

Optimal Management of HER2-Positive and FGFR2-Positive Gastroesophageal Cancers

Daniel Catenacci, MD

Associate Professor

Director, GI Medical Oncology

University of Chicago

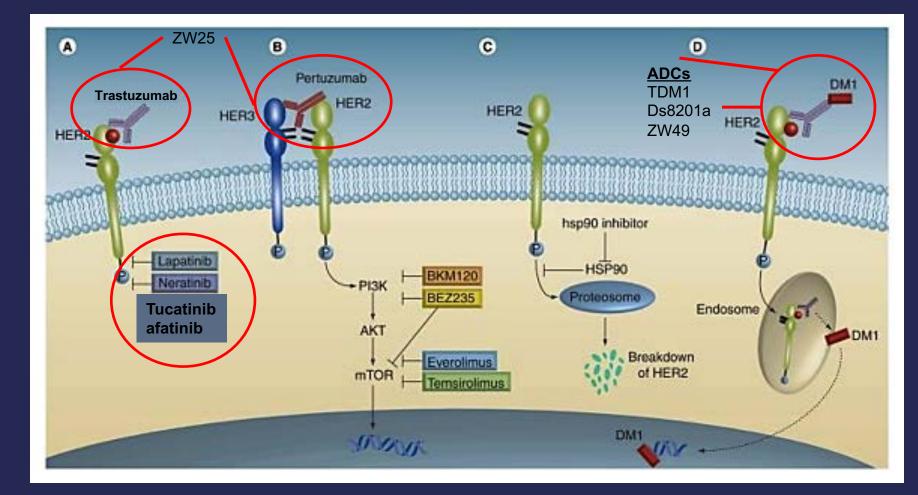
First Line Management of Advanced Gastroesophageal Adenocarcinoma

4. Van Cutsem, et al. JCO 2006

5. Dank, et al. Ann Oncol 2008

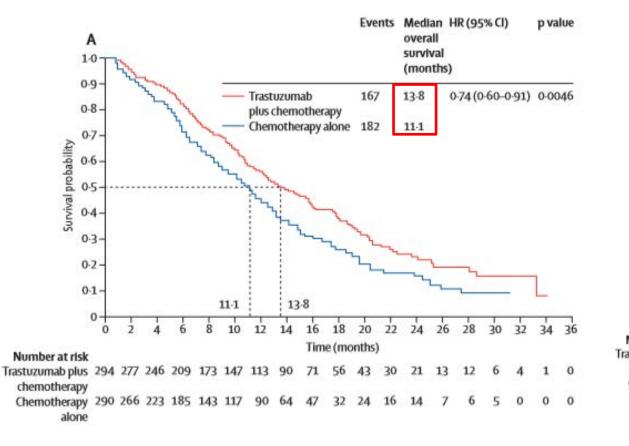
BSC = best supportive care; MTX = methotrexate; S = S-1; A = doxorubicin F = 5-FU; C/P = cisplatin; I = irinotecan; E = epirubicin; O = oxaliplatin; D = docetaxel

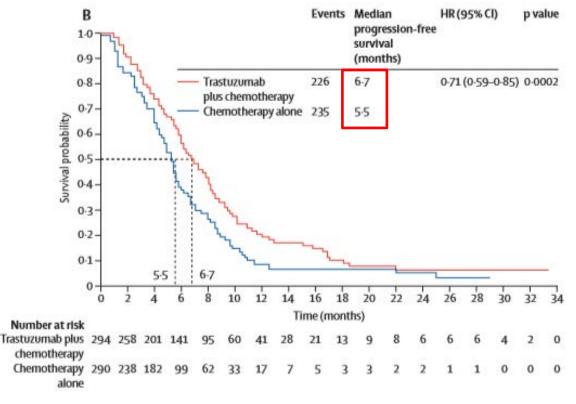
- 1. Murad, et al. Cancer 1993
 6. Cunningham, et al. NEJM 2008


 2. Vanhoefer, et al. JCO 2000
 7. Kang, et al. Ann Oncol 2009

 3. Ajani, et al. ASCO 2009
 8. Guimbaud, et al. JCO 2014
 - 9. Shah, et al. JAMA ONC 2016

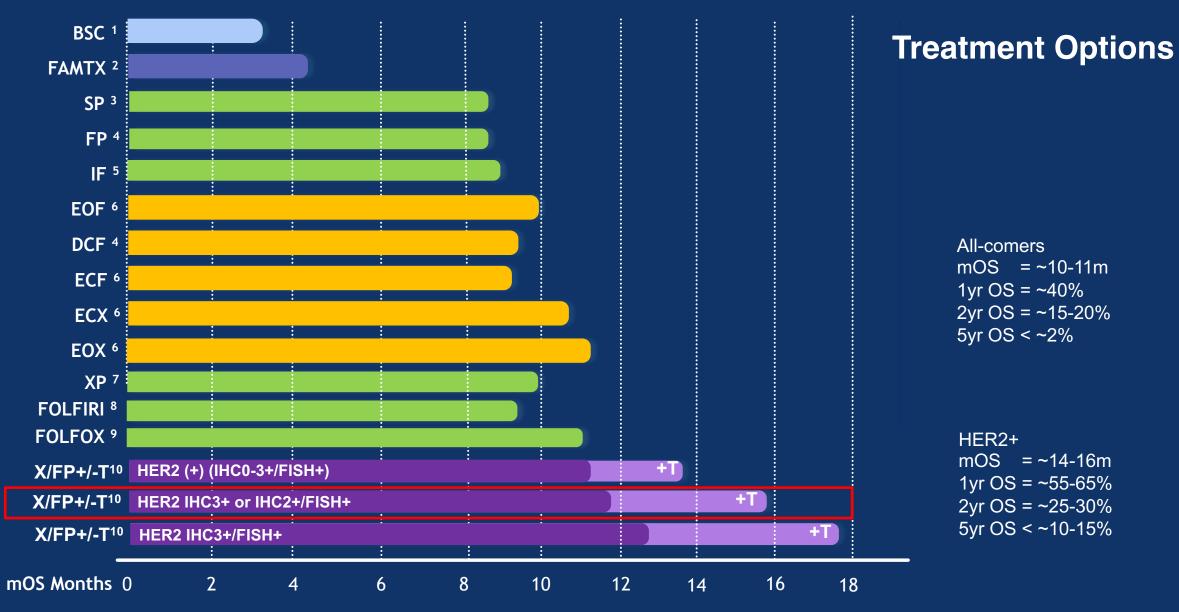
Anti-HER2 therapies


HER2 amp ~10-15% GEA


~10% Gastric ~15-20% EGJ

Gajria, Chandarlapaty. HER2-amplified Breast Cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther 2011.

