Data + Perspectives: Investigators Discuss the Effects of Emerging Research on the Care of Patients with Acute Myeloid Leukemia

> Wednesday, March 10, 2021 7:00 PM – 8:00 PM ET

> > Faculty Alexander Perl, MD Eunice S Wang, MD

Faculty

Alexander Perl, MD Associate Professor of Medicine Perelman School of Medicine University of Pennsylvania Member, Leukemia Program Abramson Cancer Center University of Pennsylvania Philadelphia, Pennsylvania

Eunice S Wang, MD Chief, Leukemia Service Professor Roswell Park Comprehensive Cancer Center Buffalo, New York

Commercial Support

This activity is supported by an educational grant from Astellas.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following commercial interests: AbbVie Inc, Acerta Pharma — A member of the AstraZeneca Group, Adaptive Biotechnologies Corporation, Agendia Inc, Agios Pharmaceuticals Inc, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, Biodesix Inc, bioTheranostics Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Daiichi Sankyo Inc, Dendreon Pharmaceuticals Inc, Eisai Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Inc, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Guardant Health, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Infinity Pharmaceuticals Inc, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lexicon Pharmaceuticals Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Merrimack Pharmaceuticals Inc, Myriad Genetic Laboratories Inc, Natera Inc, Novartis, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Prometheus Laboratories Inc, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sandoz Inc, a Novartis Division, Sanofi Genzyme, Seagen Inc, Sirtex Medical Ltd, Spectrum Pharmaceuticals Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Oncology, Tesaro, A GSK Company, Teva Oncology, Tokai Pharmaceuticals Inc and Verastem Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Perl — Disclosures

Advisory Committee	AbbVie Inc, Actinium Pharmaceuticals Inc, Astellas, Bristol-Myers Squibb Company, Celgene Corporation, Genentech, a member of the Roche Group, Daiichi Sankyo Inc, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Syndax Pharmaceuticals Inc	
Consulting Agreements	AbbVie Inc, Astellas, Daiichi Sankyo Inc, FORMA Therapeutics, Onconova Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Ind	
Contracted Research (All Monies to Institution)	AbbVie Inc, Actinium Pharmaceuticals Inc, Astellas, Daiichi Sankyo Inc, FUJIFILM Pharmaceuticals USA Inc	
Data and Safety Monitoring Board/Committee	Beat AML LLC, Leukemia & Lymphoma Society	

Dr Wang — Disclosures

Advisory Committee	AbbVie Inc, Astellas, Bristol-Myers Squibb Company, Celgene Corporation, Genentech, a member of the Roche Group, GlaxoSmithKline, Jazz Pharmaceuticals Inc, Kite, A Gilead Company, MacroGenics Inc, Novartis, Pfizer Inc, PTC Therapeutics, Stemline Therapeutics Inc, Takeda Oncology	
Data and Safety Monitoring Board/Committee	AbbVie Inc, Rafael Pharmaceuticals Inc	
Speakers Bureau	DAVA Oncology, Kura Oncology, Pfizer Inc, Stemline Therapeutics Inc	

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface How to answer poll questions

When a poll question pops up, click your answer choice from the available options. Results will be shown after everyone has answered.

ONCOLOGY TODAY WITH DR NEIL LOVE

ACUTE MYELOID LEUKEMIA WITH FLT3 MUTATIONS

DR KEITH PRATZ UNIVERSITY OF PENNSYLVANIA

Dr Keith Pratz Acute Myeloid Leukemia Oncology Today with Dr Neil Love —

(15) (30)

Meet The Professor Management of Chronic Lymphocytic Leukemia

Thursday, March 11, 2021 5:00 PM – 6:00 PM ET

> Faculty Steven Coutre, MD

Dissecting the Decision: Clinical and Nursing Investigators Provide Practical Perspectives on Key Issues in Cancer Care Part 1 — Acute Myeloid Leukemia

> Tuesday, March 16, 2021 5:00 PM – 6:00 PM ET

Faculty Rhonda Hewitt, MSN, ANP, AOCNP Mark Levis, MD, PhD

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with Advanced Gastrointestinal Cancers

> Wednesday, March 17, 2021 5:00 PM – 6:00 PM ET

> > Faculty Alan P Venook, MD

Dissecting the Decision: Clinical and Nursing Investigators Provide Practical Perspectives on Key Issues in Cancer Care Part 2 — HER2-Positive Breast Cancer

> Thursday, March 18, 2021 5:00 PM – 6:00 PM ET

Faculty Jamie Carroll, APRN, MSN, CNP Sara Hurvitz, MD

Cases from the Community: Investigators Discuss the Role of PARP Inhibition in the Care of Actual Patients with Ovarian Cancer

> Saturday, March 20, 2021 3:00 PM – 4:00 PM CT (4:00 PM – 5:00 PM ET)

Faculty

Susana Banerjee, MBBS, MA, PhD Richard T Penson, MD, MRCP Shannon N Westin, MD, MPH

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with Renal Cell Carcinoma

Thursday, March 25, 2021 5:00 PM – 6:00 PM ET

> Faculty Robert J Motzer, MD

Thank you for joining us!

CME credit information will be emailed to each participant within 5 business days.

Data + Perspectives: Investigators Discuss the Effects of Emerging Research on the Care of Patients with Acute Myeloid Leukemia

> Wednesday, March 10, 2021 7:00 PM – 8:00 PM ET

> > Faculty Alexander Perl, MD Eunice S Wang, MD

Faculty

Alexander Perl, MD Associate Professor of Medicine Perelman School of Medicine University of Pennsylvania Member, Leukemia Program Abramson Cancer Center University of Pennsylvania Philadelphia, Pennsylvania

Eunice S Wang, MD Chief, Leukemia Service Professor Roswell Park Comprehensive Cancer Center Buffalo, New York

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface How to answer poll questions

When a poll question pops up, click your answer choice from the available options. Results will be shown after everyone has answered.

ONCOLOGY TODAY WITH DR NEIL LOVE

ACUTE MYELOID LEUKEMIA WITH FLT3 MUTATIONS

DR KEITH PRATZ UNIVERSITY OF PENNSYLVANIA

Dr Keith Pratz Acute Myeloid Leukemia Oncology Today with Dr Neil Love —

(15) (30)

Meet The Professor Management of Chronic Lymphocytic Leukemia

Thursday, March 11, 2021 5:00 PM – 6:00 PM ET

> Faculty Steven Coutre, MD

Dissecting the Decision: Clinical and Nursing Investigators Provide Practical Perspectives on Key Issues in Cancer Care Part 1 — Acute Myeloid Leukemia

> Tuesday, March 16, 2021 5:00 PM – 6:00 PM ET

Faculty Rhonda Hewitt, MSN, ANP, AOCNP Mark Levis, MD, PhD

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with Advanced Gastrointestinal Cancers

> Wednesday, March 17, 2021 5:00 PM – 6:00 PM ET

> > Faculty Alan P Venook, MD

Dissecting the Decision: Clinical and Nursing Investigators Provide Practical Perspectives on Key Issues in Cancer Care Part 2 — HER2-Positive Breast Cancer

> Thursday, March 18, 2021 5:00 PM – 6:00 PM ET

Faculty Jamie Carroll, APRN, MSN, CNP Sara Hurvitz, MD

Cases from the Community: Investigators Discuss the Role of PARP Inhibition in the Care of Actual Patients with Ovarian Cancer

> Saturday, March 20, 2021 3:00 PM – 4:00 PM CT (4:00 PM – 5:00 PM ET)

