Cape + BEV Or other fluoropyrimidine + BEV	None	None	Elderly patients, low-volume disease and 'not-eligible' for combo cytotoxics
FOLFOX/ CAPOX/ FOLFIRI + BEV	None	None	SOC for RAS mutantSOC for Right-sided
FOLFOX/ FOLFIRI + EGFR mAb	Left-sided	RAS/ BRAF wt (HER-2 neg?)	SOC left-sided wt-type cancers
FOLFOXIRI + BEV	None	None	 Aggressive cancers (w.g. BRAF mut, R-sided) Neoadjuvant
FOLFOXIRI + EGFR mAb	Left-sided	RAS/ BRAF wt (HER-2 neg?)	 Left-sided cancers with high tumor burden Neoadjuvant
PD-1 antibody: Pembro / IO combo	None	MSI-H/ MMR-D	Pts with MSI-H cancers
BEACON(-like) in future?	None	BRAF V600E mut	Data in first-line pending

SPECIAL ARTICLE

Prognostic and predictive value of primary tumour side in patients with *RAS* wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials[†]

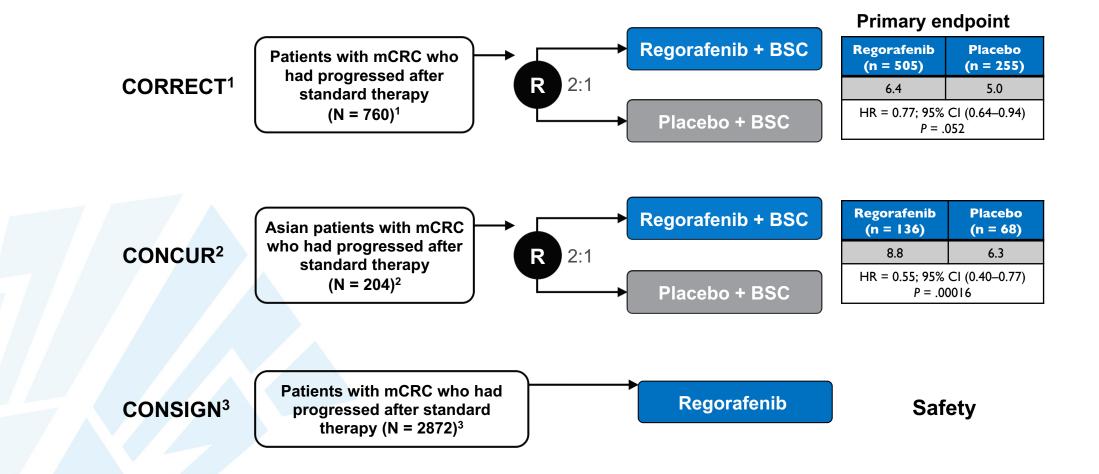
D. Arnold¹, B. Lueza², J.-Y. Douillard³, M. Peeters⁴, H.-J. Lenz⁵, A. Venook⁶, V. Heinemann⁷, E. Van Cutsem⁸, J.-P. Pignon², J. Tabernero⁹, A. Cervantes^{10,11} & F. Ciardiello^{12*}

- Data and recommendations: First line Ras wild-type mCRC:
 - Left sided tumors have a better prognosis than right sided tumors.
 - Sidedness is predictive in first line treatment of RAS Wt tumours:
 - Left sided tumors benefit more from anti-EGFR antibodies.
 - Right sided tumors benefit slightly more from bevacizumab
- Sidedness concept does not influence my practise in RAS mutant tumors and in pretreated patients

Courtesy of Eric Van Cutsem, MD, PhD

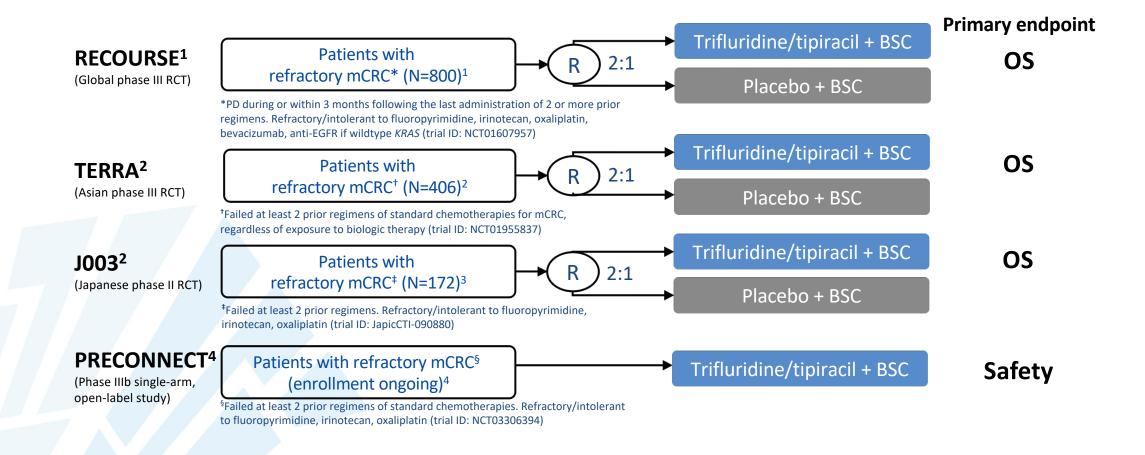
Preferred choices in second line treatment of mCRC

	Goal / condition	Molecular	Prefered 2nd line regimen			
	Cytoreduction (conversion/ symptom relief)	all WT	1st line doublet + EGFR Ab: doublet + bevacizumab 1st line doublet + bev.: doublet + bevacizumab Oxaliplatin → irinotecan based Irinotecan → oxaliplatin based			
	Disease stabilization	RAS mut	FOLFOX/beva or FOLFIRI/beva alternatives FOLFIRI/aflibercept or (ramucirumab)			
		MSI-H	Pembrolizumab / nivolumab ± ipilimumab			
7		BRAF mut V600E	Cetuximab + encorafenib			
1		HER2 amplified	Second line or later line? Combination anti-HER2			
		NTRK alterations	Second line or later line? NTRK-TKI			
6		Other: experimental	Trial			
	"frail"	MSS	 5FU or Capecitabine + beva if first line EGFR Ab RAS & BRAF wild type: EGFR Ab ± irinotecan if first line fluoropyrimidine + beva 			
		MSI-H	Pembrolizumab / nivolumab ± ipilimumab			