The ToGA phase III study for HER2-positive advanced gastric or gastro-esophageal junction cancer


Bang et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010 Courtesy of Daniel Catenacci, MD

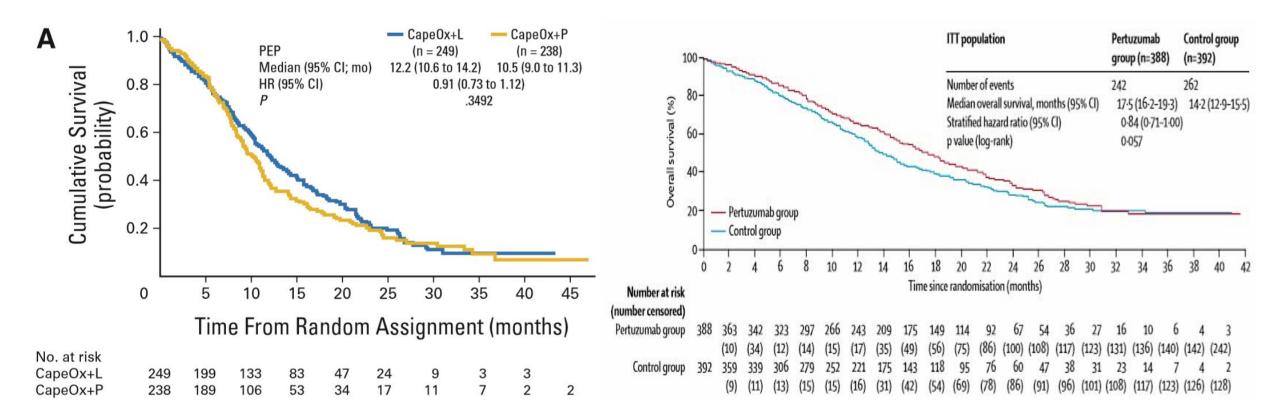
ToGA: Subgroup analysis by HER2 status

Subgroup	Screened ~4000 pts	Ν	Median OS (months)	HR	95% CI
All		584	11.1 vs. 13.8	0.74	0.60, 0.91
Pre-planned ana	lysis				
IHC 0/FISH+		61	7.2 vs. 10.6	0.92	0.48, 1.76
IHC 1+/FISH+		70	10.2 vs. 8.7	1.24	0.70, 2.20
IHC 2+/FISH+		159	10.8 vs. 12.3	0.75	0.51, 1.11
IHC 3+/FISH+		256	12.3 vs. 17.9	0.58	0.41, 0.81
IHC 3+/FISH-		15	17.7 vs. 17.5	0.83	0.20, 3.38
Exploratory anal	ysis				
IHC 0 or 1+/FISH+		131	8.7 vs. 10.0	1.07	0.70, 1.62
IHC 2+/FISH+ or IHC		446	11.8 vs. 16.0	0.65	0.51, 0.83
Fa	0.2 0.4 0.6 1 2 3 4 5 vours Risk Favou				

Interaction of treatment effect with HER2 results in exploratory analysis, *p*=0.0368

Bang et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010 Courtesy of Daniel Catenacci, MD

1. Murad, et al. Cancer 1993 2. Vanhoefer, et al. JCO 2000 3. Ajani, et al. ASCO 2009 4. Van Cutsem, et al. JCO 2006

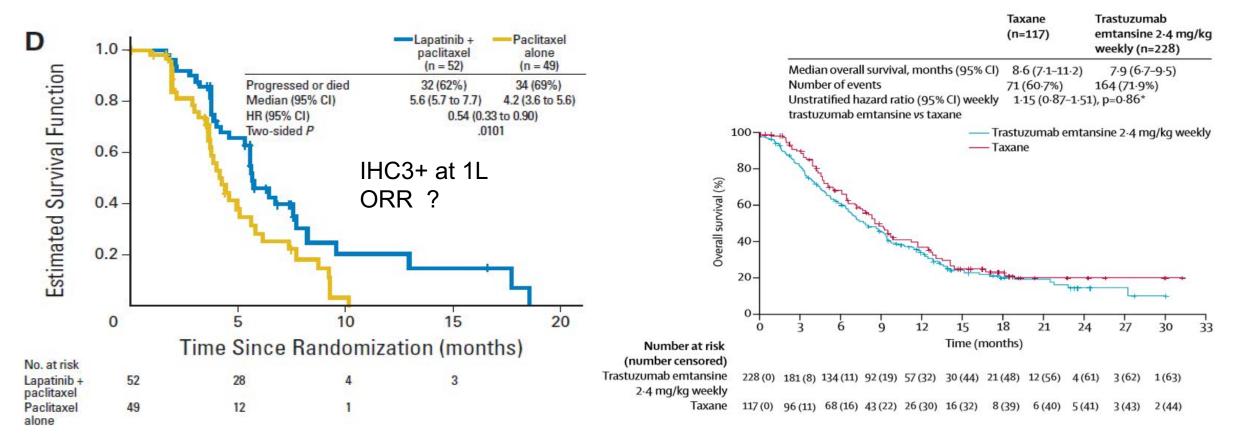

5. Dank, et al. Ann Oncol 2008 6. Cunningham, et al. NEJM 2008 7. Kang, et al. Ann Oncol 2009 8. Guimbaud, et al. JCO 2014

9. Shah et al. JAMA Oncol 2016. 10. Bang et al. Lancet 2010.

Other First Line Studies for HER2-Positive Advanced Disease

LOGiC

JACOB



Hecht et al. Lapatinib in Combination With Capecitabine Plus Oxaliplatin in Human Epidermal Growth Factor Receptor 2–Positive Advanced or Metastatic Gastric, Esophageal, or Gastroesophageal Adenocarcinoma: TRIO-013/LOGiC— A Randomized Phase III Trial. *JCO* 2015

Tabernero et al. **Pertuzumab** plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): final analysis of a double-blind, randomised, placebo-controlled phase 3 study. *Lancet Oncol* 2018

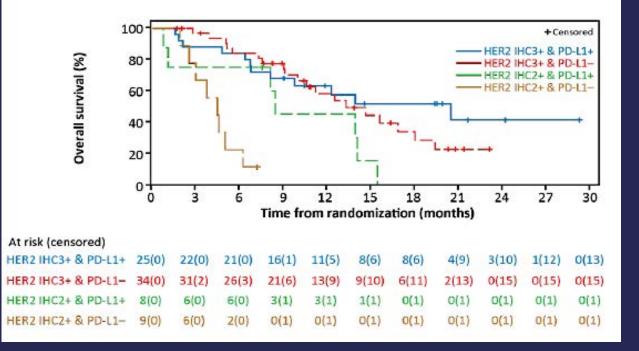
Other Second Line Studies for HER2-Positive Advanced Disease

TyTAN

Satoh et al. **Lapatinib** Plus Paclitaxel Versus Paclitaxel Alone in the Second-Line Treatment of HER2-Amplified Advanced Gastric Cancer in Asian Populations: TyTAN— A Randomized, Phase III Study. *JCO* 2014

Thuss-Patience et al. **Trastuzumab emtansine** versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): an international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol 2018