Faculty

Susana Banerjee, MBBS, MA, PhD Richard T Penson, MD, MRCP Shannon N Westin, MD, MPH

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with Renal Cell Carcinoma

Thursday, March 25, 2021 5:00 PM – 6:00 PM ET

> Faculty Robert J Motzer, MD

Data + Perspectives: Investigators Discuss the Effects of Emerging Research on the Care of Patients with Acute Myeloid Leukemia

> Wednesday, March 10, 2021 7:00 PM – 8:00 PM ET

> > Faculty Alexander Perl, MD Eunice S Wang, MD

Agenda

Module 1: Venetoclax combinations

Module 2: FLT3 inhibitors

Module 3: IDH inhibitors

Module 4: Oral azacitidine (CC-486)

Module 5: Secondary AML — CPX-351

Module 6: Novel agents and strategies

Agenda

Module 1: Venetoclax combinations

Module 2: FLT3 inhibitors

Module 3: IDH inhibitors

Module 4: Oral azacitidine (CC-486)

Module 5: Secondary AML — CPX-351

Module 6: Novel agents and strategies

Interim Analysis of the Phase 1b/2 Study of the BCL-2 Inhibitor Venetoclax in Combination with AML Induction/Consolidation Therapy with FLAG-IDA in Patients with Newly Diagnosed or Relapsed/Refractory AML

Curtis A. Lachowiez, M.D.¹, Marina Konopleva, M.D.¹, PhD., Tapan Kadia, M.D.¹, Naval Daver, M.D.¹, Sanam Loghavi, M.D.², Sa A. Wang, M.D.², M.D., Maria Adeoti, R.N.¹, Sherry Pierce, B.S.N., B.A.¹, Koichi Takahashi, M.D., Ph.D.¹, Nicholas Short, M.D.¹, Koji Sasaki, M.D., Ph.D.¹, Gautam Borthakur, M.D.¹, Ghayas Issa, M.D¹., William Wierda, M.D., Ph.D.¹, Naveen Pemmaraju, M.D.¹, Guillermo Montalban Bravo, M.D.¹, Alessandra Ferrajoli, M.D.¹, Nitin Jain, M.D.¹, Lucia Masarova, M.D.¹, Musa Yilmaz, M.D.¹, Elias Jabbour, M.D.¹, Guillermo Garcia-Manero, M.D.¹, Steven Kornblau, M.D.¹, Farhad Ravandi, M.D.¹, Hagop Kantarjian, M.D.¹, Courtney D. DiNardo, M.D., MSc.¹

University of Texas M.D. Anderson Cancer Center

¹ Department of Leukemia, ² Department of Hematopathology

Phase 1b/2 Study of Venetoclax in Combination with FLAG-IDA

Variable	Phase 2A	Phase 1b	Phase 2B
Event-Free Survival	NR	6 (3-NE)	11 (2-NE)
Overall Survival	NR	9 (4.9-NE)	NR
1-year OS	94%	38%	68%

Lachowiez CA et al. ASH 2020; Abstract 332.

Phase 1b/2 Study of Venetoclax in Combination with FLAG-IDA

	Phase 2A	Phase Ib	Phase 2B
	ND-AML (N=29)	R/R-AML (N=16)	R/R-AML (N=23)
Cycle #1	31 days	37 days	37 days
Cycle #2	46 days	62 days	38 days
Cycle #3	41 days	40 days	40 days

* Count recovery: ANC \geq 500 and platelet count \geq 50,000 /µL

Lachowiez CA et al. ASH 2020; Abstract 332.

Making Cancer History*

Abstract 25

Phase II Study of Venetoclax added to Cladribine + LDAC Alternating with 5-AZA in Older Patients with Newly Diagnosed AML

Tapan M. Kadia, Gautam Borthakur, Naveen Pemmaraju, Naval Daver, Courtney Dinardo, Koji Sasaki, Ghayas Issa, Maro Ohanian, Guillermo Montalban-Bravo, Nicholas Short, Nitin Jain, Alessandra Ferrajoli, Kapil Bhalla, Elias Jabbour, Rashmi Kanagal, Koichi Takahashi, Rashmi Malla, Kelly Marek, Mark Brandt, Uday Popat, Michael Andreeff, Jorge Cortes, Guillermo Garcia-Manero, Marina Konopleva, Farhad Ravandi, and Hagop Kantarjian.

Cladribine/LDAC + Venetoclax in Older AML

Responses

Response / Outcome	N	%	MRD(-)
Evaluable for Response	54	98	
CR	42	78	39 (<mark>93</mark>)
CRi	8	15	3 (38)
CR + CRi (CRc)	50	93	42 (<mark>84</mark>)
No Response	4	7	
Died ≤ 4 weeks	1	2	
Died ≤ 8 weeks	2	4	
Median # of cycles given (Range)	2 (1 – 14)		
Median # of cycles to response (Range)	1 (1-3)		

Median follow-up in Surviving Patients : 14.2 months

Cladribine/LDAC + Venetoclax in Older AML

Outcomes

Median follow-up in Surviving Patients : 14.2 months

Kadia TM et al. ASH 2020; Abstract 25.

What initial treatment would you generally recommend for an 80-year-old patient with AML and intermediate-risk cytogenetics?

- 1. Azacitidine
- 2. Decitabine
- 3. Azacitidine + venetoclax
- 4. Decitabine + venetoclax
- 5. Low-dose cytarabine + venetoclax
- 6. Low-dose cytarabine + glasdegib
- 7. Other

What initial treatment would you recommend for a 65-year-old man with AML with a PS of 1 and pancytopenia, 35% marrow myeloblasts, a complex karyotype and a TP53 mutation?

- 1. 7 + 3 induction
- 2. Azacitidine
- 3. Decitabine
- 4. Azacitidine + venetoclax
- 5. Decitabine + venetoclax
- 6. Low-dose cytarabine + venetoclax
- 7. Other

Case Presentation – Dr Wang: An older patient with newly diagnosed AML who is not eligible for intensive induction chemotherapy

- An 89 yo woman with prior medical history of COPD, hypertension and polymyalgia rheumatica who was noted to have new onset of abnormal blood counts beginning in March 2018.
- In Dec 2018, she underwent bone marrow for progressive pancytopenia which demonstrated a hypercellular marrow consistent with myelodysplastic syndrome with excess blasts (10%). Karyotype was normal. She was started on darbepoetin alfa and remained relatively transfusion independent until March 2019.
- At that time, she was started on Azacitidine monthly until July 2019 when she presented to a local ER for shortness of breath and was found to have hemoglobin of 5.1 gm/dl with circulating blasts.
- Repeat bone marrow biopsy demonstrates AML with 20% blasts and MDS-related morphologic changes. Cytogenetics shows a normal karyotype (XX) with no evidence of FLT3, IDH1 or IDH2 mutations.

Case Presentation – Dr Wang: An older patient with newly diagnosed AML who is not eligible for intensive induction chemotherapy (continued)

- Given her advanced age, her local oncologist referred her for second opinion. Treatment options discussed included venetoclax + low dose cytarabine (LDAC), glasdegib + LDAC, gemtuzumab ozogamicin, or supportive care with hydroxyurea and transfusions only.
- The patient opted for treatment with venetoclax + LDAC and was subsequently admitted to the inpatient service to initiate therapy given the long distance between our center (4+ hours) and per our institutional standard.
- Her hospitalization was complicated by an episode of upper GI bleeding and back pain. Repeat bone marrow evaluation after 21 days of therapy revealed hypocellular marrow with <1% blasts. She was discharged home on growth factor with local oncology follow-up.
- She now completed 17 cycles of Ven/LDAC in the outpatient setting with LDAC given every 5 weeks with Ven 400 mg daily for 7 days per month. She remains transfusion independent (last WBC 10, hgb 10.3, plts 196K) and recently completed both doses of the COVID19 vaccine without issues.

