Recent Advances in Hematologic Oncology: A 4-Part Live Webinar Series Reviewing Key Data and Presentations from the 62nd ASH Annual Meeting

Part 3 — Multiple Myeloma

Wednesday, February 10, 2021 5:00 PM – 6:00 PM ET

Faculty Robert Z Orlowski, MD, PhD S Vincent Rajkumar, MD Edward A Stadtmauer, MD

Faculty

Robert Z Orlowski, MD, PhD Florence Maude Thomas Cancer Research Professor Department of Lymphoma and Myeloma Professor, Department of Experimental Therapeutics Director, Myeloma Section Division of Cancer Medicine The University of Texas MD Anderson Cancer Center Houston, Texas

Edward A Stadtmauer, MD

Section Chief, Hematologic Malignancies Roseman, Tarte, Harrow and Shaffer Families President's Distinguished Professor University of Pennsylvania Abramson Cancer Center of the University of Pennsylvania Philadelphia, Pennsylvania

S Vincent Rajkumar, MD Edward W and Betty Knight Scripps Professor of Medicine Mayo Clinic Rochester, Minnesota

Commercial Support

This activity is supported by educational grants from AbbVie Inc, Bristol-Myers Squibb Company, GlaxoSmithKline, Karyopharm Therapeutics, Oncopeptides, Sanofi Genzyme and Takeda Oncology.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following commercial interests: AbbVie Inc, Acerta Pharma — A member of the AstraZeneca Group, Adaptive Biotechnologies Corporation, Agendia Inc, Agios Pharmaceuticals Inc, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Biodesix Inc, bioTheranostics Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Daiichi Sankyo Inc, Dendreon Pharmaceuticals Inc, Eisai Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Inc, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Guardant Health, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Infinity Pharmaceuticals Inc, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lexicon Pharmaceuticals Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Merrimack Pharmaceuticals Inc, Myriad Genetic Laboratories Inc, Natera Inc, Novartis, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Prometheus Laboratories Inc, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sandoz Inc, a Novartis Division, Sanofi Genzyme, Seagen Inc, Sirtex Medical Ltd, Spectrum Pharmaceuticals Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Oncology, Tesaro, A GSK Company, Teva Oncology, Tokai Pharmaceuticals Inc and Verastem Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

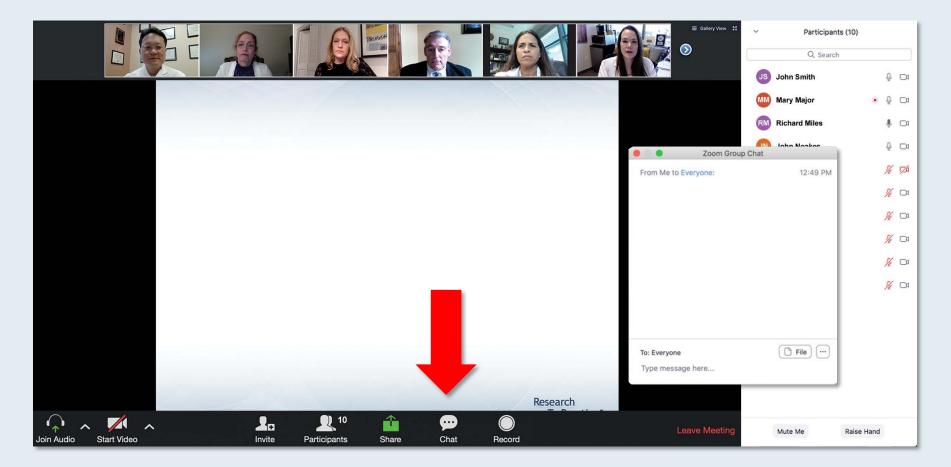
Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Orlowski — Disclosures