Category	Fit patients ^b					
Treatment goal	Cytoreduction (tumour shrinkag	ge)		Disease control (control of progr	ression)	
Third line Preferred choice (s)	CT doublet + EGFR antibody ^{c,f} or irinotecan + cetuximab ^f	Regorafenib or trifluridine/ tipiracil	Regorafenib or trifluridine/ tipiracil	CT doublet + EGFR antibody ^c or irinotecan + cetuximab	Regorafenib or trifluridine/tipiracil	Regorafenib or trifluridine/tipiracil
Second choice	EGFR antibody monotherapy ^f			EGFR antibody monotherapy ^f		
Third choice	Regorafenib or trifluridine/ tipiracil			Regorafenib or trifluridine/ tipiracil		

Update based on data:

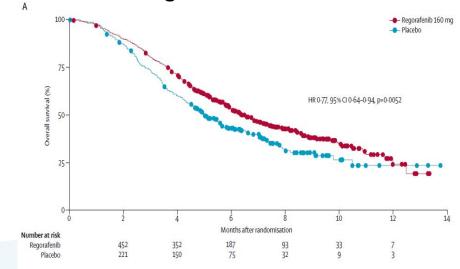
 molecular analysis esp. for druggable markers: MSI, BRAF V600E, HER2, NTRK fusions, POLE mutation: targeted agents or IO agents

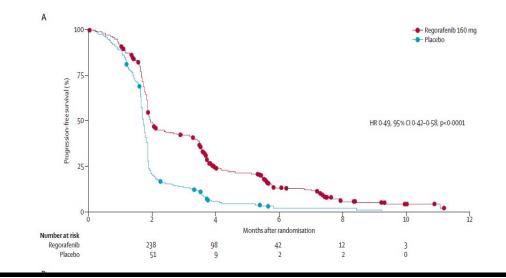


1. Grothey A, Van Cutsem E, et al. Lancet. 2013;381:303-312; 2. Li J, et al. Lancet Oncol. 2015;16:619-629; 3. Van Cutsem E, et al. The Oncologist 2019; 2:185-192.

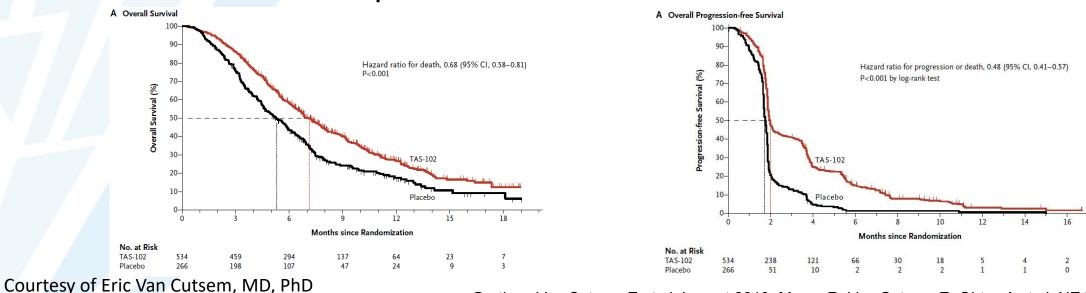
Courtesy of Eric Van Cutsem, MD, PhD

1. Mayer RJ, Van Cutsem E et al. N Engl J Med 2015;372:1909–19; 2. Xu J, et al. J Clin Oncol 2018;36:350–8; 3. Yoshino T, et al. Lancet Oncol 2012;13:993–1001; 4. Falcone A, ...Van Cutsem E et al. WCGIC 2018 (Oral and Poster Presentation). Abstract O-013