Agenda

Module 1: Venetoclax combinations

Module 2: FLT3 inhibitors

Module 3: IDH inhibitors

Module 4: Oral azacitidine (CC-486)

Module 5: Secondary AML — CPX-351

Module 6: Novel agents and strategies

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Place video here

Clinical Outcomes in Patients With Relapsed/Refractory Acute Myeloid Leukemia Treated With Gilteritinib Who Received Prior Midostaurin or Sorafenib

Alexander E Perl, MD¹; Jessica K Altman, MD²; Naoko Hosono, MD, PhD³; Pau Montesinos, MD, PhD⁴; Nikolai Podoltsev, MD, PhD⁵; Giovanni Martinelli, MD⁶; Catherine C Smith, MD⁷; Mark J Levis, MD⁸; Christoph Röllig, MD MSC⁹; Marco Groß-Langenhoff, PhD¹⁰; Nahla Hasabou, MD¹¹; Qiaoyang Lu, MS¹¹; Ramon V Tiu, MD¹¹

¹Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ²Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; ³University of Fukui, Fukui, Japan; ⁴Hospital Universitario y Politécnico La Fe, Valencia, Spain; ⁵Yale School of Medicine, New Haven, CT, USA; ⁶Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRST IRCCS, Meldola, Italy; ⁷University of California-San Francisco, San Francisco, CA, USA; ⁸The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; ⁹Universitätsklinikum Carl Gustav Carus, Dresden, Germany; ¹⁰Astellas Pharma GmbH, Munich, Germany; ¹¹Astellas Pharma US, Northbrook, IL, USA

Gilteritinib vs Salvage Chemo in FLT3m AML Receiving Prior FLT3i

Perl AE et al. ASH 2020; Abstract 334.

Phase III LACEWING Trial Fails to Meet Its Primary Endpoint of Overall Survival in Newly Diagnosed AML with FLT3 Mutation Press Release – December 21, 2020

"The phase 3 LACEWING trial of the FMS-like tyrosine kinase 3 (FLT3) inhibitor gilteritinib plus azacitidine versus azacitidine alone in patients with newly diagnosed *FLT3* mutationpositive acute myeloid leukemia (AML) who were ineligible for intensive induction chemotherapy did not meet its primary end point of overall survival (OS) at a planned interim analysis, according to... the developer of the agent.

Based on these results, an independent data monitoring committee recommended the study be terminated for futility, citing that the results are unlikely to demonstrate a statistically significant increase in OS. [The developer] has since halted enrollment in the trial and is reviewing the results for other action as needed."

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Phase 3, Multicenter, Open-Label Study of <u>Gilteritinib</u>, <u>Gilteritinib</u> Plus <u>Azacitidine</u>, or <u>Azacitidine</u> Alone in Newly Diagnosed *FLT3*-Mutated (*FLT3*^{mut+}) Acute Myeloid Leukemia (AML) Patients Ineligible for Intensive Induction Chemotherapy

> Eunice S. Wang,¹ Pau Montesinos,² Mark D. Minden,³ Je-Hwan Lee,⁴ Michael Heuser,⁵ Tomoki Naoe,⁶ Wen-Chien Chou,⁷ Shufang Liu,⁸ Ruishan Wu,⁸ Nisha Philipose,⁸ Elizabeth Shima Rich,⁸ Ramon V. Tiu⁸

¹Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; ²Hospital Universitari i Politècnic La Fe, Valencia & CIBERONC, Instituto Carlos III, Madrid, Spain; ³Princess Margaret Hospital, Toronto, Ontario, Canada; ⁴Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; ⁵Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany; ⁶National Hospital Organization Nagoya Medical Center, Nagoya, Japan; ⁷Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; ⁸Astellas Pharma Global Development, Northbrook, IL, USA

LACEWING Study Design

^aProtocol versions 6.0 and earlier included a 1:1:1 randomization ratio to receive Arm A (gilteritinib monotherapy), AC (gilteritinib + azacitidine), or C (azacitidine monotherapy). Randomization to Arm A was removed in protocol version 7.0. Patients previously randomized to Arm A should continue following treatment and assessments as outlined in the protocol. AML, acute myeloid leukemia; *FLT3*^{mut+}, FMS-like tyrosine kinase 3 mutation-positive; IV, intravenously; PO, orally; SC, subcutaneously.

Wang ES et al. ASH 2020; Abstract 27.

Type and Duration of Response of Gilteritinib in Combination With AZA and End of Treatment Reasons *Safety Cohort (N=15)*

- CR and CRc were achieved by 33% (n=5/15) and 67% (n=10/15) of patients in the Safety Cohort, respectively.
- Among the 10 patients with CRc, the median (95% CI) duration of remission was 10.4 (0.95–NR) months, with 5 patients being censored

AZA, azacitidine; CR, complete remission; CRc, composite complete remission; CRi, complete remission with incomplete hematologic recovery; CRp, complete remission with incomplete platelet recovery; ITD, internal tandem duplication; NR, not reached; PR, partial remission; TKD, tyrosine kinase domain; WT, wild type.

American Society of Hematology Helping hematologists conquer blood diseases worldwide

A Phase 1 Study of Gilteritinib in Combination With Induction and Consolidation Chemotherapy in Patients With Newly Diagnosed AML: Final Results

Keith W. Pratz,¹ Mohamad Cherry,² Jessica K. Altman,³ Brenda W. Cooper,⁴ Jose Carlos Cruz,⁵ Joseph G. Jurcic,⁶ Mark J. Levis,¹ Tara L. Lin,⁷ Alexander E. Perl,⁸ Nikolai A. Podoltsev,⁹ Gary J. Schiller,¹⁰ Jason E. Hill,¹¹ Angela James,¹¹ Qiaoyang Lu,¹¹ Ramon V. Tiu¹¹

¹Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD; ²Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK; ³Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL; ⁴University Hospitals, Cleveland Medical Center, Cleveland, OH; ⁵Methodist Physician Practices, San Antonio, TX; ⁶Columbia University Medical Center, New York, NY; ⁷University of Kansas Medical Center, Kansas City, KS; ⁸Abramson Comprehensive Cancer Center, University of Pennsylvania, Philadelphia, PA; ⁹Yale School of Medicine, New Haven, CT; ¹⁰David Geffen School of Medicine at UCLA, Los Angeles, CA; ¹¹Astellas Pharma Global Development, Northbrook, IL.

Publication No. 24

Phase Ib Study of Gilteritinib with Intensive Chemotherapy

• Both the maximally tolerated and expansion doses were established at 120 mg/day

alf day 21 bone marrow evaluation shows residual blasts and the bone marrow is not aplastic, a second induction cycle with the same regimen could be started >7 days after the last dose of gilteritinib but no later than day 28 (gilteritinib dose-escalation and dose-expansion cohorts) or day 35 (alternate anthracycline schedule and continuous gilteritinib exposure cohorts) of the first induction cycle; During the second induction cycle, the dosage of daunorubicin was reduced to 45 mg/m².

AE, adverse event; AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; BCR-ABL, breakpoint cluster region-Abelson murine leukemia viral oncogene homolog; CRc, composite complete remission; ECOG, Eastern Cooperative Oncology Group; FLT3, FMS-like tyrosine kinase 3; HSCT, hematopoietic stem cell transplant; PR, partial remission; q12h, every 12 hours; QTcF, Fridericia-corrected QT interval.