Advisory Committee	Amgen Inc, Bristol-Myers Squibb Company, Celgene Corporation, EcoR1 Capital LLC, FORMA Therapeutics, Genzyme Corporation, GlaxoSmithKline, Ionis Pharmaceuticals Inc, Janssen Biotech Inc, Juno Therapeutics, a Celgene Company, Kite, A Gilead Company, Legend Biotech, Molecular Partners, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Servier, Takeda Pharmaceuticals North America Inc	
Consulting Agreement	STATinMED	
Contracted Research	BioTheryX Inc, CARsgen Therapeutics, Celgene Corporation, Exelixis Inc, Janssen Biotech Inc, Sanofi Genzyme, Takeda Pharmaceuticals North America Inc	
Ownership Interest	Asylia Therapeutics Inc (founder, patents, equity)	

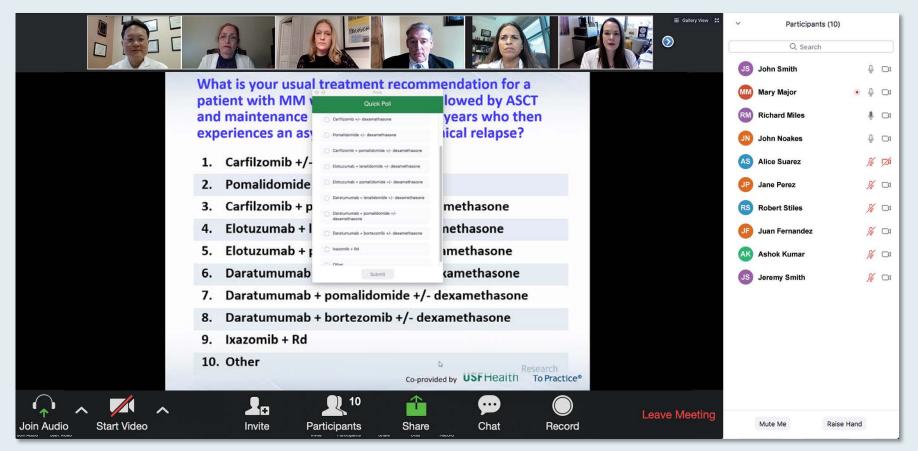
Dr Rajkumar — Disclosures

No financial interests or affiliations to disclose.



Dr Stadtmauer — Disclosures

Consulting Agreements	Amgen Inc, Celgene Corporation, Genentech, a member of the Roche Group, Janssen Biotech Inc, Sanofi Genzyme, Takeda Oncology
-----------------------	---


We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface How to answer poll questions

When a poll question pops up, click your answer choice from the available options. Results will be shown after everyone has answered.

ONCOLOGY TODAY WITH DR NEIL LOVE

Key Presentations on the Treatment of Multiple Myeloma from the 2020 ASH Annual Meeting

DR SAGAR LONIAL WINSHIP CANCER INSTITUTE EMORY UNIVERSITY SCHOOL OF MEDICINE

Dr Sagar Lonial Key Presentations on t Oncology Today with Dr Neil Love —

(15) (30)

Cases from the Community: Investigators Discuss Emerging Research and Actual Patients with Colorectal Cancer (Part 3 of a 3-Part Series)

> Thursday, February 11, 2021 5:00 PM – 6:00 PM ET

> Faculty Kristen K Ciombor, MD, MSCI Eric Van Cutsem, MD, PhD

Current Concepts and Recent Advances in Oncology Real World Oncology Rounds A Daylong Clinical Summit Hosted in Partnership with North Carolina Oncology Association (NCOA) and South Carolina Oncology Society (SCOS)

> Saturday, February 13, 2021 8:30 AM – 4:30 PM ET

FACULTY

Courtney D DiNardo, MD, MSCE Robert Dreicer, MD, MS Justin F Gainor, MD Sara Hurvitz, MD Ian E Krop, MD, PhD John M Pagel, MD, PhD Alexander Perl, MD

Daniel P Petrylak, MD Philip A Philip, MD, PhD, FRCP Paul G Richardson, MD Mitchell R Smith, MD, PhD Eric Van Cutsem, MD, PhD Peter Voorhees, MD Heather Wakelee, MD