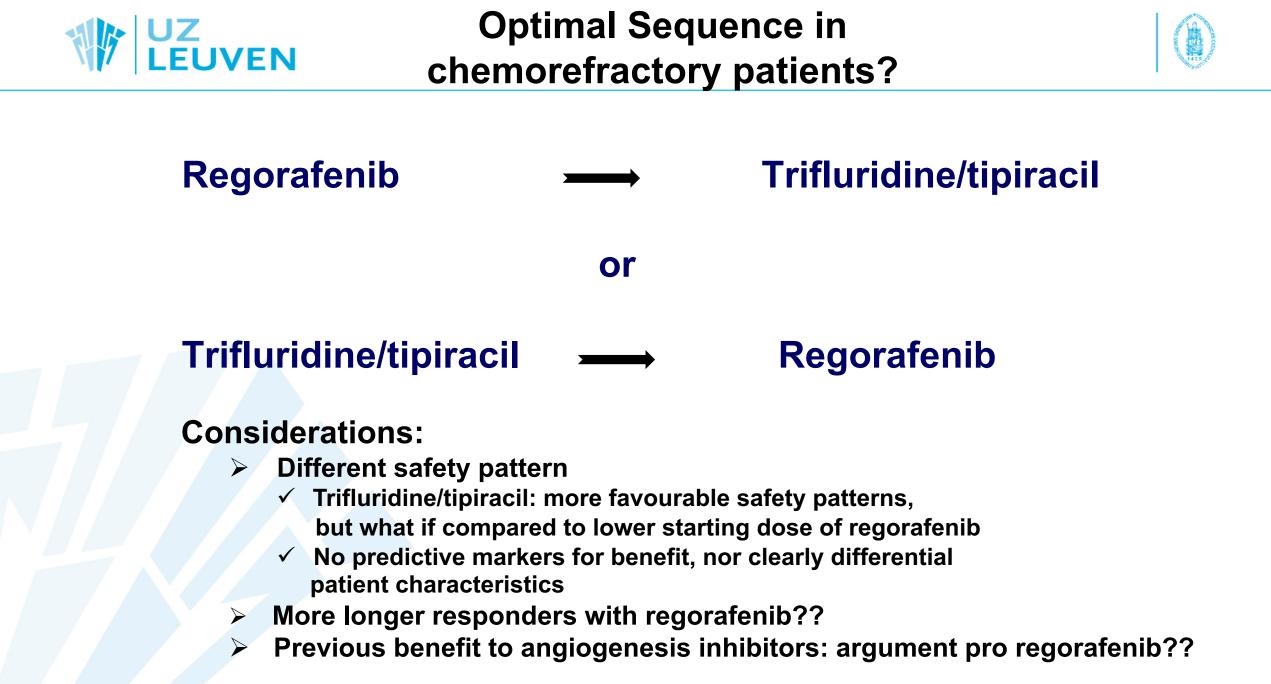

Courtesy of Eric Van Cutsem, MD, PhD



Regorafenib and trifluridine/tipiracil in refractory mCRC:



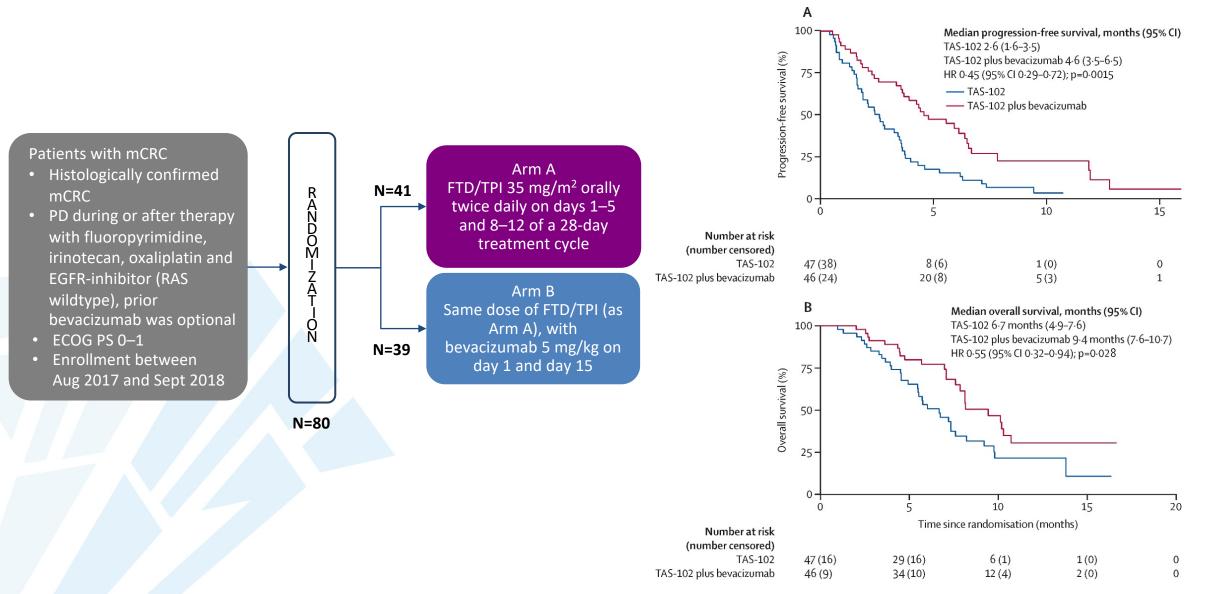
CORRECT: regorafenib



RECOURSE: trifluridine/tipiracil

Grothey, Van Cutsem E et al, Lancet 2013; Mayer R, Van Cutsem E, Ohtsu A et al NEJM, 2015