Patients aged ≥18 years with newly diagnosed AML

Key inclusion criteria:

- ECOG performance status ≤2
- FLT3 mutation not required

Key exclusion criteria:

• APL, t(8;21), inv(16), t(16;16), or BCR-ABL-positive leukemia

Pratz KW et al. ASH 2020; Abstract 24.

• Mean QTcF >450 ms at screening based on central reading

Remission Induction (1–2 cycles^a)

Gilteritinib Dose Escalation Cytarabine 100 mg/m² (days 1-7) +

Idarubicin 12 mg/m² (days 1-3) + Gilteritinib 40–200 mg/d (days 4–17)

Gilteritinib Dose Expansion

Cytarabine 100 mg/m² (days 1-7) + Idarubicin 12 mg/m² (days 1-3) + Gilteritinib 120 mg/d (days 4–17)

Alternate Anthracycline Schedule Cytarabine 100 mg/m² (days 1-7) + **Cohort A:** Daunorubicin 90 mg/m² (days 1–3) OR **Cohort B:** Idarubicin 12 mg/m² (days 1-3) +

Continuous Gilteritinib Exposure^b

Cytarabine 100 mg/m² (days 1-7) + Daunorubicin 90 mg/m² (days 1-3) + Gilteritinib 120 mg/d (days 8–21)

Efficacy and Safety of Venetoclax in Combination With Gilteritinib for Relapsed/Refractory *FLT3*-Mutated Acute Myeloid Leukemia in the Expansion Cohort of a Phase 1b Study

Naval Daver,¹ Jessica K. Altman,² Joseph Maly,³ Mark Levis,⁴ Ellen Ritchie,⁵ Mark Litzow,⁶ James McCloskey,⁷ Catherine Smith,⁸ Gary Schiller,⁹ Terrence Bradley,^{10,11} Ramon V. Tiu,¹² Wan-Jen Hong,¹³ Bo Tong,¹⁴ Qin Qin,¹⁴ Alexander E. Perl¹⁵

¹Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA ²Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA ³Norton Cancer Institute, Louisville, KY, USA ⁴Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA ⁵Department of Carcinogenesis, University of Texas, MD Anderson Cancer Center, Science Park-Research Division, Smithville, TX, USA ⁶Division of Hematology, Mayo Clinic, Rochester, MN, USA ⁷John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ, USA ⁸Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA ⁹David Geffen School of Medicine at UCLA, Los Angeles, CA, USA ¹⁰University of Miami, Department of Medicine, Miami, FL, USA ¹¹Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA ¹²Astellas Pharma US, Northbrook, IL, USA ¹³Genentech, South San Francisco, CA, USA ¹⁴AbbVie, Inc., North Chicago, IL, USA ¹⁵Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA

American Society of Hematology (ASH) – 62nd Annual Meeting December 5–8, 2020

Phase Ib Gilteritinib with Venetoclax: Best Responses

The 85% mCRc rate compares favorably to the 52% CRc rate (using the same response parameters), with single agent Gilteritinib in the ADMIRAL phase 3 study

Daver N et al. ASH 2020; Abstract 333.

Patterns of Secondary Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3inhibitors

Ahmad S. Alotaibi, Musa Yilmaz, Rashmi Kanagal-Shamanna, Sanam Loghavi, Tapan Kadia, Courtney DiNardo, Gautam Borthakur, Sherry Pierce, Sa Wang, Guilin Tang, Veronica Guerra, Bachar Samra, Naveen Pemmaraju, Elias Jabbour, Nicholas Short, Ghayas Issa, Maro Ohanian, Guillermo Garcia-Manero, Kapil Bhalla, Keyur Patel, Koichi Takahashi, Michael Andreeff, Jorge Cortes, Marina Konopleva, Farhad Ravandi, Hagop Kantarjian, Naval Daver

Q

Department of Leukemia, The University of Texas MD Anderson Cancer Center

Abstract 335

FLT3-TKD emergent mutations common after Type-II FLT3i-based therapies

Emergent mutations	Total (N=67) N (%)	Type I <i>FLT3</i> i (N=21) N (%)	Type II <i>FLT3</i> i (N=46) N (%)
FLT3-D835	14 (21)	0	<u>14 (30)*</u>
FLT3-ITD	1 (1)	1 (5)	0
FLT3-N676K	2 (3)	1 (5)	1 (2)
FLT3-N841K	1 (1)	0	1 (2)

* 13 pts had received type II FLT3i + Low Intensity Rx, 1 pt type II FLT3i + Intensive Rx

FLT3-mutation was no longer detectable at relapse in 18/67 (26%) patients treated with FLT3i based therapies: 12 /46 (26%) Type II FLT3i, and 6/21 (28%) Type I FLT3i based therapies.

Alotaibi AS et al. ASH 2020; Abstract 335.

What would you recommend as first-line therapy to a <u>78-year-old</u> patient (PS 0) who presents with intermediate-risk AML with a <u>FLT3-ITD</u> mutation?

- 1. Midostaurin
- 2. 7 + 3 induction + midostaurin
- 3. HMA + FLT3 inhibitor
- 4. HMA + venetoclax
- 5. HMA + venetoclax + FLT3 inhibitor
- 6. Low-dose cytarabine + venetoclax
- 7. Low-dose cytarabine + venetoclax + FLT3 inhibitor
- 8. Gilteritinib
- 9. Other

A 60-year-old with AML, FLT3 mutation receives 7 + 3 induction + midostaurin, achieves remission. Receives consolidation with 3 cycles of modified high-dose cytarabine + midostaurin. Four months after completion of therapy, disease progression, FLT3 ITD mutation (allelic burden 0.4) confirmed. What would you recommend?

- 1. Gilteritinib
- 2. MEC + midostaurin
- 3. Venetoclax + FLT3 inhibitor
- 4. HMA + venetoclax
- 5. HMA + venetoclax + FLT3 inhibitor
- 6. Low-dose cytarabine + venetoclax
- 7. Low-dose cytarabine + venetoclax + FLT3 inhibitor
- 8. Other

Case Presentation – Dr Perl: A patient with relapsed/refractory AML with a FLT3 mutation

- 75 YO woman with a h/o carotid stenosis, type 2 diabetes, and hypertension presents with fever, cough, and sore throat, and is found to have a WBC of 52K with monocytosis and circulating blasts.
- She is sent to the ER and COVID-19 is ruled out.
- She is admitted and undergoes bone marrow biopsy, which confirms a diagnosis of AML not otherwise specified; she is cytoreduced with hydroxyurea until her WBC is <25K. Her karyotype is 46, XX and PCR identifies FLT3-ITD (ITD:WT allelic ratio 2:1) and NGS finds mutations in DNMT3A, NPM1, and FLT3-ITD.
- She is started on venetoclax + azacitidine and sent home after no infection is identified and her fevers defervesce on oral antibiotics.
- Her chemotherapy is well tolerated other than neutropenic fevers, requiring re-hospitalization prior to count recovery. No source is identified and the fevers abate with count recovery.