MODERATOR Neil Love, MD

Saturday, February 13, 2021

8:30 AM — Chronic Lymphocytic Leukemia and Lymphomas John Pagel, Mitchell Smith

9:30 AM — Multiple Myeloma Paul Richardson, Peter Voorhees

10:45 AM — Genitourinary Cancers Robert Dreicer, Daniel Petrylak

11:45 AM — Lung Cancer Justin Gainor, Heather Wakelee

Saturday, February 13, 2021

1:15 PM — Gastrointestinal Cancers Philip Philip, Eric Van Cutsem 2:15 PM — Breast Cancer

Sara Hurvitz, Ian Krop

3:30 PM — Acute Myeloid Leukemia and Myelodysplastic Syndromes Courtney DiNardo, Alexander Perl

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with Advanced Gastrointestinal Cancers

> Tuesday, February 16, 2021 12:00 PM – 1:00 PM ET

> > Faculty Axel Grothey, MD

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with Renal Cell Carcinoma

Wednesday, February 17, 2021 12:00 PM – 1:00 PM ET

> Faculty Eric Jonasch, MD

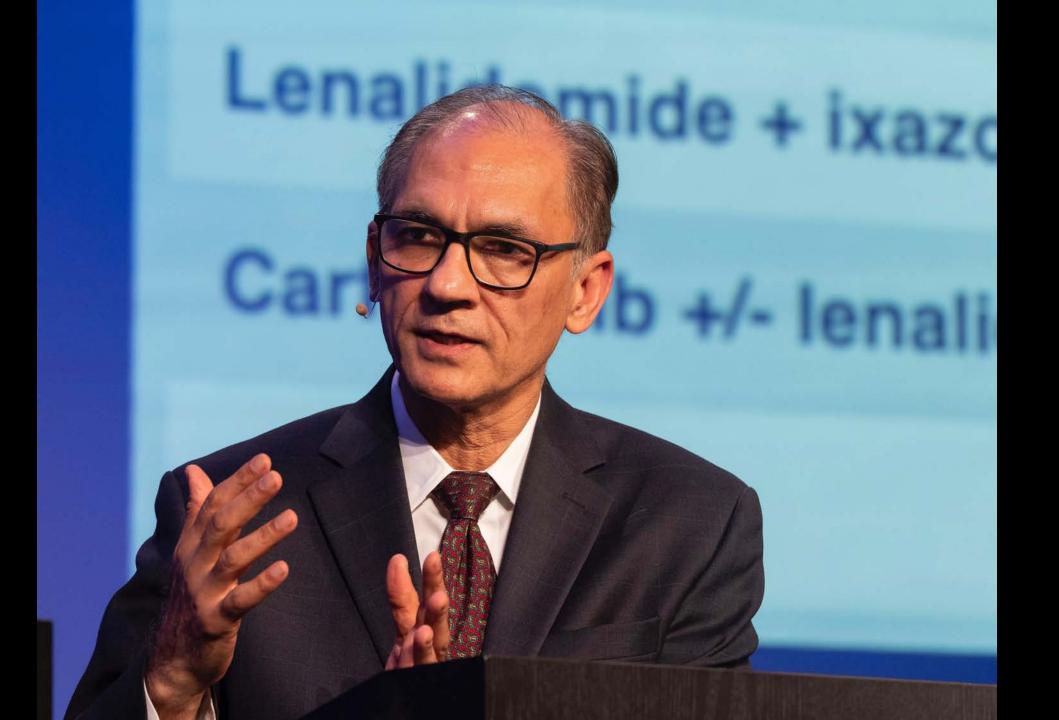
What Clinicians Want to Know: Understanding the Factors Affecting the Optimal Diagnosis and Management of Ovarian Cancer