Ongoing combination trials of TAS-102 in mCRC

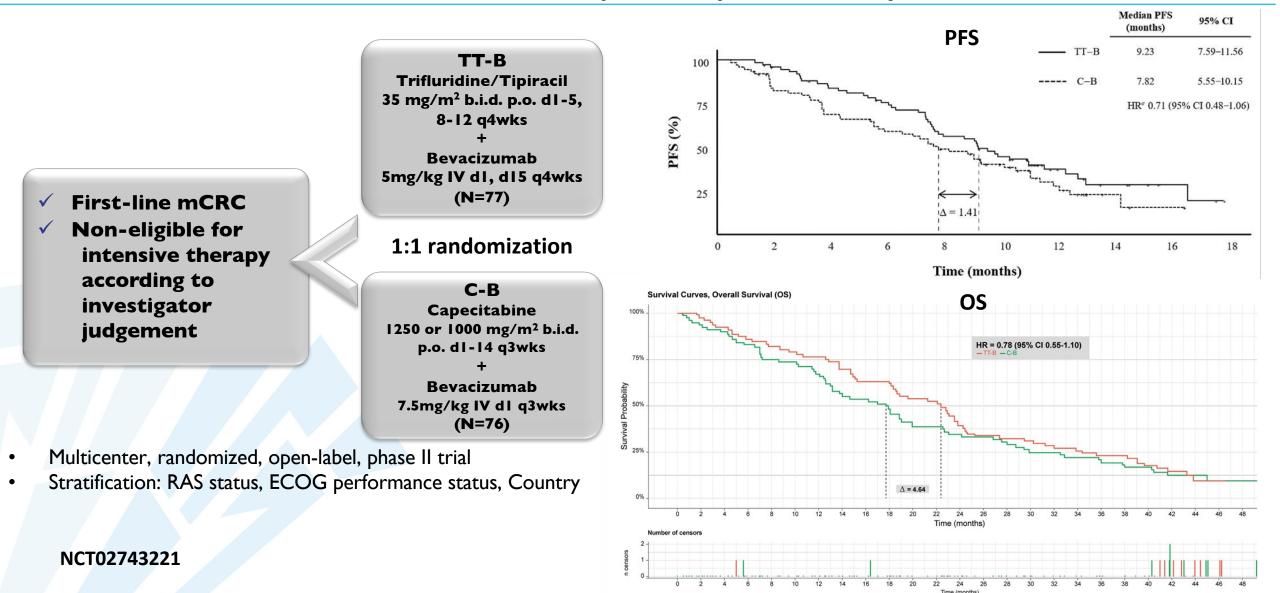

Indication	Treatments	Phase	Study status
mCRC, IL	Trifluridine/tipiracil + bevacizumab vs capecitabine + bevacizumab (TASC01)	Randomized Phase II	Recruitment completed
mCRC, IL	Trifluridine/tipiracil + bevacizumab vs capecitabine + bevacizumab (SOLSTICE)	Randomized Phase III	Recruiting
mCRC, 2L	Trifluridine/tipiracil + oxaliplatin + bevacizumab or nivolumab	Phase I	In progress
mCRC, 2L	Trifluridine/tipiracil + irinotecan	Phase I	Recruitment completed
mCRC, 3/4L	Trifluridine/tipiracil + nivolumab	Phase II	In progress
mCRC, 3L	Trifluridine/tipiracil ± bevacizumab (SUNLIGHT)	Randomized Phase III	Recruiting
mCRC 3L	PRECONNECT	Phase IIIb	Results available
mCRC, pretreated	Tas-102 + nintedanib Tas-102 + panitumumab	Phase I/II	In progress

Courtesy of Eric Van Cutsem, MD, PhD

Source: https://www.clinicaltrials.gov/

UZ Danish randomized phase II trial: LEUVEN Trifluridine/tipiracil +/- bevacizumab for chemo-refractory mCRC

Courtesy of Eric Van Cutsem, MD, PhD


Pfeiffer P et al, Lancet Oncol 2020

TASCO1 in first line mCRC:

non-comparative phase II study

Courtesy of Eric Van Cutsem, MD, PhD

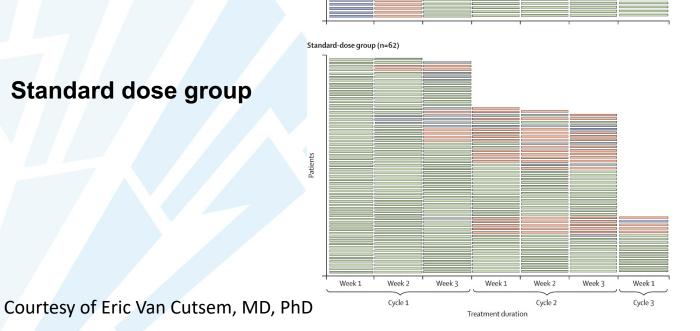
Van Cutsem E et al, Ann Oncol 2020. Van Cutsem E et al, ASCO GI 2021

Dose-escalation group (n=54)

Regorafenib dose-optimisation in patients with refractory metastatic colorectal cancer (ReDOS): a randomised, multicentre, open-label, phase 2 study

Tanios S Bekaii-Saab, Fanq-Shu Ou, Daniel H Ahn, Patrick M Boland, Kristen K Ciombor, Erica N Heying, Travis J Dockter, Nisha L Jacobs, Boris C Pasche, James M Cleary, Jeffrey P Meyers, Rodwige J Desnoyers, Jeannine S McCune, Katrina Pedersen, Afsaneh Barzi, E Gabriela Chiorean, Jeffrey Sloan, Mario E Lacouture, Heinz-Josef Lenz, Axel Grothey

Daily regorafenib dose received


🔲 0 mg

80 mg 🔲 120 mg

160 mg

Dose escalation arm

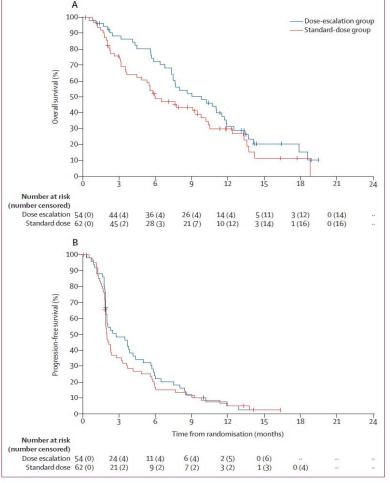
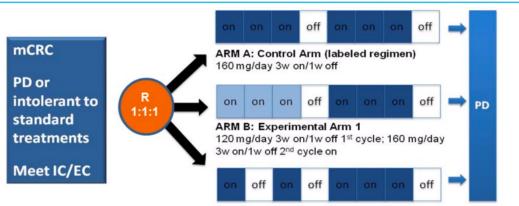



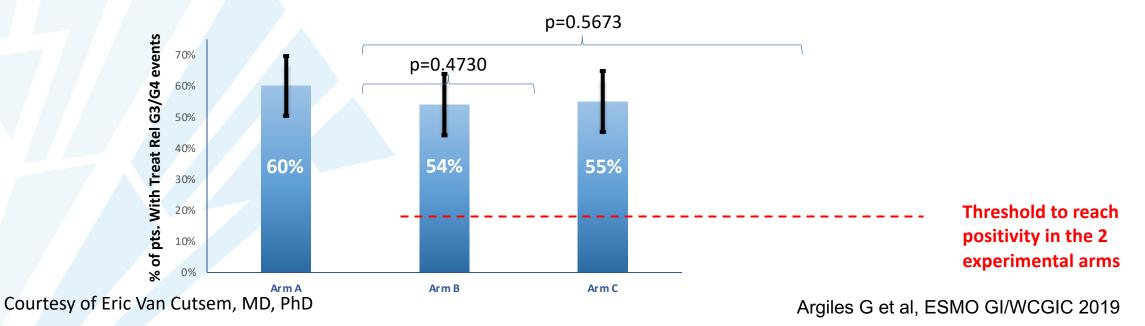
Figure 2: Overall survival (A) and progression-free survival (B) in the dose-escalation and standard-dose groups

Censored patients are marked on the curves with a cross.