Case Presentation – Dr Perl: A patient with relapsed/refractory AML and a FLT3 mutation (continued)

- Marrow biopsy done during the fourth week of cycle 1 shows complete remission. She receives 7
 more cycles before developing acute loss of vision associated with new thrombocytopenia and again
 circulating blasts are seen.
- Ophthalmology finds vitreous hemorrhage due to relapsed leukemia. She again tests positive for FLT3-ITD in the blood.
- Azacitidine is stopped and venetoclax continued along with gilteritinib.
- Within 72 hours of starting gilteritinib her circulating blasts clear. However, she has difficulty keeping
 platelets transfused adequately to achieve the target recommended by ophthalmology (>50K) and
 venetoclax is stopped after 3 weeks and not restarted.
- She is ultimately sent home but returns about five weeks into gilteritinib therapy with high grade fevers that persist despite broad spectrum antibiotics.

Case Presentation – Dr Perl: A patient with relapsed/refractory AML and a FLT3 mutation (continued)

- Cultures of the blood and urine are negative and CT scanning of chest, abdomen, pelvis, and sinuses fails to identify an occult infection site. She develops a piled-up erythematous rash on her arm where she had blood cultures drawn without surrounding cellulitis or fluid collection.
- A skin biopsy of the rash shows a dense neutrophilic infiltrate without bacteria or fungus in the biopsy specimen consistent with Sweet's syndrome.
- She is treated with 20 mg of prednisone daily with resolution of fevers and her rash. She is given insulin to manage hyperglycemia.
- Within 2 weeks her neutrophils start to rise and her platelet transfusions decrease from three times a week to once weekly.
- A bone marrow biopsy is performed and shows a hypocellular marrow (10% cellularity) with erythroid-dominant trilineage hematopoiesis but no increase in blasts.
- Her vision remains impaired but follow up with ophthalmology shows some resorption of the blood.

Case Presentation – Dr Wang: An older patient with newly diagnosed AML with a FLT3 mutation

- An 84-year-old woman with a prior history of rheumatoid arthritis on oral methotrexate therapy for several years, coronary artery disease s/p catheterization and stent placement, and longstanding hypertension.
- She reported increased fatigue and unintentional weight loss in 2019. Lab work done in Jan 2020 showing WBC 7.1, hgb 6.5, plts 16K with 18% peripheral blasts. She was admitted to the hospital and underwent bone marrow biopsy showing AML with 82% blasts. Cytogenetics showed trisomy 13 and deletion of 5q.
- Mutational profile showed FLT3-ITD and FLT3-D8351 mutations as well as RUNX1 and TET2 mutations. The patient received upfront therapy with azacitidine alone but was noted to have rising WBC and peripheral blasts count after 2 weeks of therapy.
- She was then started on gilteritinib monotherapy 120 mg daily with rapid cytoreduction in WBC. Repeat bone marrow after 1 month of therapy demonstrated only 1% blasts.

Case Presentation – Dr Wang: An older patient with newly diagnosed AML with a FLT3 mutation (continued)

- She remained on gilteritinib therapy from Feb-July 2021, at which time she was noted to have progressive thrombocytopenia (plts <20K). Bone marrow at this time showed relapsed AML with 30% blasts, now FLT3 negative.
- She was initiated on a clinical trial of a novel tyrosine kinase inhibitor and achieved a CR without platelet recovery and reduction in marrow blasts to 3%. Unfortunately, her disease once again relapsed in Dec 2020 and she was enrolled on a new clinical trial awaiting repeat evaluation.
- She was recently hospitalized for suspected bacteremia and severe thrombocytopenia requiring daily platelet transfusions.

Agenda

Module 1: Venetoclax combinations

Module 2: FLT3 inhibitors

Module 3: IDH inhibitors

Module 4: Oral azacitidine (CC-486)

Module 5: Secondary AML — CPX-351

Module 6: Novel agents and strategies

Enasidenib Monotherapy is Effective in Older Patients with Newly Diagnosed IDH2 Mutated Acute Myeloid Leukemia and Addition of Azacitidine Rescues Enasidenib Monotherapy Failures: A Phase 2/1B Study of the BEAT AML Master Trial

S3 - STUDY DESIGN AND OBJECTIVES

Stein EM et al. ASH 2020; Abstract 636.

RESPONSE

Parameter	Phase 2 Enasidenib 100 mg/day (n=60)	Phase 1b Enasidenib + Azacitidine (n=17)
Duration of Response in months Median, 95% Cl	NR, 7.1-NR	NR, 2.5 – NR
Overall Survival Median in months, 95% Cl	24.4, 10.6-NE	8.9, 5.2-NE
Median Follow-up in months (range)	14.6 (6.2-33.5)	12.7 (1.1-31.4)

Stein EM et al. ASH 2020; Abstract 636.

Phase III IDHENTIFY Study Fails to Meet Its Primary Endpoint of OS in Relapsed/Refractory AML with an IDH2 Mutation Press Release – August 25, 2020

"The phase 3 IDHENTIFY study evaluating enasidenib plus best supportive care versus conventional care regimens did not meet the primary end point of overall survival (OS) in patients with relapsed or refractory acute myeloid leukemia (AML) with an isocitrate dehydrogenase-2 (IDH2) mutation, according to... the developer of the agent. Notably, the safety profile of enasidenib was consistent with previously reported findings.

The international, multicenter, open-label, randomized, phase 3 IDHENTIFY study compared the efficacy and safety of enasidenib versus conventional care regimens, including continuous 28-day cycles of best supportive care only, azacitidine subcutaneously plus best supportive care, low-dose cytarabine subcutaneously plus best supportive care, or intermediate-dose cytarabine intravenously plus best supportive care, in patients aged 60 years or older with AML refractory to or relapsed after second- or third-line AML therapy and positive for an *IDH2* mutation. The primary end point of the study was OS, and key secondary end points included overall response rate, event-free survival, duration of response, and time to response."

Ivosidenib improves overall survival relative to standard therapies in relapsed or refractory mutant IDH1 AML: results from matched comparisons to historical controls

Peter Paschka, MD,¹ Hervé Dombret, MD,² Xavier Thomas, MD, PhD,³ Christian Recher, MD, PhD,⁴ Sylvain Chantepie, MD,⁵ Pau Montesinos, MD, PhD,^{6,7} Evelyn Acuña-Cruz, MD,⁷ Paresh Vyas, MRCP FRCP FRCPath,⁸ Karl-Anton Kreuzer, MD,⁹ Michael Heuser, MD,¹⁰ Klaus H. Metzeler, MD,¹¹ Michael Dennis, MD,¹² Bruno Quesnel, MD, PhD,¹³ Mathilde Hunault-Berger, MD, PhD,¹⁴ Mohamad Mohty, MD, PhD,¹⁵ Arnaud Pigneux, MD, PhD,¹⁶ Stéphane de Botton, MCU-PH,¹⁷ Daniela Weber, MSc,¹ Konstanze Döhner, MD,¹ Gary Milkovich, PharmD,¹⁸ John Reitan, PharmD,¹⁸ Sarah C. MacDonald, SD,¹⁹ Deborah Casso, MPH,²⁰ Michael Storm, MSc,²¹ Hua Liu, PhD,²¹ Stephanie M. Kapsalis, OTR,²¹ Eyal C. Attar, MD,²¹ Thomas Winkler, MD,²¹ Hartmut Döhner, MD¹

¹Uim University Hospital Ulm, Germany; ²Hôpital Saint-Louis, Paris, France; ³Centre Hospitalier Lyon-Sud, Pierre-Benite, France; ⁴IUCT-Oncopole, Centre Hospitalier Universitaire de Toulouse, Toulouse, France; ⁵Institut d'Hématologie de Basse-Normandie, Centre Hospitalier Universitaire de Caen, Caen, France; ⁶CIBERONC, Instituto