GATSBY

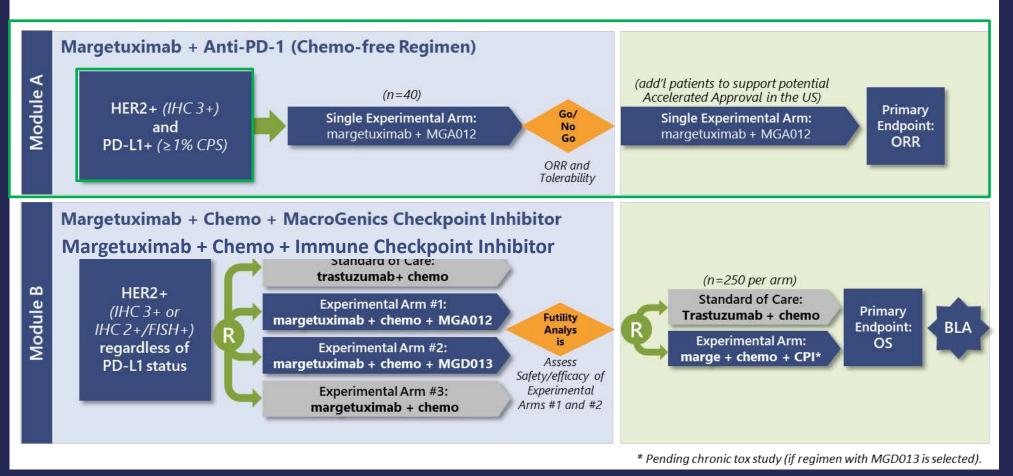

Second Line – Margetuximab/Pembrolizumab (Phase Ib/II CP-MGAH222-05 Trial)

	Num of patie	response* (%; 95% CI)	Disease control rate† (%; 95% CI)
Response-evaluable population‡	92	17 (18%; 11-28)§	49 (53%; 43-64)
HER2 IHC3-positive tissue prior to 1L	71	100%17 (24%; 15-36)	44 (62%; 50-73)
HER2 IHC2-positive	21	0	5 (24%; 8-47)
PD-L1-positive tissue prior to 1L	33	79% 11 (33%; 18-52)	22 (67%; 48-82)
PD-L1-negative	43	3 (7%; 1-19)	19 (44%; 29-60)
HER2 IHC3-positive and PD-L1-positive	25	11 (44%; 24-65)	18 (72%; 51-88)
HER2 IHC3-positive and PD-L1-negative	34	3 (9%; 2-24)	19 (56%; 38-73)
HER2 IHC2-positive and PD-L1-positive	8	0	4 (50%; 16-84)
HER2 IHC2-positive and PD-L1-negative	9	0	0
HER2=-positive ctDNA prior to 2L	48	88% 15 (31%; 19-46)	31 (65%; 49-78)
HER2	35	2 (6%; 1-19)	14 (40%; 24-58)
HER2***-positive and PD-L1-positive	18	9 (50%; 26-74)	14 (78%; 52-94)
HER2*** - positive and PD-L1-positive and HER2 IHC3-positive	15	9 (60%; 32–84)	12 (80%; 52–96)
HER2 - positive and PD-L1-negative	19	3 (16%; 3-40)	12 (63%; 38-84)
HER2***-positive and HER2 IHC2-positive	9	0	2 (2%; 3-60)
HER2***P-positive and PD-L1-negative and HER2 IHC2-positive	4	0	0

This table includes only confirmed responses; there were three additional unconfirmed responses. ctDNA=circulating tumour DNA. HER2***=HER2 amplification by ctDNA. IHC=Immunohistochemistry. *Confirmed complete response and confirmed partial response. †Confirmed complete response, confirmed partial response, and stable disease. ‡Patients who received at least one dose of margetuximab 15 mg/kg intravenously every 3 weeks and had baseline measurable disease. §One confirmed complete response was observed in the double-positive (HER2 IHC3-positive and PD-L1-positive) subgroup.

Table 4: Objective response and disease control rates overall and by biomarker expression (n=92)

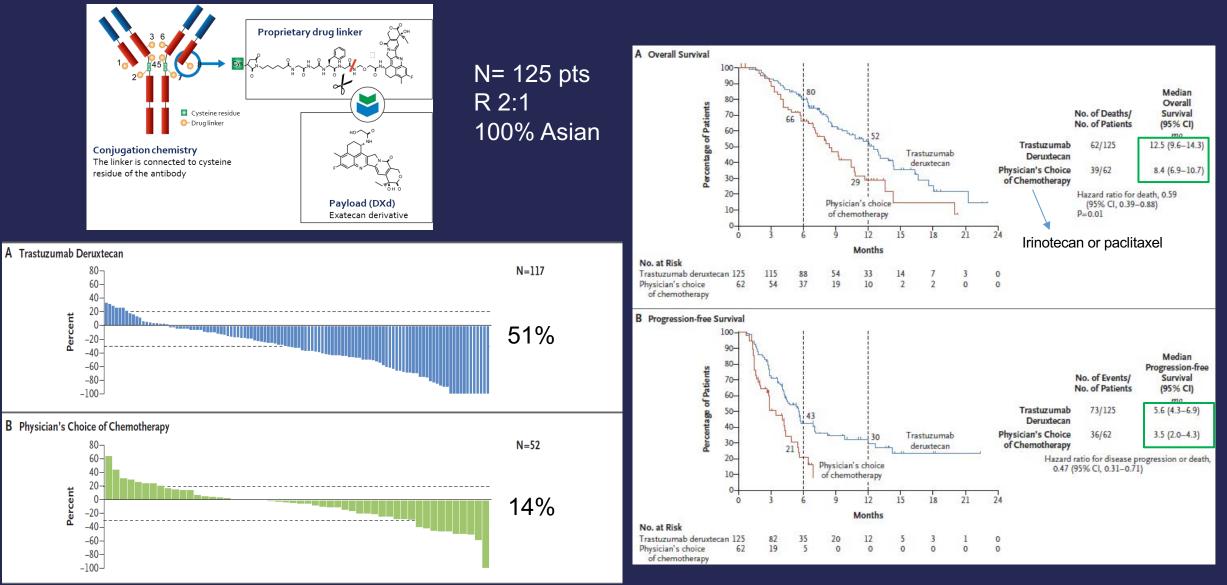
F. HER2 (n=7	2 & PD-L1 IHC OS /6)ª	HER2 IHC3+ & PD-L1+ (n=25)	HER2 IHC3+ & PD-L1- (n=34)	HER2 IHC2+ & PD-L1+ (n=8)	HER2 IHC2+ & PD-L1- (n=9)
	# of events	12	19	7	8
	Median OS (95% CI)	20-47 months (8-08–NA)	13-27 months (9-95-18-00)	8-41 months (0-72-14-03)	4-44 months (1-87-6-21)
	Double positive vs others:	HR by Cox mode	I, 0-54; 95% CI, 0	-28-1-04; Log-rai	nk p=0.0628
	12-month OS rate (95% CI)	63·14% (40·91–78·94)	58-06% (37-64-73-89)	45·00% (10·76–75·13)	0



Courtesy of Daniel Catenacci, MD

Catenacci et al. Margetuximab plus pembrolizumab for previously treated, HER2-positive GEA (CP-MGAH22–05): a single-arm, phase 1b–2 trial. Lancet Oncology 2020

