Considerations for the Treatment of HCC in Special Patient Populations

James J. Harding

Assistant Attending Gastrointestinal Oncology Service Early Drug Development Service Memorial Sloan Kettering Cancer Center

Current Treatment Paradigm for Advanced HCC

*Based on Durable objective response rate; not statistically proven OS advantage over placebo

IMbrave150: Atezolizumab + Bevacizumab versus Sorafenib

Key eligibility

- Locally advanced or metastatic and/or unresectable HCC
- No prior systemic therapy

Stratification

- Region (Asia, excluding Japan^a/rest of world)
- ECOG PS (0/1)
- Macrovascularinvasion (MVI) and/or extrahepatic spread (EHS) (presence/absence)
- Baseline α-fetoprotein (AFP; < 400/≥ 400 ng/mL)

Co-primary endpoints

- OS
- IRF-assessed PFS per RECIST 1.1

Key secondary endpoints (in testing strategy)

- IRF-assessed ORR per RECIST 1.1
- IRF-assessed ORR per HCC mRECIST

^a Japan is included in rest of world.

^b An additional 57 Chinese patients in the China extension cohort were not included in the global population/analysis.

IMbrave150: Atezolizumab plus Bevacizumab Improves OS Compared to Sorafenib

Updated data from GI ASCO 2021 indicates A + B median OS 19.2 months

Cheng et al. ESMO ASIA 2019

IMbrave150: Secondary Endpoints Favor Atezolizumab + Bevacizumab

Improves PFS for Advanced Disease 100-Median PFS (95% CI), mob

Diarrhoea PPE Decreased appetite Hypertension Abdominal pain Alopecia Asthenia Pyrexia ALT increased All-Grade AEs All-Grade AEs Proteinuria Grade 3-4 AEs Grade 3-4 AEs Infusion-related reaction 20% 50% 40% 30% 20% 10% 10% 30% 40% 60% 0

Atezo + Bev

PPE, palmar-plantar erythrodysaesthesia ^a Safety-evaluable population.

Favorable Safety/QoL (Grade \geq 3 AE 36% vs 46%)

Sorafenib

50%

60%

REFLECT: Lenvatinib vs. Sorafenib

REFLECT: Lenvatinib OS is Non-Inferior to Sorafenib

	Lenvatinib (N=478)	Sorafenib (N=476)	Effect Size	P-value				
OUTCOMES								
OS (months)	13.6	12.3	HR 0.92 (0.78-1.06)					
PFS (months)	7.4 3.7		HR 0.66 (0.57-0.77)	< 0.0001				
TTP (months)	nonths) 8.9 3.7 HR 0.63 (0.53-0.		HR 0.63 (0.53-0.73)	< 0.0001				
ORR mRECIST, Investigator	24.1%	9.2%	OR 3.13 (2.15-4.56)	< 0.0001				
ORR mRECIST, BICR (%)	ORR mRECIST, 40.6% BICR (%)		OR 5.01 (3.49-7.01)	< 0.0001				
ADVERSE EVENTS								
Related Any AEs	94%	99%	Grade ≥ 3 HTN, anorexia/weight					
Related Grade ≥3 AEs	57%	49%	loss, proteinuria numerically higher for lenvatinib Grade ≥ 3 HFS higher for sorafenib					

Kudo et al. Lancet 2018

Generalizability of IMbrave150 and REFLECT?

Stringent selection criteria

- Limited the extent of liver disease
- Exclusion of main portal vein involvement
- Restricted to CP-A
- Minimization of bleeding risk

Application to selected special population

- Decompensated liver function
- Recent GI bleeding
- Autoimmune conditions
- Liver transplant recipient

Child-Pugh score restricts access to pivotal clinical trials

Pivotal Study Randomized Study	CHILD-PUGH B or worse
SHARP	Yes
REFLECT	NO
IMbrave150	NO
RESORCE	NO
CELESTIAL	NO
REACH-2	NO
CheckMate 459	NO
KEYNOTE-240	NO

Data with Sorafenib and decompensated liver function

- CP-B and CP-C HCC patients are known to have worse OS on sorafenib (OS: CP-A 13.6 vs CP-B 5.2 months vs CP-C 2.6 months)
- CP-C is typically a contraindication to treatment
- A phase 1 study for sorafenib in patients with organ dysfunction indicates sorafenib dose modifications are required for CP-B or worse
- Newer TKIs and IO agents will require careful evaluation and this is ongoing

Lenvatinib and CP-B liver function

Retrospective studies indicate a similar rate of AEs despite lower relative dose intensity (PDI)

Ikeda et al. CCR 2017; Ogushi et al. Clinical and Experimental Gastroenterology

Immuno-oncology agents and decompensated liver function

CheckMate 040 CP-B N= 49					
ORR	10.2%				
DCR	55.1%				
mDOR	9.9 months				
mOS	7.2 months				
TEAEs	51%				
AEs leading to discontinuation	4.1%				