> Thursday, February 18, 2021 5:00 PM – 6:00 PM ET

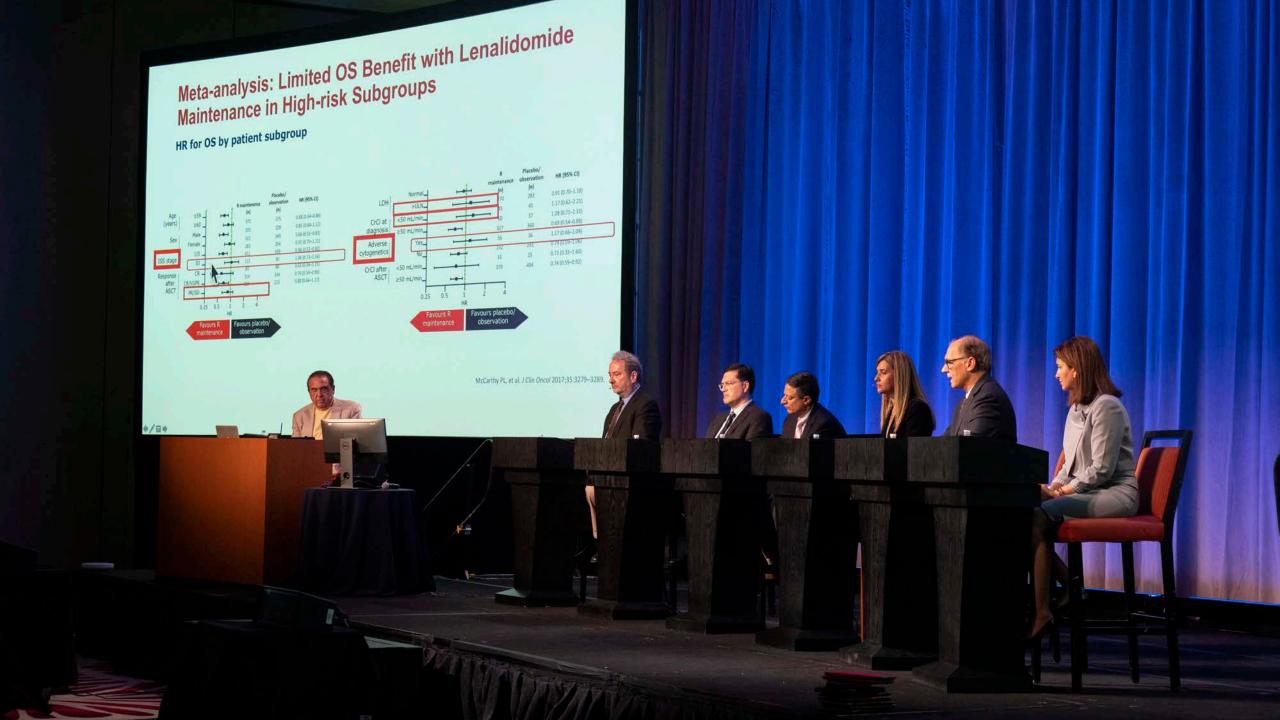
Faculty Michael J Birrer, MD, PhD Kathleen Moore, MD David M O'Malley, MD

Thank you for joining us!

CME credit information will be emailed to each participant within 3 business days.

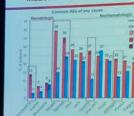


Have you or would you order an MRD assay to inform the decision regarding autotransplant after induction treatment?



Have you or would you order an MRD assay to inform the decision regarding autotransplant after induction treatment?

These .	21%
I have not but would for the right patient	47%
Ehave not and would not	32%


N.

Ixazomib Maintenance Associated with Low Toxicity

·AEs leading to study discontinuation occurred in 7% (ixazomib) and 5% (placebo) of patients

Ixazomib Maintenance Associated with Low Toxicity No difference in the

rate of new primary malignancy (3% versus 3%) ·AEs leading to study treatment discontinuation occurred in 7% (ixazomib) and 5% (placebo) of patients

Recent Advances in Hematologic Oncology: A 4-Part Live Webinar Series Reviewing Key Data and Presentations from the 62nd ASH Annual Meeting