First Line – Margetuximab Plus Immune Checkpoint Inhibitor


MAHOGANY Phase 2/3 Study: Registration Path in 1L Gastric & GEJ Cancer

MGA012 is an investigational anti-PD-1 monoclonal antibody

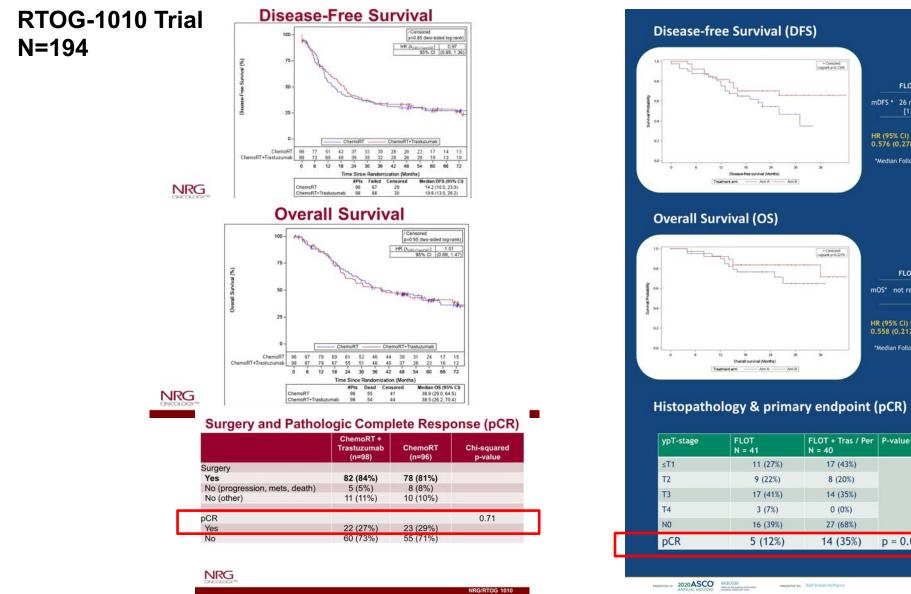
MGD013 is an investigational agent targeting both PD-1 and LAG-3 Courtesy of Daniel Catenacci, MD

DESTINY-Gastric01 Trial: Third Line – Trastuzumab Deruxtecan

Shitara et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. NEJM 2020

DESTINY-Gastric01: TRAE in ≥20% of Pts

A total of 12 pts had trastuzumab deruxtecan-related interstitial lung disease or pneumonitis (Grade 1 or 2 in 9 patients and Grade 3 or 4 in 3)


Pneum	ionitis:
12 pat	ients (9.6%)
G1/2: 9	9 (7.2%)
G1:	3 (2.4%)
G2:	6 (4.8%)
G3/4: 3	3 (2.4%)
G3:	2 (1.6%)
G4:	1 (0.8%)

Dnoumonitic:

		T-DXd (n = 125)	PC Overall (n = 62) Grade			
		Grade				
Preferred Term, %	Any	3	4	Any	3	4
Any	100.0	60.8	8.4	98.4	41.9	11.3
Nausea	63.2	4.8	0	46.8	1.6	0
Neutrophil count decreased ^a	63.2	38.4	12.8	35.5	16.1	8.1
Decreased appetite	60.0	16.8	0	45.2	12.9	0
Anemia ^b	57.6	37.6	0	30.6	21.0	1.6
Platelet count decreased ^c	39.2	9.6	1.6	6.5	1.6	1.6
White blood cell count decreased ^d	37.6	20.8	0	35.5	8.1	3.2
Malaise	34.4	0.8	0	16.1	0	0
Diarrhea	32.0	2.4	0	32.3	1.6	0
Vomiting	26.4	0	0	8.1	0	0
Constipation	24.0	0	0	22.6	0	0
Pyrexia	24.0	0	0	16.1	0	0
Alopecia	22.4	0	0	14.5	0	0
Fatigue	21.6	7.2	0	24.2	3.2	0
Lymphocyte count decreased®	21.6	6.4	4.8	3.2	0	1.6

Shitara K, et al. ASCO 2020. Abs 4513.