The Lancet Oncology 2019: DOI: (10.1016/S1470-2045(19)30272-4)

W UZ LEUVEN REARRANGE Study: regorafenib optimal dose seeking

ARM C: Experimental Arm 2 160 mg/day 1w on/1w off 1st cycle; 160 mg/day 3w on/1w off 2nd cycle on


Primary endpoint:

 Safety :% of patients having G3/G4 AEs during the entire course of the treatment

Secondary endpoints:

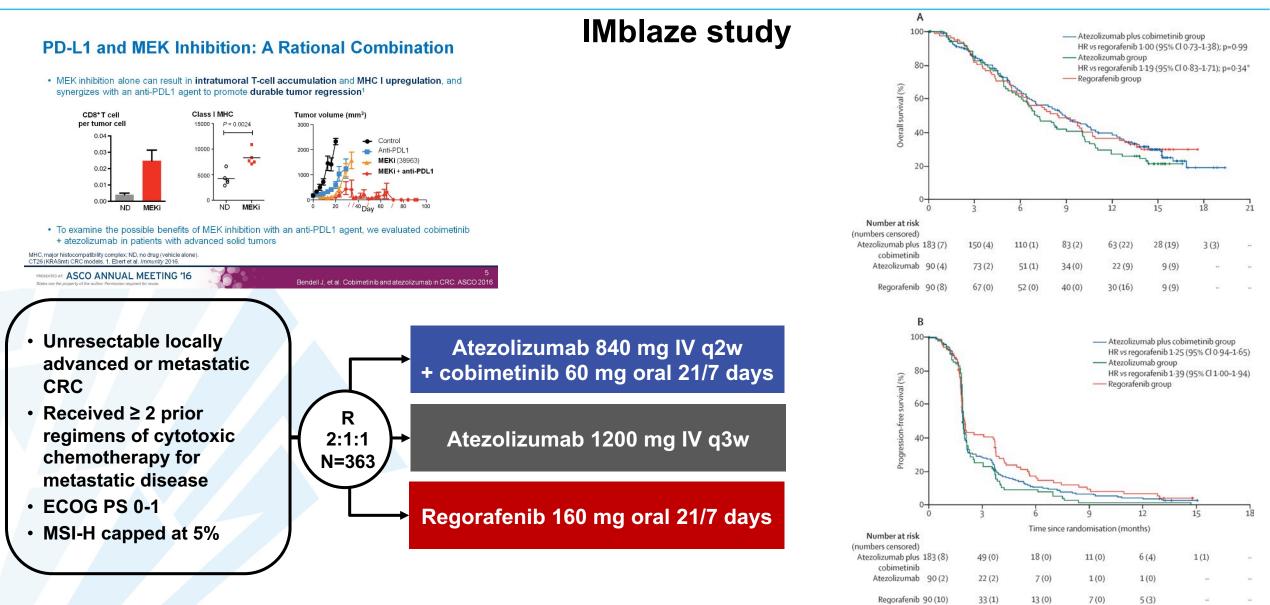
- OS
- PFS
- % of Patients starting C3 on each arm
- Dose intensity
- DCR

Primary Endpoint: Pts having G3/G4 AEs during treatment course

Appealing combinations:

- ✓ Interesting phase 2 study: trifluridine/tipiracil + bevacizumab
- Exploring other combinations e.g.
 - Cobimetinib + atezolizumab
 - Regorafenib + nivolumab
 - IO combinations + TKI

New drugs:


✓ Napabucasin✓ CAR-T-cells✓

Courtesy of Eric Van Cutsem, MD, PhD

Pfeiffer P et al, Lancet Oncol 2021; Van Cutsem E et al, Ann Oncol 2020; Hara H et al, ESMO GI/WCGIC 2019; Van Cutsem E et al, ESMO GI/WCGIC 2019, Eng C et al, Lancet Oncol 2019

W LEUVEN PD-L1 and MEK inhibition in MSS tumors

Courtesy of Eric Van Cutsem, MD, PhD

Eng C et al, Lancet Oncol 2019

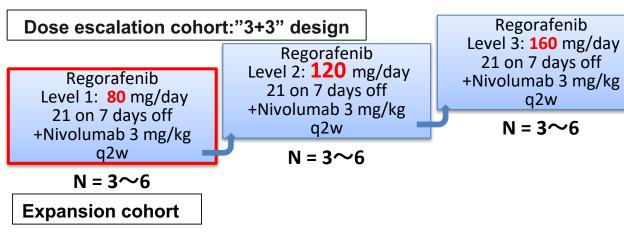
UZ Ongoing I/O combination trials in MSS CRC investigate LEUVEN strategies to turn "cold" tumors" into "hot"

	Anti-PD-L1	Anti-PD-1		
4 trials Atezolizumab	6 trials Durvalumab	4 trials Avelumab	15 trials Nivolumab	15 trials Pembrolizumab
+ Cobimetinib + bevacizumab ¹	 + Cabozantinib⁵ + Selumetinib ± tremelimumab⁶ 		+ Regorafenib ¹⁴	 + Maraviroc²⁷ + Romidepsin ± chemotherapy²⁸ + Grapiprant²⁹ + Binimetinib³⁰ + Pemetrexed + oxaliplatin⁴⁰
 Imprime PGG + bevacizumab or isatuximab or selicrelumab + bevacizumab vs regorafenib² 		+ Regorafenib ¹⁰	 + Regorafenib¹⁵ + Copanlisib¹⁶ + ONC201¹⁷ + Binimetinib ± ipilimumab¹⁸ + GO-004 GRT-C901/GRT-R902 ± ipilimumab²³ + Guadecitabine²⁶ 	 Epacadostat + azacitidine/INCB057643/ INCB059872³¹ Poly-ICLC³² Napabucasin³³ Regorafenib³⁴ EDP1503³⁵ Birinapant⁴¹ Entinostat³⁹
 + Bevacizumab + chemotherapy³ + Bevacizumab + chemotherapy⁴ 	 + Trametinib⁷ + Azacitidine⁸ + Monalizumab⁹ 	 + Cetuximab + chemotherapy¹¹ + eFT508¹² + Cetuximab + FOLFOX¹³ 	 + Relatlimab¹⁹ + BNC105 or + Panitumumab + napabucasin²⁴ ipilimumab²⁰ + Ipilimumab + + Ipilimumab²¹ temozolomide²⁵ + BNC105 or BBI608²² 	 + Navarixin³⁶ + Vicriviroc³⁷ + Bevacizumab + capecitabine³⁸