Part 3 — Multiple Myeloma

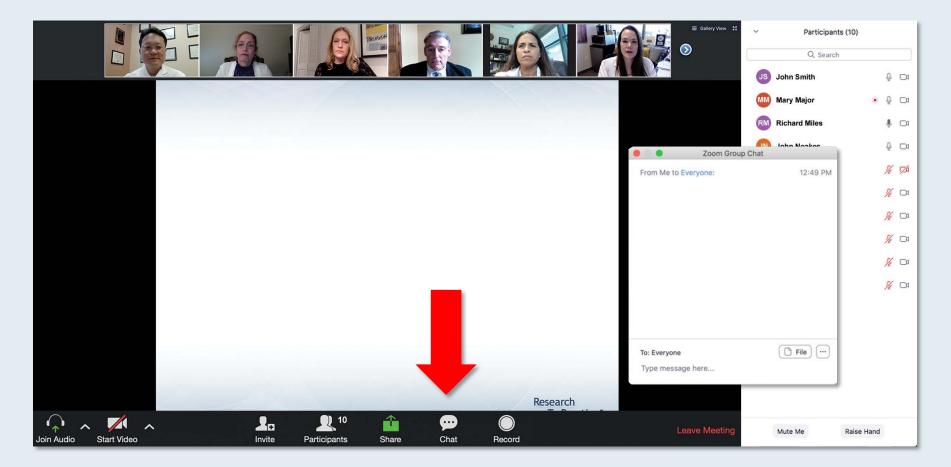
Wednesday, February 10, 2021 5:00 PM – 6:00 PM ET

Faculty Robert Z Orlowski, MD, PhD S Vincent Rajkumar, MD Edward A Stadtmauer, MD

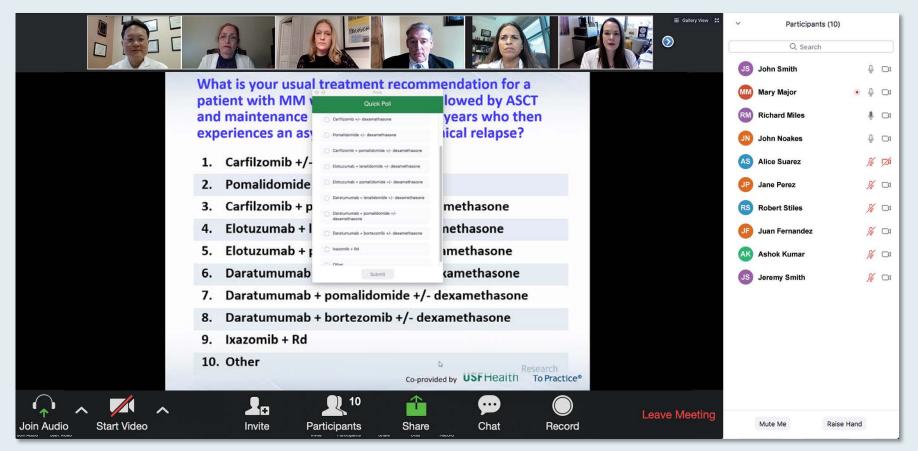
Faculty

Robert Z Orlowski, MD, PhD Florence Maude Thomas Cancer Research Professor Department of Lymphoma and Myeloma Professor, Department of Experimental Therapeutics Director, Myeloma Section Division of Cancer Medicine The University of Texas MD Anderson Cancer Center Houston, Texas

Edward A Stadtmauer, MD


Section Chief, Hematologic Malignancies Roseman, Tarte, Harrow and Shaffer Families President's Distinguished Professor University of Pennsylvania Abramson Cancer Center of the University of Pennsylvania Philadelphia, Pennsylvania

S Vincent Rajkumar, MD Edward W and Betty Knight Scripps Professor of Medicine Mayo Clinic Rochester, Minnesota


We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface How to answer poll questions

When a poll question pops up, click your answer choice from the available options. Results will be shown after everyone has answered.