Perioperative anti-HER2 studies

Safran et al. RTOG1010 Phase III. ASCO 2020

Hofheinz et al. PETRARCA Phase II. ASCO 2020 Courtesy of Daniel Catenacci, MD

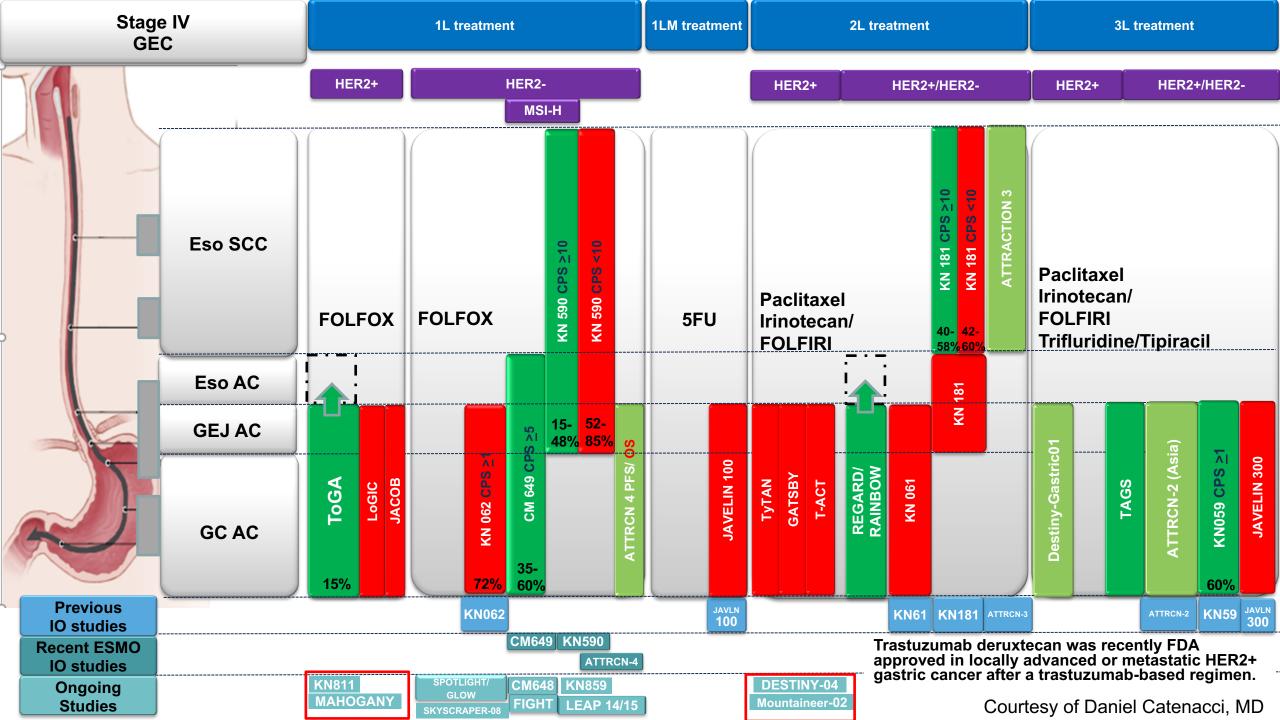
p = 0.02

FLOT / T + P

FLOT / T + P

FLOT mDFS* 26 months not reached

[13 - n.r.] HR (95% CI) for Arm B vs. Arm A: 0.576 (0.278 - 1.139), p = 0.14

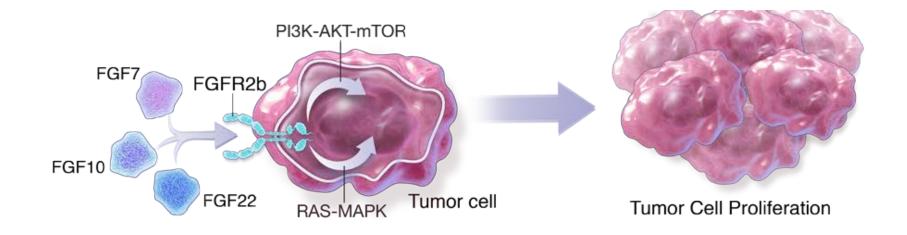

*Median Follow-up 22 months

FLOT

mOS* not reached not reached

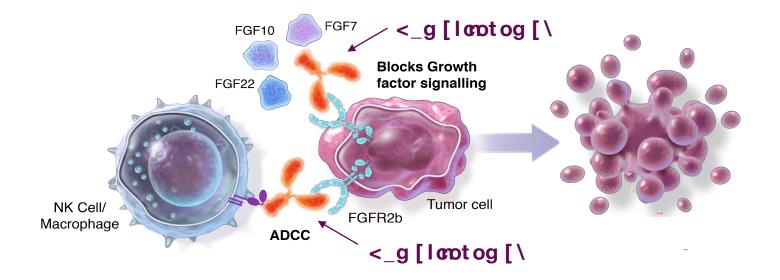
0.558 (0.212 - 1.470), p = 0.24 *Median Follow-up 22 months

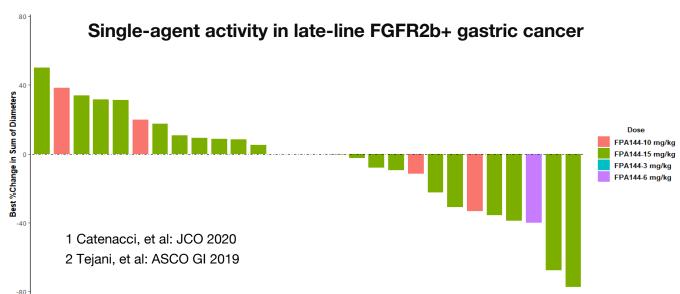
PETRARCA Trial N=81


A double-blind randomized study of bemarituzumab (bema) plus mFOLFOX6 versus placebo plus mFOLFOX6 as first-line treatment for advanced gastric/gastroesophageal junction cancer (FIGHT)

Authors: Zev Wainberg,¹ Peter Enzinger,² Yoon-Koo Kang³, Kensai Yamaguchi,⁴ Shukui Qin,⁵ Keun-Wook Lee,⁶ Sang Cheul Oh,⁷ Jin Li,⁸ Haci Mehmet Turk,⁹ Alexandra Teixeira,¹⁰ Giovanni Gerardo Cardellino,¹¹ Rachel Guardeno Sanchez,¹² Siddhartha Mitra,¹³ Yingsi Yang,¹³ Helen Collins,¹³ Daniel V Catenacci¹⁴

¹University of California, Los Angeles, USA, ²Dana Farber Cancer Institute, Boston, USA, ³Asan Medical Center, Seoul, South Korea, ⁴The Cancer Institute Hospital of JFCR, Koto-Ku, Tokyo, Japan, ⁵81 Hospital Nanjing University of Chinese Medicine, Nanjing, China, ⁶Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, S.Korea, ⁷Korea University Guro Hospital, Seoul, S.Korea, ⁸Shanghai East Hospital, Shanghai, China, ⁹Bezmialem Vakif Universitesi Tip Fakultesi Hastanesi, Fatih, Turkey, ¹⁰Hospital Senhora Da Oliveira, Guimaraes, Portugal, ¹¹Dipartimento di Oncologia, Azienda Ospedaliero Universitaria, Udine, Italy, ¹²Institut Catala d Oncologia Girona, Spain, ¹³FivePrime Therapeutics, South San Francisco, USA, ¹⁴University of Chicago, Chicago, USA


Fibroblast Growth Factor Receptor 2b (FGFR2b) in Cancer

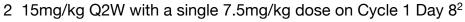

- FGFR2b is a member of the FGFR family (FGFR1-4) and is a splice isoform of FGFR2
- FGFR2b overexpression: 3-61% of gastric cancer depending on tumor stage and assay¹

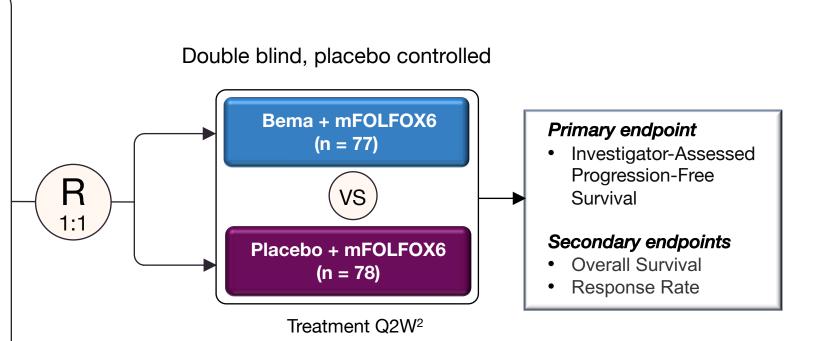
 FGFR tyrosine kinase inhibitors² have shown clinical benefit in cancers with FGFR mutations, fusions or translocations

Bemarituzumab is an IgG1 antibody specific for the FGFR2b Receptor

- Confirmed ORR = 18% (n=28)¹
- No dose-limiting toxicities
- Corneal adverse events in 3/28 patients
- Recommended Phase 2 dose: 15mg/kg Q2W with a single 7.5mg/kg dose on Cycle 1 Day 8²

FIGHT Trial Design

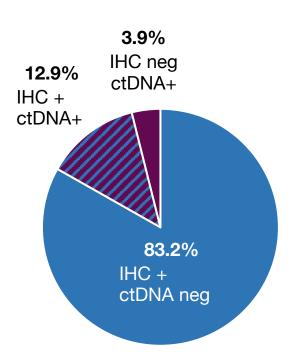

Key Eligibility Criteria


- No prior therapy for unresectable locally advanced or metastatic gastric/GEJ adenocarcinoma
- RECIST v1.1 evaluable disease
- FGFR2b overexpression by IHC and/or FGFR2 gene amplification by ctDNA¹
- ECOG 0/1
- HER2 not positive
- May receive 1 dose of mFOLFOX6