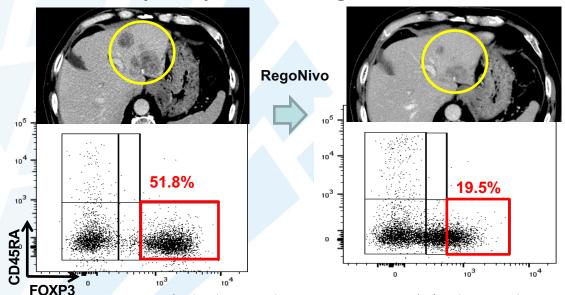
1. NCT02876224; 2. NCT03555149; 3. NCT03721653; 4. NCT03698461; 5. NCT03539822; 6. NCT02586987; 7. NCT03428126; 8. NCT02811497; 9. NCT02671435; 10. NCT03475953; 11. NCT03608046; 12. NCT03258398; 13. NCT03174405; 14. NCT03712943; 15. NCT03406871; 16. NCT03711058; 17. NCT03791398; 18. NCT03271047; 19. NCT03642067; 20. NCT03442569; 21. NCT03693846; 22. NCT03647839; 23. NCT03639714; 24. NCT03647839; 25. NCT03832621; 26. NCT03576963; 27. NCT03274804; 28. NCT02512172; 29. NCT03658772; 30. NCT03374254; 31. NCT02959437; 32. NCT02834052; 33. NCT02851004; 34. NCT03657641; 35. NCT03775850; 36. NCT03473925; 37. NCT03631407; 38. NCT03396926; 39. NCT02437136; 40. NCT03626922; 41. NCT02587962. ClinicalTrials.gov searched in June 2019. Studies may include combinations with additional agents.

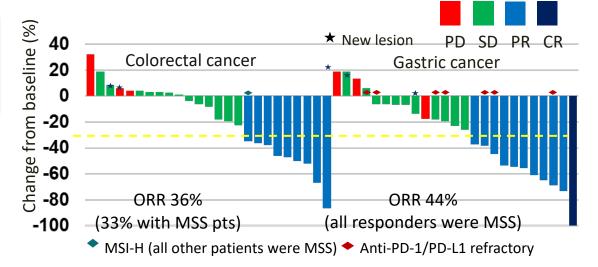
Courtesy of Eric Van Cutsem, MD, PhD

Ph1


Ph1/2

Ph2



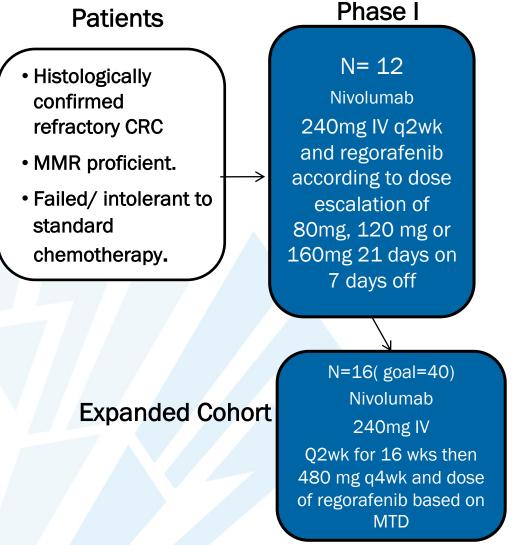

REGONIVO (SO-007: #96 ESMO GI2020)

Total N = 36 (Colorectal cancer, Gastric cancer) <u>Proof-of-Concept; Depletion of Tregs</u>

Summary (CIT in MSS)

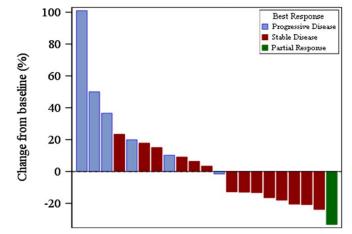
	REGO NIVO ¹⁾	KEYNOT E-028 ²⁾	CheckM	ate 142 ³⁾	IMblaz	e370 ⁴⁾	CCTG CO.26 ⁵⁾
Regimen	Nivo/ REG	Pembro	Nivo1/ Ipi3	Nivo3/ Ipi1	Atezo/ Cobi	Atezo	Durva/ Treme
Ν	25	23	10	10	183	90	119
MSS	96%	96%	100%	100%	93%	92%	98%
ORR	36% (MSS 33%)	4%	10%	0%	2.7%	2.2%	-
DCR	88%	20%	-	-	26.2%	21.1%	-
PFS	6.3m	1.8m	2.3m	1.31m	1.9m	1.9m	1.8m
OS	NR	5.3m	11.5m	3.73m	8.9m	7.1m	6.6m

1)Fukuoka S, et al. ASCO 2019 #2522. 2)O'Neil BH, et al. PLoS One 2017. 3)Overman MJ, et al. ASCO 2016. 4)Bendell J, et al. WCGC 2018. 5) Chen E, et al. ASCO-GI 2019. Hoff S, et al. ESMO 2017 #1198P. Hara H, et al. WCGC 2019 SO-007: #96.