Nivolumab in Patients With Advanced Hepatocellular Carcinoma and Child-Pugh Class B Cirrhosis: Safety and Clinical Outcomes in a Retrospective Case Series

Swetha Kambhampati, MD^{(1,2}; Kelly E. Bauer, AB, MSc²; Paige M. Bracci, PhD, MPH³; Bridget P. Keenan, MD, PhD^{1,2}; Spencer C. Behr, MD⁴; John D. Gordan, MD, PhD^{1,2,5}; and Robin K. Kelley, MD^(1,2,2)

Post-registration experience of nivolumab in advanced hepatocellular carcinoma: an international study

Petros Fessas (a), ¹ Ahmed Kaseb, ² Yinghong Wang (a), ³ Anwaar Saeed, ⁴ David Szafron, ⁵ Tomi Jun, ⁶ Sirish Dharmapuri, ⁶ Abdul Rafeh Naqash, ⁷ Mahvish Muzaffar, ⁷ Musharraf Navaid, ⁷ Uqba Khan, ⁸ ChiehJu Lee, ⁹ Anushi Bulumulle, ⁷ Bo Yu, ¹⁰ Sonal Paul, ¹⁰ Neil Nimkar, ¹⁰ Dominik Bettinger, ¹¹ Francesca Benevento, ¹² Hannah Hildebrand, ⁴ Tiziana Pressiani, ¹³ Yehia I Abugabal, ² Nicola Personeni, ^{13,14} Yi-Hsiang Huang (a), ⁹ Lorenza Rimassa (a), ^{13,14} Celina Ang, ⁶ Thomas Marron, ⁶ David J Pinato¹

Single agent IO appears safe data are limited for new combinations

Bleeding risk with Atezolizumab + Bevacizumab and other agents?

	All Grades		Grades 3 and 4		
Toxicity	No. of Patients	%	No. of Patients	%	
Hypertension	15	33	7	15	
Proteinuria	19	41	2	4	
Epistaxis	5	11	0	0	
Hernorrhage	12	26	5	11	
Arterial thrombosis	2	4	2	4	
Venous thrombosis	1	2	1	2	
Rash	6	13	0	0	
Thrombocytopenia	6	13	0	0	
Increased AST	10	22	1	2	
Increased ALT	9	20	1	2	
Increased alkaline phosphatase	5	11	1	2	
Increased bilirubin	12	26	Б	11	
Ascites	5	11	2	4	
Fatigue	15	33	0	0	
Vomiting	5	11	0	0	
Anorexia	Б	11	1	2	
Nausea	5	11	0	0	

Bevacizumab 5mg/kg 26% hemorrhage 11% Grade 3 or higher

IMbrave150*						
	Sorafenib	A + B				
Any Grade Hemorrhage	17.3%	25.2%				
Grade 3-4	5.8%	6.4%				
Grade 5	<1%	1.8%				

*EGD and primary prophylaxis were required for patient entry, ? Ablity to extrapolate to patients with portal HTN and impaired liver function

Immunotherapy in patients with autoimmune diseases must be used with caution

HCC in the context of autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) *Incidence 3-18 cases per 1000 patient year*

Co-occurring autoimmune disease (AID) Incidence unknown

All Prospective Studies in HCC and IO have excluded, thus limitation in data

Danlos et al. European Journal of Cancer 2018

irAE 44% for those with AID vs 23.8% for those without AID

Immunotherapy following liver transplant is contraindicated in routine practice

Change in liver function in 7 patients following IO treatment in prior liver transplant recipient

ID	Change in Child Pugh	Change in MELD	Change in AFP (ng/mL)	Change in albumin (g/dL)	Change in Tbili (mg/dL)	Change in AST (U/L)	Change in ALT (U/L)	Change in INR
1	0	+5	+1,000	-0.3	0	+162	+84	+0.08
2	0	0	N/A	+0.3	+0.1	-4	-7	-0.2
3	+1	0	+214,082	-0.1	0	+3	+26	+0.08
4	+1	+1	+8,480	-0.3	+0.1	+7	0	+0.08
5	0	+1	+206.1	+1.5	-0.1	+11	+1	+0.45
6	+2	+5	+64.6	-1.1	+0.2	+900	+846	0.18
7	+2	+6	+44,767	-0.1	+0.8	169	+151	+0.1
Median	+1	+1	+1,000	-0.3	+0.1	+11	+26	+0.08

ID, patient identification; MELD, model for end stage liver disease; AFP, alpha-fetoprotein; Tbili, total bilirubin; AST, aspartate transaminase; ALT, alanine transaminase; INR, international normalized ratio; ng/MI, nanograms per milliliter; g/dL, grams per deciliter; mg/dL, milligrams per deciliter; U/L, units per liter.