Stratification Factors

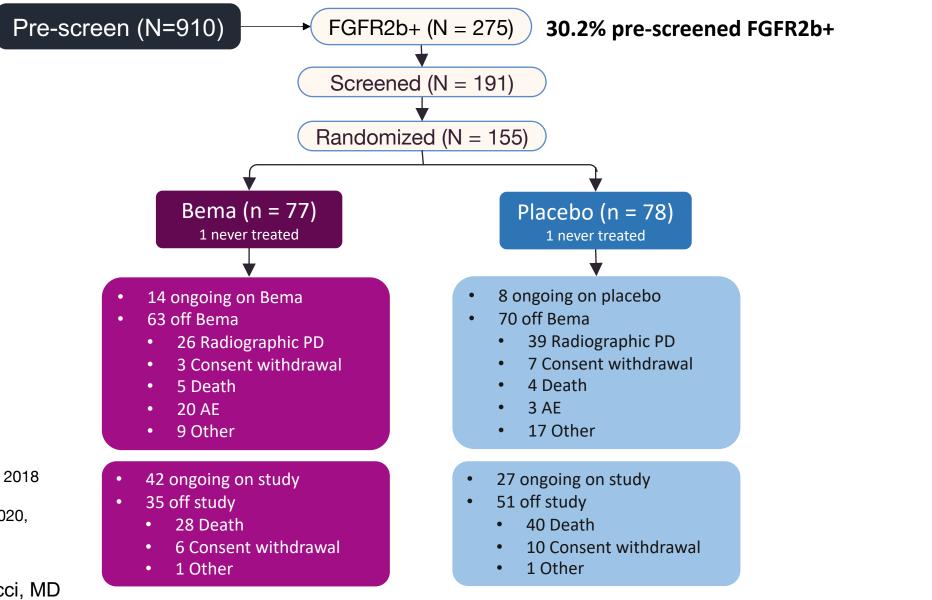
- Geographic region
- Single dose of mFOLFOX6 during screening
- Prior adjuvant or neo-adjuvant chemotherapy

1 Central testing: Immunohistochemical stain (Ventana): cut-off any 2+/3+; circulating tumor DNA (PGDx): cut-off 1.5X

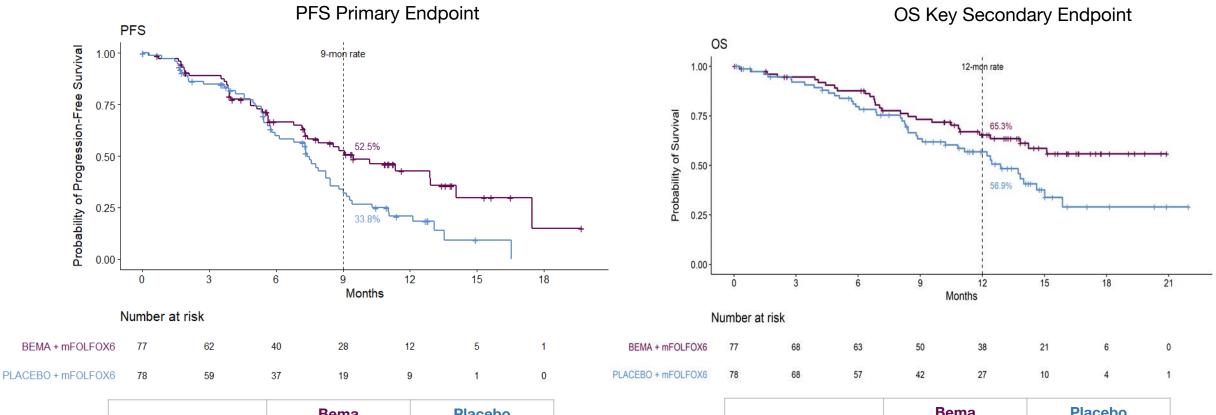

Statistical Plan

Trial initially designed as registrational Phase 3 (n=548) with 2-sided α 0.05 Amended after enrolling n = 155 to a proof-of-concept Phase 2 with pre-specified statistical assumptions of:

- Hierarchical sequential testing: PFS, then OS/ORR
- ≥84 events to demonstrate benefit at a HR≤0.76 for PFS at 2-sided α of 0.2

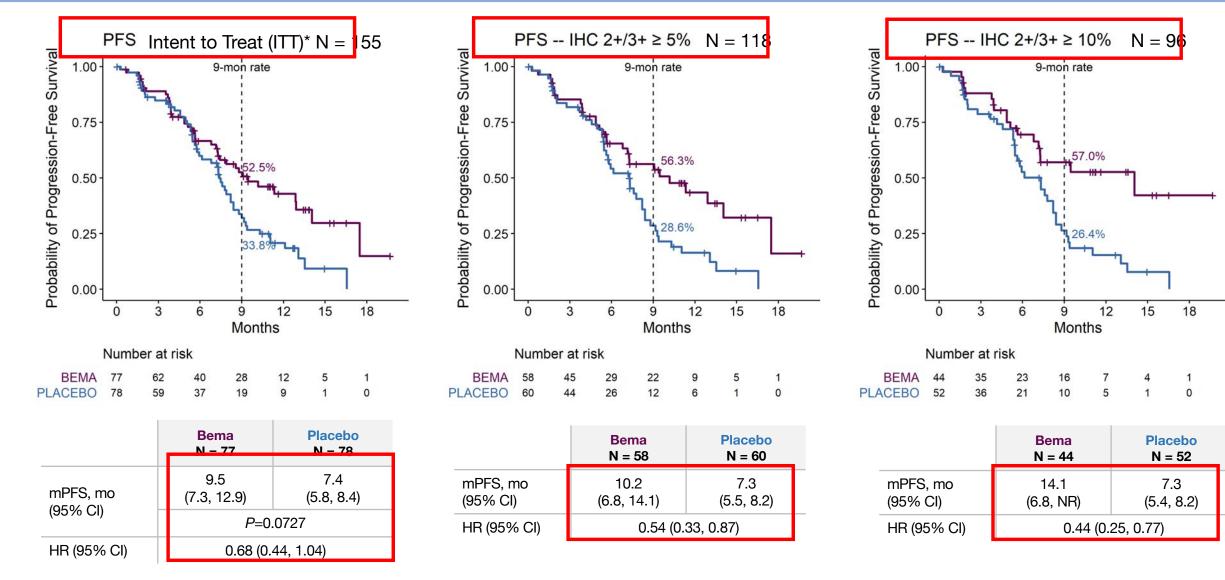

Demographics and Baseline Characteristics

Demographics/Characteristics n (%)	Bema + mFOLFOX6 (N = 77)	Placebo + mFOLFOX6 (N = 78)
Age, median (range), years	60.0 (23, 80)	59.5 (33, 84)
Gender, male (%)	52 (67.5%)	59 (75.6%)
Race, Asian (%)	45 (58.4%)	44 (56.4%)
Region		
US/EU	32 (41.6%)	34 (43.6%)
China	14 (18.2%)	13 (16.7%)
Rest of Asia	31 (40.3%)	31 (39.7%)
Single Dose of mFOLFOX6 Prior to Randomization	35 (45.5%)	36 (46.2%)
Measurable Disease at Baseline	66 (85.7%)	60 (76.9%)
FGFR2b status		
Overexpression based on IHC	73 (94.8%)	76 (97.4%)
Amplification based on ctDNA	12 (15.6%)	14 (17.9%)
Both Overexpression and Amplification	8 (10.4%)	12 (15.4%)