Courtesy of Eric Van Cutsem, MD, PhD

Phase I/IB study of Regorafenib and Nivolumab in Mismatch Repair (MMR) Proficient Advanced Refractory Colorectal Cancer

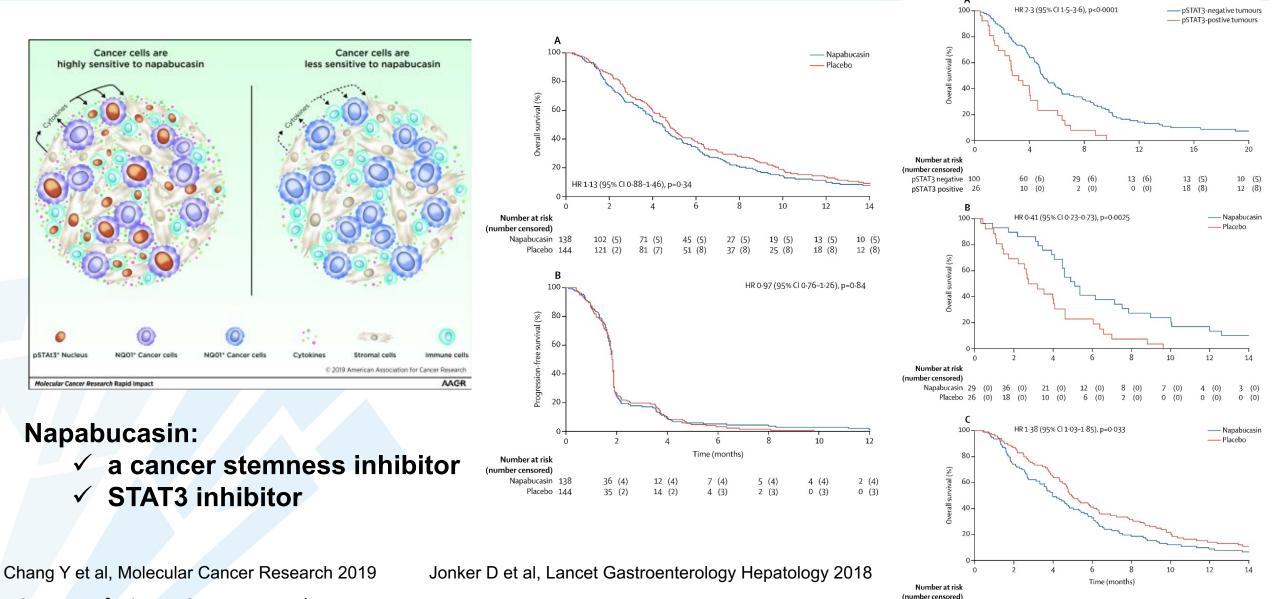


As of 3/2/2020, 28 patients were treated

Best Overall Response	N = 21
CR	0
PR (unconfirmed)	1 (4.8%)
SD	14 (66.7%)
DCR	15 (71.4%)
PD	6 (28.6%)

7 patients were not evaluable for RR (3 DLTs, 3 consent withdrawal and 1 clinical progression)

Kim R et al, Ann Oncol 2020, ESMO GI/WCGIC abstr 0-20


UZ Napabucasin versus placebo in refractory advanced colorectal cancer: a randomised phase 3 trial

11

13

10 (6)

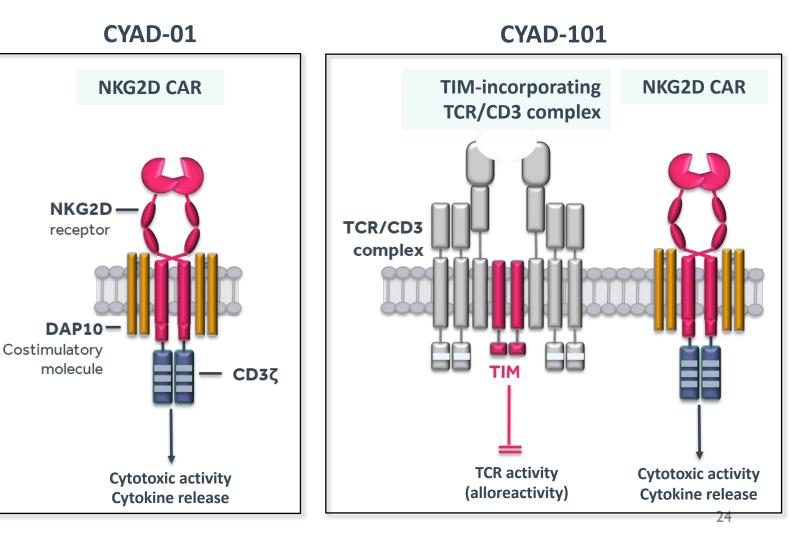
Napabucasin

Placebo 100

85

60

Courtesy of Eric Van Cutsem, MD, PhD


Two NKG2D CAR T-cells: autologous CYAD-01 and allogeneic CYAD-101

NKG2D is an activating receptor expressed on natural killer (NK) cells which binds up to eight ligands expressed on a broad range of malignancies and absent in normal tissues

EUVEN

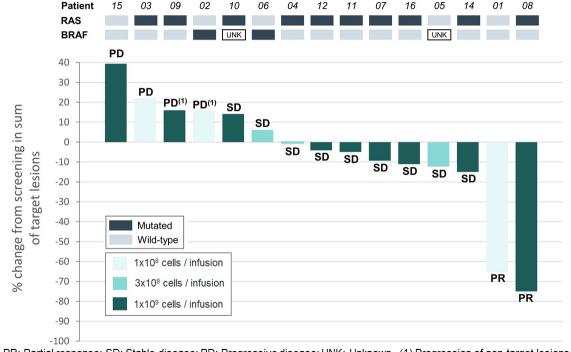
- CYAD-01 are <u>autologous</u> (patient's own cells) NKG2D-CD3ζ chimeric antigen receptor (CAR) T-cells
- CYAD-101 are <u>allogeneic</u> (healthy donorderived) NKG2D-CD3ζ CAR T-cells coexpressing a TCR inhibitory molecule (TIM) to reduce the alloreactivity

Courtesy of Eric Van Cutsem, MD, PhD

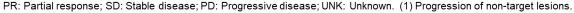
Van Cutsem E et al, Ann Oncol 2019, ESMO GI/WCGIC S-009