ONCOLOGY TODAY WITH DR NEIL LOVE

Key Presentations on the Treatment of Multiple Myeloma from the 2020 ASH Annual Meeting

DR SAGAR LONIAL WINSHIP CANCER INSTITUTE EMORY UNIVERSITY SCHOOL OF MEDICINE

Dr Sagar Lonial Key Presentations on t Oncology Today with Dr Neil Love —

(15) (30)

Cases from the Community: Investigators Discuss Emerging Research and Actual Patients with Colorectal Cancer (Part 3 of a 3-Part Series)

> Thursday, February 11, 2021 5:00 PM – 6:00 PM ET

> Faculty Kristen K Ciombor, MD, MSCI Eric Van Cutsem, MD, PhD

Current Concepts and Recent Advances in Oncology Real World Oncology Rounds A Daylong Clinical Summit Hosted in Partnership with North Carolina Oncology Association (NCOA) and South Carolina Oncology Society (SCOS)

> Saturday, February 13, 2021 8:30 AM – 4:30 PM ET

FACULTY

Courtney D DiNardo, MD, MSCE Robert Dreicer, MD, MS Justin F Gainor, MD Sara Hurvitz, MD Ian E Krop, MD, PhD John M Pagel, MD, PhD Alexander Perl, MD

Daniel P Petrylak, MD Philip A Philip, MD, PhD, FRCP Paul G Richardson, MD Mitchell R Smith, MD, PhD Eric Van Cutsem, MD, PhD Peter Voorhees, MD Heather Wakelee, MD

MODERATOR Neil Love, MD

Saturday, February 13, 2021

8:30 AM — Chronic Lymphocytic Leukemia and Lymphomas John Pagel, Mitchell Smith

9:30 AM — Multiple Myeloma Paul Richardson, Peter Voorhees

10:45 AM — Genitourinary Cancers Robert Dreicer, Daniel Petrylak

11:45 AM — Lung Cancer Justin Gainor, Heather Wakelee

Saturday, February 13, 2021

 1:15 PM — Gastrointestinal Cancers Philip Philip, Eric Van Cutsem
2:15 PM — Breast Cancer Sara Hurvitz, Ian Krop

3:30 PM — Acute Myeloid Leukemia and Myelodysplastic Syndromes Courtney DiNardo, Alexander Perl

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with Advanced Gastrointestinal Cancers

> Tuesday, February 16, 2021 12:00 PM – 1:00 PM ET

> > Faculty Axel Grothey, MD

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with Renal Cell Carcinoma

Wednesday, February 17, 2021 12:00 PM – 1:00 PM ET

> Faculty Eric Jonasch, MD

What Clinicians Want to Know: Understanding the Factors Affecting the Optimal Diagnosis and Management of Ovarian Cancer

> Thursday, February 18, 2021 5:00 PM – 6:00 PM ET

Faculty Michael J Birrer, MD, PhD Kathleen Moore, MD David M O'Malley, MD

Recent Advances in Hematologic Oncology: A 4-Part Live Webinar Series Reviewing Key Data and Presentations from the 62nd ASH Annual Meeting

Part 3 — Multiple Myeloma

Wednesday, February 10, 2021 5:00 PM – 6:00 PM ET

Faculty Robert Z Orlowski, MD, PhD S Vincent Rajkumar, MD Edward A Stadtmauer, MD