Carlos III, Madrid, Spain; ⁷Hospital Universitario y Politécnico La Fe, Valencia, Spain; ⁸University of Oxford, Oxford, United Kingdom; ⁹Uniklinik Köln, Köln, Germany; ¹⁰Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany; ¹¹Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; ¹²The Christie NHS Foundation Trust, Manchester, United Kingdom; ¹³Centre Hospitalier Régional Universitaire de Lille, Lille, France; ¹⁴CRCINA Centre Hospitalier Universitaire d'Angers, Angers, France; ¹⁵Sorbonne University, Hópital Saint-Antoine, Paris, France; ¹⁶CHU Bordeaux, Université de Bordeaux, Bordeaux, France; ¹⁷Institut Gustave Roussy, Villejuif, France; ¹⁸RJM Group, LLC, Washington, DC, United States; ¹⁹IQVIA, Kirkland, QC, Canada; ²⁰IQVIA, Seattle, WA, United States; ²¹Agios Pharmaceuticals, Inc., Cambridge, MA, United States

*Current address: Klinikum Ludwigshafen, Ludwigshafen am Rhein, Germany

This study was funded by Agios Pharmaceuticals, Inc.

Presented at the 62nd American Society of Hernatology Annual Meeting and Exposition 2020 (ASH 2020) 5 ~ 8 December 2020 (Virtual)

Kaplan–Meier curves demonstrate significant OS benefit for IVO

IPTW

*Cox regression analysis, using the key prognostic factors as covariates, was applied to estimate HR and the corresponding 95% CI was estimated using the sandwich estimator. *P-value based on 2-sided log-rank test. CI = confidence interval; HC = historical control; HR = hazard ratio; IPTW = inverse probability of treatment weighting method; IVO = kvosidenib; KM = Kaptan-Meler; OS = overall survival

7

Paschka P et al. ASH 2020; Abstract 625.

Results of Venetoclax and Azacitidine Combination in Chemotherapy Ineligible Untreated Patients with Acute Myeloid Leukemia with *IDH 1/2* mutations

Daniel A. Pollyea¹, Courtney D. DiNardo², Martha L. Arellano³, Arnaud Pigneux⁴, Walter Fiedler⁵, Marina Konopleva², David A. Rizzieri⁶, B. Douglas Smith⁷, Atsushi Shinagawa⁸, Roberto M. Lemoli⁹, Monique Dail¹⁰, Yinghui Duan¹¹, Brenda Chyla¹¹, Jalaja Potluri¹¹, Jean A. Ridgeway¹¹, Hagop M. Kantarjian²

¹Division of Hematology, School of Medicine, University of Colorado, Aurora, CO, USA; ²Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA; ⁴Department of Hematology, CHU de Bordeaux, France; ⁵Department of Hematology, University Medical Center Hamburg-Eppendorf, Germany; ⁶Department of Hematology, Duke University School of Medicine, Durham, NC, USA; ⁷Department of Oncology, Johns Hopkins Medicine, Baltimore, MD, USA; ⁸Department of Hematology, Hitachi General Hospital, Hitachi-shi, Japan; ⁹Clinic of Hematology, Department of Internal Medicine (DiMI), University of Genoa, San Martino Hospital IRCCS, Genoa, Italy; ¹⁰Genentech Inc., South San Francisco, CA, USA; ¹¹AbbVie Inc., North Chicago, IL, USA

Abstract 461

American Society of Hematology (ASH) – 62nd Annual Meeting December 5-8, 2020

RTP RESEARCH TO PRACTICE

Response Rates with Ven/AZA for Patients with IDH1m/IDH2m AML

What would you recommend as first-line therapy to a <u>78-year-old</u> patient (PS 0) who presents with intermediate-risk AML with an <u>IDH1</u> mutation?

- 1. 7 + 3 induction
- 2. HMA
- 3. HMA + venetoclax
- 4. HMA + venetoclax + ivosidenib
- 5. Low-dose cytarabine + venetoclax
- 6. Low-dose cytarabine + venetoclax + ivosidenib
- 7. HMA + ivosidenib
- 8. Ivosidenib
- 9. Other

Case Presentation – Dr Perl: A patient with AML and an IDH1 or IDH2 mutation

- 67 YO retired mailman complains of progressive dyspnea on exertion and feels faint after mowing his lawn.
- He sees the doctor and is found to have hemoglobin=4.8. He is sent to the ER and admitted.
- Labs there show a WBC=2.7 (33% blasts, ANC 600) and platelets=35. Prior CBC from 6 months prior is notable for plts =100K.
- CXR is notable for RUL infiltrate and a small pleural effusion. A marrow biopsy shows a 90% cellular marrow with 61% myeloblasts and genetic studies show a karyotype 47,XY,+8 and NGS finds mutations in ASXL1, U2AF1, and IDH2.
- He is treated with IV antibiotics and induced with 7+3 (cytarabine 100 mg/m²/d; d1-7 CIVI, daunorubicin 60 mg/m²/d IV; d1-3).
- Over the next two weeks, he develops progressive hypoxemia and near resolution of the R upper lobe infiltrate but new bilateral nodular infiltrates concerning for angio-invasive fungal infection and persistent mediastinal lymphadenopathy.
Case Presentation – Dr Perl: A patient with AML and an IDH1 or IDH2 mutation (continued)

- A bone marrow biopsy on day 14 shows a 60% cellular marrow with 84% blasts.
- His therapy is changed to venetoclax (dose reduced to 100 mg for concurrent voriconazole) and azacitidine.
- 21 days later a bone marrow shows erythroid hyperplasia, trilineage dysplasia, scattered noncaseating granulomas but no increase in blasts.
- He has an unremarkable recovery of blood counts with GCSF and becomes transfusion independent.
- He continues on monthly cycles of venetoclax 100 mg/d; days 1-14 + azacitidine 75 mg/m²/d; days 1-5 as an outpatient after discharge (dosing adjusted to avoid prolonged neutropenia).
- 3 months later, his chest CT has normalized and he is being worked up for allogeneic transplant from his HLA-identical brother.

Agenda

Module 1: Venetoclax combinations

Module 2: FLT3 inhibitors

Module 3: IDH inhibitors

Module 4: Oral azacitidine (CC-486)

Module 5: Secondary AML — CPX-351

Module 6: Novel agents and strategies

Oral Azacitidine (CC-486) Prolongs Survival for Patients with Acute Myeloid Leukemia (AML) in Remission after Intensive Chemotherapy (IC) Independent of the Presence of Measurable Residual Disease (MRD) at Study Entry: Results from the QUAZAR AML-001 Trial

<u>Gail J. Roboz</u>,¹ Farhad Ravandi,² Andrew H Wei,^{3,4} Hervé Dombret,^{5,6} Hartmut Döhner,⁷ Felicitas Thol,⁸ Maria Teresa Voso,⁹ Andre C. Schuh,¹⁰ Kimmo Porkka,^{11,12} Ignazia La Torre,¹³ Barry Skikne,^{14,15} Keshava Kumar,¹⁵ Qian Dong,¹⁵ C.L. Beach,¹⁵ Alberto Risueño,¹⁶ Daniel Lopes de Menezes,¹⁵ and Gert Ossenkoppele¹⁷