SHRINK and ALLOSHRINK Phase I clinical studies in mCRC

	SHRINK study (NCT03310008)	ALLOSHRINK study (NCT03692429)
Investigational product	Autologous (patient's derived cells) CYAD-01	Allogeneic (healthy donor's derived cells) CYAD-101
Patient population	 Unresectable mCRC and Recurrent/progressing after at least 1 metastatic line, Due to receive FOLFOX chemotherapy (re-challenge). mCRC with resectable liver metastases and Due to receive 1st line metastatic neoadjuvant FOLFOX treatment, No evidence of extra-hepatic metastases, Primary tumor resected or resectable. 	 Unresectable mCRC and Recurrent/progressing after at least 1 metastatic line, Due to receive FOLFOX chemotherapy (re-challenge).
Study design	 Apheresis at D-21 to produce CAR T-cells Concurrent administration of six FOLFOX cycles 3 CYAD-01 infusions Q2W at Day 3 of the 2nd, 3rd and 4th FOLFOX chemotherapy cycles Potential consolidation cycle of 3 CYAD-01 infusions with or without concurrent FOLFOX if no progression after 1st cycle of treatment 	 [no apheresis !] Concurrent administration of six FOLFOX cycles 3 CYAD-101 infusions Q2W at Day 3 of the 1st, 2nd and 3rd FOLFOX chemotherapy cycles
Doses	 3 dose-levels (dose escalation, 3+3 design) 1x10⁸, 3x10⁸ and 1x10⁹ CYAD-01 per injection 	 3 dose-levels (dose escalation, 3+3 design) 0 1x10⁸, 3x10⁸ and 1x10⁹ CYAD-101 per injection


Courtesy of Eric Van Cutsem, MD, PhD

Van Cutsem E et al, Ann Oncol 2019, ESMO GI/WCGIC S-009



Updated data from the alloSHRINK Phase 1 First-in-Human Study evaluating CYAD-101, an innovative Non-Gene-Edited Allogeneic CAR-T, in mCRC

Results – change of target lesions

- At the highest CYAD-101 dose level (n = 9), 6 patients have shown some evidence of tumor control by RECIST 1.1 criteria
- The median progression freesurvival is 3.94 months (range: 1.2-8.1 months)
- The overall survival is **10.58** months (range: 1.9-18.7 months)

Courtesy of Eric Van Cutsem, MD, PhD

Presented By Prenen H.... Van Cutsem E at 2021 Gastrointestinal Cancers Symposium

Male patient, born in 1966

- 12-2017: sigmoid adenocarcinoma with livermetastases, multipele, not-resectable
- ECOG 0; normal organ function.
- Start FOLFOX + bevacizumab . Objective response

CEA: decrease from 600 to 8.7

- 08-2018: chemo break no maintenance chemo
- 12-2018: progression.
- Inclusion in phase 3 trial: FOLFIRI +/- napabucin
- Initial response, but after 9 months slight progression
- 09-2019: reintroduction: FOLFOX-bevacizumab.
- 03-2020: increase of CEA and progression of liver metastases and a few small lung metastases.

Male patient, born in 1966

- Second opinion in Leuven:
- ECOG 1; normal organ function
 Tumor: N-RAS mutation, MSS, BRAF wild type, HER-2 neg, NTRK negative
- 06-2020: Start trifluridine/tipiracil (TAS-102) + bevacizumab in Leuven.
- Till 12-2020: Tumor stabilisation ; very good clinical condition

Male patient, born in 1966

Banker; fighter and very motivated

- 06-2014: rectum adenocarcinoma. Pre-opstaging MRI: cT3N0M0 Neo-adjuvant chemoradiotherapy (50Gy, continuous infusion 5FU). pTN3N0MO postoperative adjuvant chemotherapy 5FU/LV 4 months till early 2015.
- 03-2016: elevated CEA & liver metastases bilobar with localisation close to central vessels not resectable.

Inclusion in Module study – induction with 8 cycli Folfox/bevacizumab Objective response after 4 and confirmed (deeper response) afeter 8 courses.

- 30/06/2016: laparoscopic microwaveablation of 4 levermetastases (S7, S5/8, S8, S6) Postoperative mFOLFOX-bevacizumab.
- 9/2016: No evidence of disease stop chemo
- 04/2017: increased CEA: 3 small lung metastases & 2 new liver metastases: reintroduction of mfolfox + bevacizumab

Courtesy of Eric Van Cutsem, MD, PhD

Male patient, born in 1966

- 06/2017: after 4 cycli: response of liver metastases (segment 4b and 7) and decrease of 3 lung metastases in right lung lower lobe, right mid lobe, and left lower lobe
 - ✓ Laparoscopic right hemihepatectomy (intentention 2 stage lung resection)
 - ✓ 08/2017: ct thorax abdomen: no livermetastases, growth of 3 lungmetastases
 - ✓ 09/2017: Bilateral thoracoscopic wedge resection (right lung lower lobe, right mid lobe, and left lower lobe) of 3 lung metastases (histology adenocarcinoma, R0 resection)
- Postoperative mFOLFOX-bevacizumab till 01/2018: NED.

Male patient, born in 1966

- 05/2018: Relapse with 2 small lung metastases and 2 liver metastases (oligometastastatic) ECOG PS: 0; Normal organ function Tumor: MSS - KRAS mutation; BRAF wt;
 - no other druggable alterations
- Inclusion in Canstem303c study (Folfiri +bevacizumab + BBI-608 (napabucasin)

Partial response of lung metastases and disappearance of liver metastases

11/2018: Thorascopic resection of 2 lung metastases: right lung (wedge)
 NED

Male patient, born in 1966

- 04/2019: progression inclusion in alloSHRINK study (Folfox 6 cycles till July 2019 + CAR-T cells CYAD-101 3 administrations)
- 06/2019: partial response
- 12/2019: persisting response
- 3/2020: progression: reintroduction of FOLFOX/bevacizumab : regression
 9/2020: chemo break
- 12/2020: WHO: 0 and normal organ function, but progression of lung and liver metastases:

reintroduction of FOLFOX/bevacizumab February 2021: treatment ongoing ECOG PS: 0 toxicity: fatigue Gr 1 and PNP grade 1