Agenda

Module 1: Up-front management

• GRIFFIN, APOLLO, IMF 2009, TOURMALINE-MM2

Module 2: Relapsed/refractory disease

• Isatuximab, belantamab mafadotin, selinexor

Module 3: Chimeric antigen receptor T-cell therapy; bispecific antibodies

Module 4: Other novel strategies

• Venetoclax, melflufen, iberdomide, BRAF inhibitors

Agenda

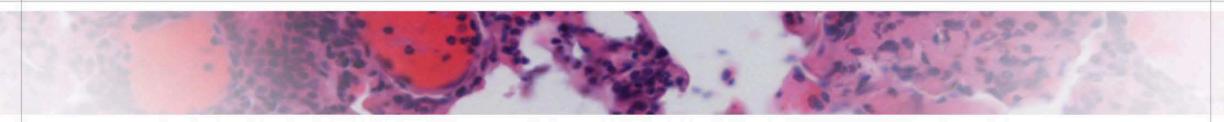
Module 1: Up-front management

• GRIFFIN, APOLLO, IMF 2009, TOURMALINE-MM2

Module 2: Relapsed/refractory disease

• Isatuximab, belantamab mafadotin, selinexor

Module 3: Chimeric antigen receptor T-cell therapy; bispecific antibodies

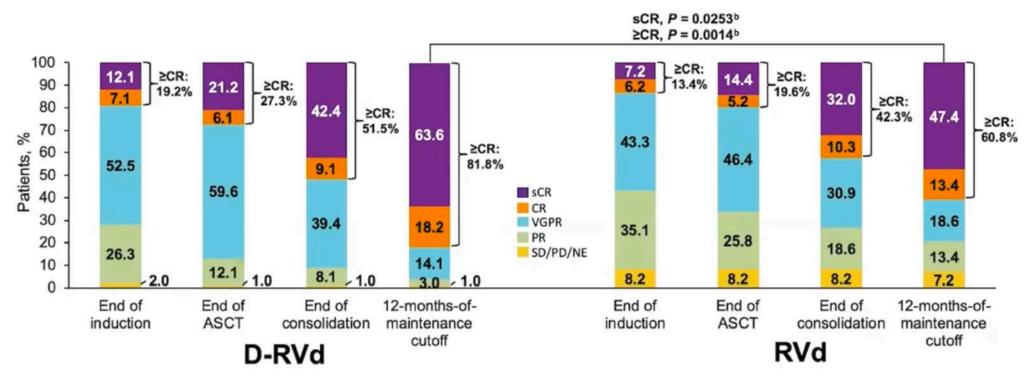

Module 4: Other novel strategies

• Venetoclax, melflufen, iberdomide, BRAF inhibitors

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Daratumumab (DARA) Plus Lenalidomide, Bortezomib, and Dexamethasone (RVd) in Patients with Transplant-eligible Newly Diagnosed Multiple Myeloma (NDMM): Updated Analysis of GRIFFIN after 12 Months of Maintenance Therapy*

Jonathan L. Kaufman,¹ Jacob Laubach,² Douglas W. Sborov,³ Brandi Reeves,⁴ Cesar Rodriguez,⁵ Ajai Chari,⁶ Rebecca Silbermann,⁷ Luciano J. Costa,⁸ Larry D. Anderson Jr,⁹ Nitya Nathwani,¹⁰ Nina Shah,¹¹ Yvonne A. Efebera,¹² Sarah A. Holstein,¹³ Caitlin Costello,¹⁴ Andrzej Jakubowiak,¹⁵ Tanya M. Wildes,¹⁶ Robert Z. Orlowski,¹⁷ Kenneth H. Shain,¹⁸ Andrew J. Cowan,¹⁹ Yana Lutska,²⁰ Padma Bobba,²⁰ Huiling Pei,²¹ Jon Ukropec,^{22,+} Jessica Vermeulen,²³ Thomas S. Lin,²⁰ Paul G. Richardson,² Peter M. Voorhees²⁴