7 patients with advanced solid tumors and prior liver transplant- 5 with HCC

2 of 7 (29%) patients with prior liver transplant treated with IO developed acute rejection

0 of 5 HCC patients had clinical benefit

Why do subsets of patients and tumors respond to immune checkpoint blockade?

Tumor Specific Factors

Histology Etiologic Factor -Viral-HBV/HCV -Parasitic Infection Genomics/Proteomics Driver mutation Mutational burden Neoepitope Pattern Microenvironment Hypoxia/Vasculature

Host Specific Factors

Innate Immunity Adoptive Immunity -HLA haplotypes -IL-chain/CLIP chaperoning -T-cell repertoire Immune Tolerance Human Microbiota

Immune Response

PD-L1 expression Intratumoral T-cell effectors T-regs and MDSCs NK and NK-like cells MHC I/II Expression Checkpoint Molecule Fas/Fas-ligand Macrophages CXCL-12/Fibroblasts

Feig et al PNAS 2013; Ku et al Cancer 2010; Menard et al Clin Cancer Res 2008; Weber et al JCO 2009; Hodi et al PNAS 2008; Hamid et al JCO 2009; Ng et al Cancer Immuno Res 2013; Tarhini et al PLoS One 2014; Kitano et al Cancer Immunol Res 2013; Spranger et al Sci Transl Med 2013; Kitano et al Cancer Immunol Res 2014; Ji RR et al, Cancer Immunol Immunother 2012; Yuan J et al, PNAS 2011; DiGiacoa\m lo etal Cancer Immunol Immunother 2013; Queirolog et al, Cancer Invest 2013; Wolchok et al, Cancer Immun 2010.

CheckMate 459: Overall survival by PD-L1 expression

Tumor cell PD-L1 expression $\geq 1\%$

Tumor cell PD-L1 expression < 1%

• OS in the PD-L1 \geq 1% group was longer in the NIVO arm compared with the SOR arm

CheckMate 459: Overall survival by etiology

In the HCV and HBV groups, median OS was numerically longer with NIVO versus SOR

^aPatients could have had active or resolved HBV or HCV infection as a risk factor for HCC as assessed by the investigator.

WNT genomic alterations as a determinant of response to immune checkpoint inhibitors

Harding et al. Clinical Cancer Research 2018

FDA approved systemic therapies after Sorafenib Failure with overall survival advantage in HCC

Agent	Agent	N	mOS	Absolute OS (mo)	Hazard Ratio
	Regorafenib	379	10.6	20	0.63 (0.5- 0.79)
TKIS	Placebo	193	7.8	2.8	
	Cabozantinib	470	10.2	2.2	0.76 (0.63-0.92)
	Placebo	237	8.0	2.2	
MoAs	Ramucirumab	197	8.5	1 2	0.71 (0.53-0.94)
	Placebo	95	7.3	1.2	

Bruix et al. Lancet 2017; Abou-Alfa et al. NEJM 2018; Zhu et al. Lancet 2019

REACH-2 trial and the value of AFP

Based on the results of the REACH-2 trial, the FDA approved ramucirumab as a single agent for patients with HCC who have an alpha fetoprotein (AFP) of ≥ 400 ng/mL and have been previously treated with sorafenib.

Cases

Case 1: A 43-Year-Old Female with Stage IV HCC

- A 43-year-old female with controlled lupus and autoimmune hepatitis with AJCC Stage IV HCC
- She received lenvatinib with a partial response for 8 months and then cabozantinib with stable disease for 6 months.
- After a discussion regarding the risks and benefits of immunotherapy, the patient went on to receive a single agent anti-PD-1 therapy.
- The patient had normalization of AFP and a partial response on imaging.
- Subsequently the patient developed hypoalbuminemia, proteinuria, anasarca and hyperlipidemia and worsening liver function.
- Restaging showed continued disease control and a renal biopsy showed evidence of lupus glomerulonephritis.
- Immunotherapy was halted and the patient had improvement in her symptoms with high-dose steroids and mycophenolate.
- Restaging after 6 months showed growth of her malignancy and she has entered into a clinical trial for treatment

Case 2: A 43-Year-Old Male with HBV-Associated HCC

- A 76-year-old male with HBV associated HCC to the LNs and adrenal gland with CP-A liver function
- Patient underwent a screening EGD that was normal, and received atezolizumab and bevacizumab
- After 9 weeks, he attained a partial response.
- The patient developed Grade 3 HTN and was treated with antihypertensives.
- After 6 months of treatment, the patient continued to have a sustained PR with well controlled blood pressure.
- The patient incidentally developed a painful inguinal hernia that required surgery.
- Bevacuzimab was held for 9 weeks while atezolizumab was continued in preparation for surgery.
- Surgery was uncomplicated and bevacizumab was resumed 9 weeks later