¹Division of Hematology and Oncology, Weill Cornell Medicine and The New York Presbyterian Hospital, New York, NY; ²Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX; ³The Alfred Hospital, Melbourne, Australia; ⁴Monash University, Melbourne, Australia; ⁵Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France; ⁶Institut de Recherche Saint Louis, Université de Paris, Paris, France; ⁷Ulm University Hospital, Ulm, Germany; ⁸Medizinische Hochschule Hannover, Hannover, Germany; ⁹University of Rome Tor Vergata, Rome, Italy; ¹⁰Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹¹iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland; ¹²Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; ¹³Celgene, a Bristol-Myers Squibb Company, Boudry, Switzerland; ¹⁴Kansas University Medical Center, Kansas City, KS; ¹⁵Bristol Myers Squibb, Princeton, NJ; ¹⁶BMS Center for Innovation and Translational Research Europe (CITRE), a Bristol Myers Squibb Company, Seville, Spain; ¹⁷Amsterdam UMC, Location VU University Medical Center, Amsterdam, Netherlands

Publication #692

Oral azacitidine

- Oral azacitidine (Oral AZA [CC-486]):
 - Oral HMA with a distinct PK/PD profile from injectable AZA; the two are not bioequivalent^{1,2}
 - Oral AZA was recently approved in the US for continued Tx of adult pts with AML in first CR/CRi post-IC and not able to complete intensive curative therapy (eg, HSCT)³
- Oral dosing allows for extended drug exposure during each Tx cycle to prolong AZA activity^{1,2,4}

1. Garcia-Manero et al. J Clin Oncol. 2011;29(18):2521-7. 2. Laille et al. PLoS One. 2015;10(8):e0135520. 3. ONUREG® (azacitidine) tablets [package insert]. Princeton, NJ: Bristol-Myers Squibb Company; Rev. 9/2020. 4. Savona et al. Am J Hematol. 2018;93(10):1199-206. 5. Stresemann et al. Mol Cancer Ther. 2008;7:2998-3005. 6. Hollenbach et al. PLoS One. 2010;5(2):e9001. 7. Scott LJ. Drugs. 2016;76(8):889-900. 8. Stresemann C, Lyko F. Int J Cancer. 2008;123(1):8-13. 9. Aimiuwu et al. Blood. 2012;119(22):5229-38.

AML, acute myeloid leukemia; AZA, azacitidine; CR, complete remission; CRi, CR with incomplete blood count recovery; HMA, hypomethylating agent; HSCT, hematopoietic stem cell transplant; IC, intensive chemotherapy; PD, pharmacodynamic; PK, pharmacokinetic; pts, patients; Tx, treatment.

QUAZAR: Overall survival by baseline MRD status and treatment arm

 Treatment with Oral AZA (CC-486) resulted in improved OS from time of randomization compared with PBO in pts who were MRD+ or MRD- at study entry

Roboz GJ et al. ASH 2020; Abstract 692.

Escalated Dosing Schedules of Oral Azacitidine (CC-486) are Effective and Well Tolerated for Patients Experiencing First Acute Myeloid Leukemia (AML) Relapse: Results from the Phase III QUAZAR AML-001 Trial

Hartmut Döhner,¹ Andrew H Wei,^{2,3} Pau Montesinos,^{4,5} Hervé Dombret,^{6,7} Farhad Ravandi,⁸ Hamid Sayar,⁹ Kimmo Porkka,^{10,11} Irwindeep Sandhu,¹² Francesco Passamonti,¹³ Fabrizio Pane,¹⁴ Tadeusz Robak,¹⁵ José F. Falantes,¹⁶ Andre C. Schuh,¹⁷ Gert Ossenkoppele,¹⁸ Ignazia La Torre,¹⁹ Barry Skikne,^{20,21} Keshava Kumar,²¹ Qian Dong,²¹ C.L. Beach,²¹ and Gail J. Roboz²²

¹Ulm University Hospital, Ulm, Germany; ²The Alfred Hospital, Melbourne, Australia; ³Australian Centre for Blood Diseases, Monash University, Melbourne, Australia; ⁴CIBERONC, Instituto de Salud Carlos III, Madrid, Spain; ⁵Hematology and Hemotherapy Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain, Spain; ⁶Institut de Recherche Saint Louis, Université de Paris, Paris, France; ⁷Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France; ⁸Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX; ⁹Indiana University Cancer Center, Indianapolis, IN; ¹⁰ICAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland; ¹¹Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; ¹²University of Alberta Hospital, Edmonton, Canada; ¹³Department of Medicine and Surgery, University of Insubria, Varese, Italy; ¹⁴Azienda Ospedaliera Universitaria Federico II, Naples, Italy; ¹⁵Department of Hematology, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland; ¹⁶Hospital Virgen del Rocio. Hematología, Seville, Spain; ¹⁷Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹⁸Amsterdam UMC, Location VU University Medical Center, Amsterdam, Netherlands; ¹⁶Celgene, a Bristol-Myers Squibb Company, Boudry, Switzerland; ¹⁰Kansas University Medical Center, Kansas City, KS; ²¹Bristol Myers Squibb, Princeton, NJ; ²²Division of Hematology and Oncology, Well Cornell Medicine and The New York-Presbyterian Hospital, New York, NY

Abstract # 111

Dose-escalation cohort

- 91/472 (19.3%) randomized pts received a 21-day escalated dosing schedule
- Median time to dose escalation:
 - Oral-AZA: 9.2 months (range 1.0-52.7)
 - PBO: 6.0 months (range 0.5–19.3)
- Duration of escalated dosing:
 - Median (range) number of cycles: Oral-AZA 2 (1-45), PBO 2 (1-16)
 - Received > 3 escalated dosing cycles: Oral-AZA 43% (22/51); PBO 18% (7/40)
- Most pts (88%) ultimately discontinued Tx due to persistent AML

AML, acute myeloid leukemia; AZA, azacitidine; PBO, placebo; pt(s), patient(s); Tx, treatment.

RTP RESEARCH TO PRACTICE

Escalated dosing cohort: Overall survival

Overall survival estimated using Kaplan-Meier methods. The hazard ratio (HR) and 95% confidence intervals comparing Oral-AZA vs. placebo are from a Cox proportional hazards model, and the P value is from an unstratified log-rank test.

95%CI, 95% confidence interval; AZA, azacitidine; HR, hazard ratio; mo, months; OS, overall survival; No., number.

A 65-year-old with intermediate-risk AML, no actionable mutations and a PS of 0 receives standard 7 + 3 induction. He achieves a complete remission after 2 cycles of induction and then receives 2 cycles of high-dose cytarabine as consolidation but ultimately declines transplant. Would you offer this patient maintenance therapy?

- 1. Yes
- 2. Yes, with oral azacitidine (CC-486)
- 3. No

Agenda

Module 1: Venetoclax combinations

Module 2: FLT3 inhibitors

Module 3: IDH inhibitors

Module 4: Oral azacitidine (CC-486)

Module 5: Secondary AML — CPX-351

Module 6: Novel agents and strategies

Five-year Final Results of a Phase 3 Study of CPX-351 Versus 7+3 in Older Adults with Newly Diagnosed High-risk/Secondary Acute Myeloid Leukemia (AML): Outcomes by Age Subgroup and Among Responders

Presenter: Jeffrey E. Lancet H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL

Jeffrey E. Lancet,¹ Geoffrey L. Uy,² Laura F. Newell,³ Tara L. Lin,⁴ Donna Hogge,⁵ Scott R. Solomon,⁶ Gary J. Schiller,⁷ Matthew J. Wieduwilt,⁸ Daniel H. Ryan,⁹ Stefan Faderl,¹⁰ Yu-Lin Chang,¹⁰ Jorge E. Cortes^{11,12}

¹H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; ²Washington University School of Medicine, St. Louis, MO, USA; ³Oregon Health & Science University, Portland, OR, USA; ⁴University of Kansas Medical Center, Kansas City, KS, USA; ⁵Leukemia/BMT Program of British Columbia, Vancouver, BC, Canada; ⁶Leukemia Program, Northside Hospital Cancer Center Institute, Atlanta, GA, USA; ⁷David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ⁸University of California – San Diego Moores Cancer Center, La Jolla, CA, USA; ⁹University of Rochester, Rochester, NY, USA; ¹⁰Jazz Pharmaceuticals, Palo Alto, CA, USA; ¹¹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¹²Georgia Cancer Center, Augusta University, Augusta, GA, USA.