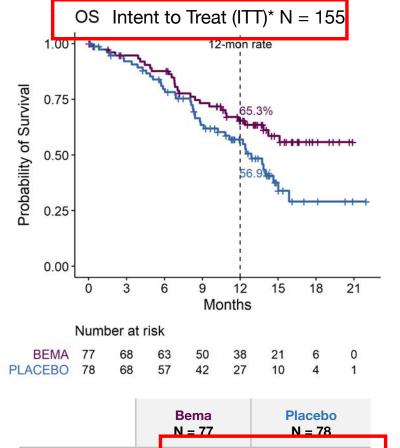

FGFR2b status of enrolled patients

Study Disposition

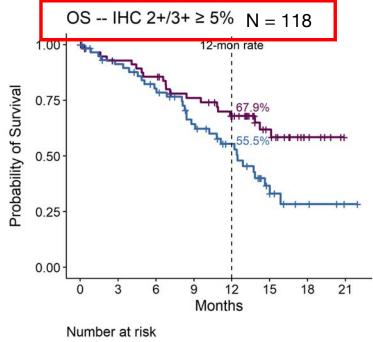
Enrollment period: 28 September 2018 to 12 May 2020 Data cutoff date 23 September 2020, median follow up is 10.9 months (range, 0.03-22)


Progression-Free Survival and Overall Survival: Intent to Treat

	Bema N = 77	Placebo N = 78		
Median PFS, mo	9.5 (7.3, 12.9)	7.4 (5.8, 8.4)		
(95% CI)	<i>P</i> =0.0727			
HR (95% CI)	0.68 (0.44, 1.04)			

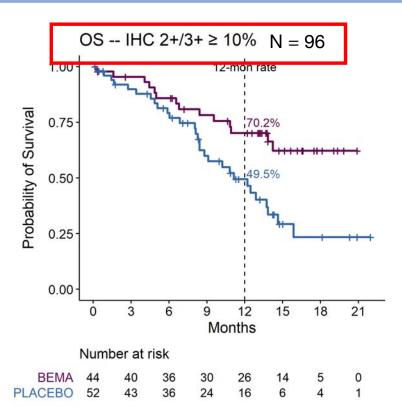

	Bema N = 77	Placebo N = 78	
Median OS, mo	NR (13.8, NR)	12.9 (9.1, 15.0)	
5% CI)	P=0.0	0268	
R (95% CI)	0.58 (0.35, 0.95)		

Progression-Free Survival Benefit Increased with Higher Levels of FGFR2b Overexpression

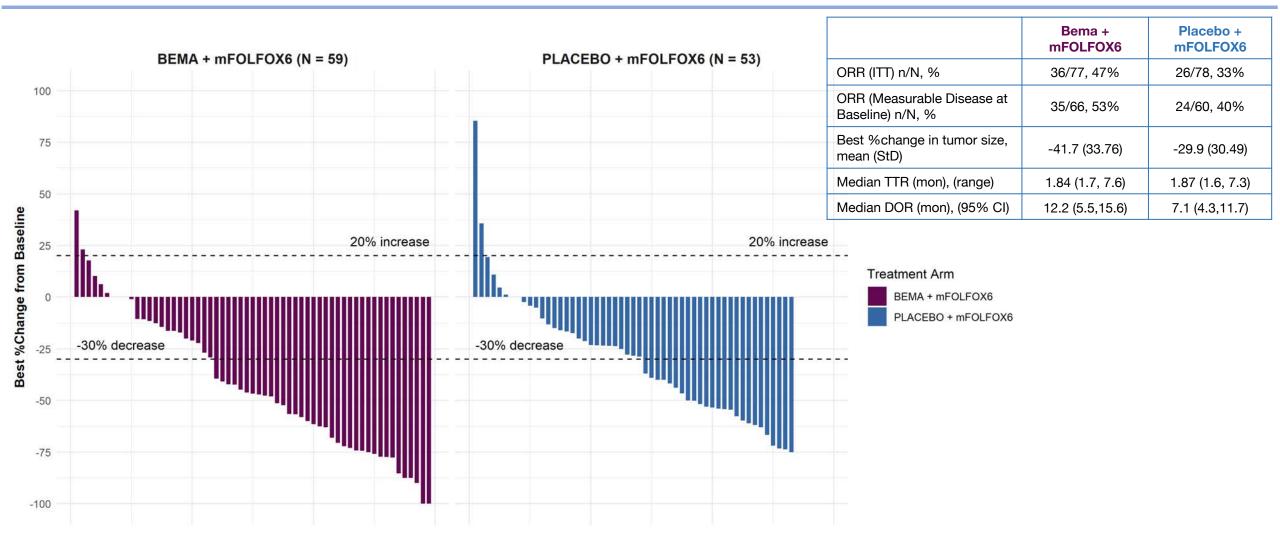


*ITT = 149 with IHC 2+/3+ and 6 pts with IHC <2+ or not available who were enrolled based on ctDNA alone

Overall Survival Benefit Increased with Higher Levels of FGFR2b Overexpression



	Bema N = 77	Placebo N = 78	
mOS, mo (95% Cl)	NR (13.8, NR)	12.9 (9.1, 15.0)	
(95% CI)	<i>P</i> =0	.0268	
HR (95% CI)	0.58 (0.35, 0.95)		


BEMA	58	51	47	39	32	18	6	0
PLACEBO	60	51	43	31	22	10	4	1

	Bema N = 58	Placebo N = 60
mOS, mo (95% Cl)	NR (13.8, NR)	12.5 (8.8, 15.0)
HR (95% CI)	0.52 (0.30, 0.91)	

	Bema N = 44	Placebo N = 52		
mOS, mo (95% CI)	NR (13.8, NR)	11.1 (8.4, 13.8)		
HR (95% CI)	0.41 (0.22, 0.79)			

Best % Change in Target Lesions from Baseline

Only subjects with measurable disease at baseline and at least 1 evaluable scan postbaseline are included in the waterfall plot. DOR = Duration of response; TTR = Time to response ^: estimated among subjects with measurable disease at baseline

Summary of Adverse Events

Adverse Events	<_g ['H 7 10#	Jf[]_\i 'H 7 11#
All Treatment-Emergent Adverse Events (TEAE)	76 (100.0%)	76 (98.7%)
Grade ≥ 3	63 (82.9%)	57 (74.0%)
Leading to Death (Grade 5)	5 (6.6%)	4 (5.2%)
Serious Adverse Events	24 (31.6%)	28 (36.4%)
Leading to any component of mFOLFOX6 discontinuation	35 (46.1%)	28 (36.4%)
Leading to Bema/placebo discontinuation	26 (34.2%)	4 (5.2%)

Exposure	Bema (N = 76)	Placebo (N = 77)
Duration of Exposure to mFOLFOX6 (weeks), median (range)	29.80 (2.1, 73.0)	26.47 (2.1, 66.7)
Duration of Exposure to bema/placebo (weeks), median (range)	24.00 (2.0, 71.6)	26.00 (2.0, 73.6)