62nd ASH Annual Meeting & Exposition; December 5-8, 2020

Abstract 635

Overall Survival

 After a median follow-up of 60.65 months, improved median OS with CPX-351 vs 7+3 was maintained, with an HR that was very stable and consistent with the prior primary analysis

Lancet JE et al. ASH 2020; Abstract 635.

Overall Survival by Age Subgroup

Ages 60 to 69 Years

Improved median OS and higher Kaplan-Meier–estimated survival rates at 3 and 5 years for CPX-351 vs 7+3 were maintained in patients aged 60 to 69 years and in those aged 70 to 75 years

Lancet JE et al. ASH 2020; Abstract 635

٠

MDAnderson Cancer Center

Making Cancer History"

Abstract # 28

Phase II Study of CPX-351 Plus Venetoclax in Patients with Acute Myeloid Leukemia (AML)

Tapan M. Kadia, Gautam Borthakur, Koichi Takahashi, Courtney Dinardo, Naval Daver, Naveen Pemmaraju, Elias Jabbour, Nitin Jain, Nicholas Short, Wei Qiao, Lade Adewale, Caitlin Rausch, Sherry Pierce, Yesid Alvarado, Amin Alousi, Uday Popat, Issa Khouri, Guillermo Garcia-Manero, Marina Konopleva, Jorge Cortes, Farhad Ravandi, and Hagop Kantarjian.

5B:13

CPX351 + Venetoclax in AML

Responses

Response / Outcome	N	%
Evaluable for Response	18	90
CR	1	6
CRi	6	33
MLFS	1	6
ORR	8	44
Died ≤ 4 weeks	2	10
Died ≤ 8 weeks	4	20
Median # of cycles given [Range]	1 [1 - 2]	
Median # of cycles to response	1 [1-2]	
No. of Responding Pts Receiving SCT	7	88
Median time to count recover (days)	41 [23 - 60]	

Agenda

Module 1: Venetoclax combinations

Module 2: FLT3 inhibitors

Module 3: IDH inhibitors

Module 4: Oral azacitidine (CC-486)

Module 5: Secondary AML — CPX-351

Module 6: Novel agents and strategies

American Society of Hematology Helping hematologists conquer blood diseases worldwide

David A. Sallman¹, Adam S. Asch², Suman Kambhampati³, Monzr M. Al Malki⁴, Joshua F. Zeidner⁵, William Donnellan⁶, Daniel J. Lee⁷, Paresh Vyas⁸, Deepa Jeyakumar⁹, Gabriel N. Mannis¹⁰, Tiffany N. Tanaka¹¹, Wanxing Chai-Ho¹², Richard A. Larson¹³, Andrew R. Whiteley¹⁴, Guido Marcucci⁴, Rami S. Komrokji¹, Guillermo Garcia-Manero¹⁵, Joanna Van Elk¹⁶, Ming Lin¹⁶, Roy Maute¹⁶, Jens-Peter Volkmer¹⁶, Chris H. Takimoto¹⁶, Mark P. Chao¹⁶, and Naval G. Daver¹⁵

Abstract 330

Magrolimab (Formerly 5F9) Is a First-in-Class Macrophage Immune Checkpoint Inhibitor Targeting CD47

CD47 is a "do not eat me" signal that is overexpressed in multiple cancers, including acute myeloid leukemia, leading to macrophage immune evasion Magrolimab, an IgG4 anti-CD47 monoclonal antibody (mAb), eliminates tumor cells through macrophage phagocytosis

Magrolimab is being investigated in multiple cancers with >500 patients dose

Control mAb: No Phagocytosis

Anti-CD47 mAb: Phagocytosis

Macrophages Cancer cells

Magrolimab + AZA in ND AML Ineligible for Intensive Chemotherapy:

- Magrolimab + AZA induces a 63% ORR and 42% CR rate in AML, including similar responses in *TP53*-mutant patients
- Median time to response is 1.95 months (range 0.95 to 5.6 mo), more rapid than AZA monotherapy
- 9.6% of patients proceeded to bone marrow stem cell transplantation
- Magrolimab + AZA efficacy compares favorably to AZA monotherapy (CR rate 18%–20%)^{1,2}

Response assessments per 2017 AML ELN criteria. Patients with at least 1 post-treatment response assessment are shown. *Three patients not shown due to missing values; <5% blasts imputed as 2.5%. 1. Fenaux P, et al. *J Clin Oncol*. 2010;28(4):562-569. 2. Dombret H, et al. *Blood*. 2015;126(3):291-299.

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Preliminary Data Report on a Phase 1/2A First in Human Study of the Menin-KMT2A (MLL) inhibitor KO-539 in patients with relapsed or refractory acute myeloid leukemia

Eunice S. Wang¹, Jessica Altman², Kristen Pettit³, Stephane DeBotton⁴, Roland Walter⁵, Pierre Fenaux⁶, Francis Burrows⁷, Blake Tomkinson⁷, Bridget Martell⁷ and Amir T Fathi⁸

²Roswell Park Comprehensive Cancer Center, Buffalo, NY; ²Northwestern Medical Faculty Foundation, Chicago IL; ³University of Michigan, Ann Arbor, MI; ⁴Institut Gustave Roussy Service d'Hématologie Clinique, France; ³Fred Hutchinson Cancer Research Center, Seattle, WA; ⁴Hospital Saint Louis, France; ³Kura Oncology, San Diego, CA; ⁴Massachusetts General Hospital, Harvard Medical School, Boston, MA

Abstract 115

KO-539 is a Potent and Selective Oral Inhibitor of the Menin-KMT2A (MLL) Complex

Wang ES et al. ASH 2020; Abstract 115.

KO-539 Demonstrates Encouraging Early **Clinical Activity**

S American Society of Hematology

Data as of 02 November 2020

Driver Mutation Acquisition *in Utero* and Childhood Followed By Lifelong Clonal Evolution Underlie Myeloproliferative Neoplasms

Nicholas Williams, Joe Lee, Luiza Moore, Joanna Baxter, James Hewinson, Kevin Dawson, Andrew Menzies, Anna Godfrey, Tony Green*, Peter Campbell*, Jyoti Nangalia*

Presenter: Jyoti Nangalia

sanger

a Wellcome - MRC Cambridge Stem Cell Institute

62nd ASH[®] Annual Meeting and Exposition

Abstract LBA-1

JAK2 and DNMT3A mutations can be acquired in utero

- Rich driver mutation landscape
- JAK2 and DNMT3A mutations acquired very early in life including in utero
- Additional driver mutation acquisitions separated by decades

Williams N et al. ASH 2020; Abstract LBA-1.

Meet The Professor Management of Chronic Lymphocytic Leukemia

Thursday, March 11, 2021 5:00 PM – 6:00 PM ET

> Faculty Steven Coutre, MD

Moderator Neil Love, MD

Thank you for joining us!

CME credit information will be emailed to each participant within 5 business days.