Summary of Selected Treatment-Emergent Adverse Events

Selected Adverse Events Any Grade		Grade 3		
Selected Adverse Events	Bema (N = 76)	Placebo (N = 77)	Bema (N = 76)	Placebo (N = 77)
Preferred Term	76 (100.0%)	76 (98.7%)	63 (82.9%)	57 (74.0%)
Nausea	36 (47.4%)	41 (53.2%)	0	3 (3.9%)
Vomiting	22 (28.9%)	24 (31.2%)	2 (2.6%)	2 (2.6%)
Diarrhoea	31 (40.8%)	24 (31.2%)	2 (2.6%)	1 (1.3%)
Stomatitis	24 (31.6%)	10 (13.0%)	7 (9.2%)	1 (1.3%)
Peripheral sensory neuropathy	15 (19.7%)	15 (19.5%)	4 (5.3%)	3 (3.9%)
Neutrophil count decreased	31 (40.8%)	33 (42.9%)	23 (30.3%)	27 (35.1%)
Platelet count decreased	14 (18.4%)	21 (27.3%)	1 (1.3%)	0
Aspartate aminotransferase increased	23 (30.3%)	15 (19.5%)	4 (5.3%)	2 (2.6%)
Alanine aminotransferase increased	22 (28.9%)	11 (14.3%)	2 (2.6%)	1 (1.3%)
Dry eye	20 (26.3%)	5 (6.5%)	2 (2.6%)	0

Corneal-Related Adverse Events

Trial required corneal evaluation at baseline and every 8 weeks until the end of treatment¹

	Bema (N = 76)	Placebo (N = 77)
Corneal Adverse Events (SMQ) ² All Grade ³	51 (67.1%)	8 (10.4%)
Corneal Adverse Events (SMQ) Grade 34	18 (23.7%)	0
Median time to onset to any grade, weeks (range)	16.1 (0.1, 41.0)	11.6 (6.0, 29.0)
Corneal AE leading to bema/placebo discontinuation ⁵	20 (26.3%)	0
AE resolved	12 (60.0%)	0
AE not resolved as of 23 Sept 2020	8 (40.0%)	0
Median time to resolution, weeks (95%CI)	27.0 (18.9, NR)	NA

¹ If any event reported, examinations were to continue every 8W until resolution, even if drug discontinued

² SMQ = Standardised MedDRA Query

³ Most common: dry eye (26.3%), keratitis (15.8%), punctate keratitis (14.5%), vision blurred (15.0%), corneal epithelium defect (10.5%)

⁴ No \geq grade 4 event reported

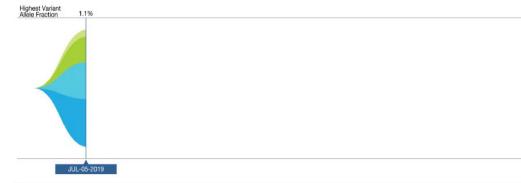
⁵ Most common: dry eye (n=4), keratitis (n=4), corneal disorder (n=2), eye disorder (n=2) limbal stem cell deficiency (n=2), punctate keratitis (n=2)

- The FIGHT trial is the first study to evaluate targeting overexpression of FGFR2b
- ~ 30% of 1L advanced non-HER2+ GC/GEA overexpress FGFR2b+ by a centrally performed IHC test
- Bemarituzumab, added to mFOLFOX6 chemotherapy, led to clinically meaningful and statistically significant improvements in PFS, OS and ORR
- Bemarituzumab was associated with an increase in corneal adverse events and stomatitis, the majority of which were reversible
- The FIGHT trial results support
 - A prospective randomized phase 3 study in gastric/gastroesophageal adenocarcinoma
 - The evaluation of bemarituzumab to treat other FGFR2b+ tumor types

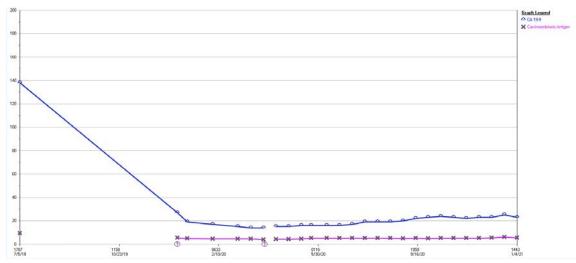
Case 1

- 35 year F presented with epigastric pain and early satiety, diagnosed with distal esophageal adenocarcinoma
- EGD with nodularity and mass involving ~9cm of the distal esophageal to the GEJ
- Biopsy poorly diff adenocarcinoma
- HER2 IHC3+ in >80% of cells
- CT and PET with diffuse M1 LNs
- FNA of left supraclavicular LN adenocarcinoma
- Treated with FOLFOX-trastuzumab 1L
 - For ~12 months then PD with new left pleural effusion and carcinomatosis
- EGD with biopsy \rightarrow Persistent HER2 IHC3+
- DESTINY-Gastric02 trial: 2L trastuzumabderuxtecan x 4 cycles (~2 months) rapid PD and respiratory failure attributed to progressed pleural effusion

Highest Variant Allele Fraction 9.3%	 	
MAR-09-2020		


Alteration	% cfDNA or Amp	
<i>TP53</i> R248W	9.3%	
<i>PIK3CA</i> E545K	3.4%	
APC N818I	0.4%	Variant of Uncertain Significance §
ALK H1063H	0.1%	Synonymous Alteration §
KRAS Q61H	0.02%	
KRAS Amplification Amplifications not graphed above	High (+++) Plasma Copy Number: 8.1	
CCNE1 Amplification Amplifications not graphed above	High (+++) Plasma Copy Number: 7.0	
MYC Amplification Amplifications not graphed above	Medium (++) Plasma Copy Number: 3.3	

ctDNA analysis after progression on 1L, prior to 2L


• Hospice

Case 2

- 76 year M with history NHL s/p CHOP 1999, diagnosed with dysphagia and found to have a GEJ adenocarcinoma 7/2019
- Staging cT3N3M1 (supraclav/retroperitoneum LNs)
- Primary tumor and supraclav LN bx with adenocarcinoma, both:
- PD-L1 CPS 2, HER2 neg, MSS, TMB 5.8 mt/Mb, FGFR2 amplified
- ctDNA FGFR2 amplification
- Treated with FOLFOX + bemarituzumab/placebo 8/20/19
- Near CR (minimal residual lymph nodes all <1.5cm).
 - mild left eye punctate epithelial erosions,
 - mild drusen both eyes,
 - mild cataracts both eyes,
 - not clinically significant
- Continues on therapy
 - 5FU bolus and LV dropped after C4 (nausea)
 - Oxaliplatin dropped to 65mg/m² at C6, and off after C8 due to neuropathy
 - On first line maintenance (1LM) since with 5FU-bema/placebo, now at C37 to present

Alteration	% cfDNA or Amp	
<i>TP53</i> R248Q	1.1%	
EGFR A955T	0.8%	Variant of Uncertain Significance §
MET P1008L	0.5%	Variant of Uncertain Significance §
ARID1A A1626T	0.1%	Variant of Uncertain Significance §
FGFR2 Amplification Amplifications not graphed above	High (+++) Plasma Copy Number: 12.3	

ctDNA analysis at diagnosis

Courtesy of Daniel Catenacci, MD

Thank You