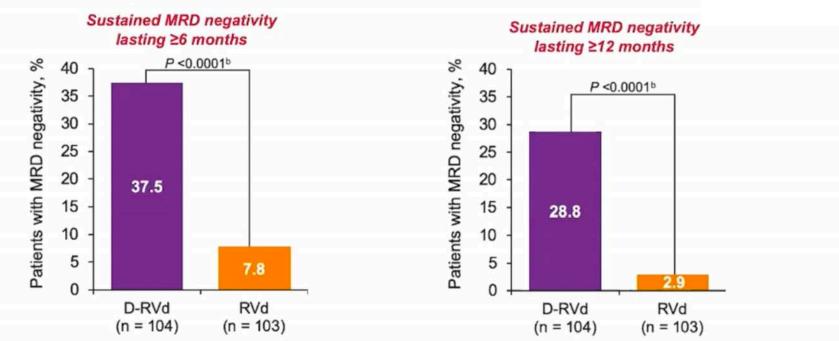

¹Winship Cancer Institute, Emory University, Atlanta, GA, USA; ²Dana-Farber Cancer Institute, Boston, MA, USA; ³Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; ⁴University of North Carolina – Chapel Hill, Chapel Hill, NC, USA; ⁵Wake Forest University School of Medicine, Winston-Salem, NC, USA; ⁶Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA; ⁷Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; ⁸University of Alabama at Birmingham, Birmingham, AL, USA; ⁹Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ¹⁰Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ¹¹Department of Medicine, University of California San Francisco, San Francisco, CA, USA; ¹²The Ohio State University of Chicago Medical Center, Chicago, IL, USA; ¹³Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, USA; ¹⁴Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; ¹⁵University of Chicago Medical Center, Chicago, IL, USA; ¹⁶Division of Oncology, Section Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA; ¹⁷Department of Lymphoma–Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¹⁸Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA; ¹⁹Division of Medical Oncology, University of Washington, Seattle, WA, USA; ²⁰Janssen Scientific Affairs, LC, Horsham, PA, USA; ²³Janssen Research & Development, LLC, Titusville, NJ, USA; ²²Janssen Global Medical Affairs, Horsham, PA, USA; ²³Janssen Research & Development, LLC, Leiden, The Netherlands; ²⁴Levine Cancer Institute, Atrium Health, Charlotte, NC, USA. ([†] At the time of study)

Additional information can be viewed by scanning the QR code or accessing this link: <u>https://epg-digital.com/u/ASH2020-Kaufman</u>. The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

*ClinicalTrials.gov Identifier: NCT02874742.

Responses Deepened over Time^a

Results for end of induction, ASCT, and consolidation are based on a median follow up of 13.5 months at the primary analysis

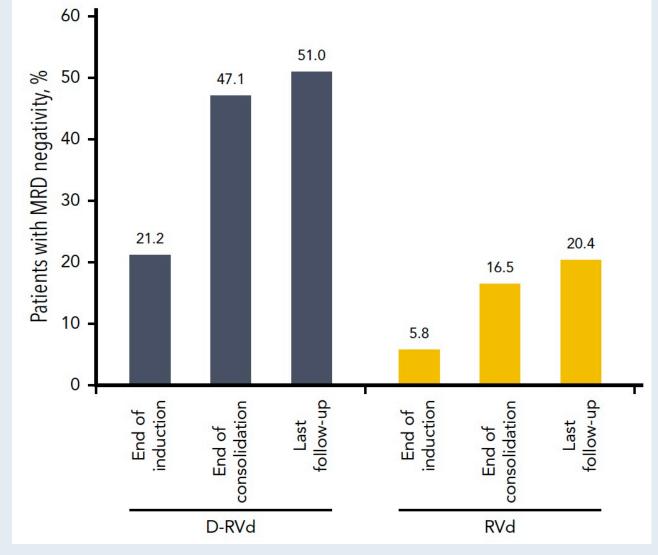

Median follow up at 12-months-of-maintenance therapy cutoff was 27.4 months

Response rates and depths were greater for D-RVd at all time points

PR, partial response. SD/PD/NE, stable disease/progressive disease/not evaluable. *Data are shown for the response-evaluable population. *P values (2-sided) were calculated using the Cochran-Mantel-Haenszel chi-square test.

American Society of Hematology

Durable MRD (10⁻⁵) Negativity^a Lasting ≥ 6 and ≥ 12 Months

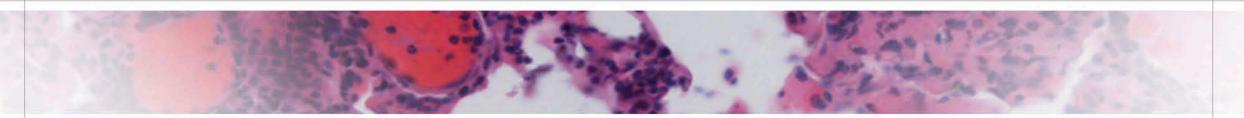

• Among patients who achieved MRD negative (10⁻⁵) status, sustained MRD negativity lasting ≥12 months was noted in 30/65 (46.2%) and 3/28 (10.7%) patients

D-RVd improved rates of sustained MRD negativity versus RVd

*The threshold of MRD negativity was defined as 1 tumor cell per 10⁵ white cells. MRD status is based on the assessment of bone marrow aspirates by NGS in accordance with International Myeloma Working Group criteria. Median follow-up was 27.4 months, and MRD-negativity rates are among the ITT population. ^bP values were calculated using the Fisher's exact test.

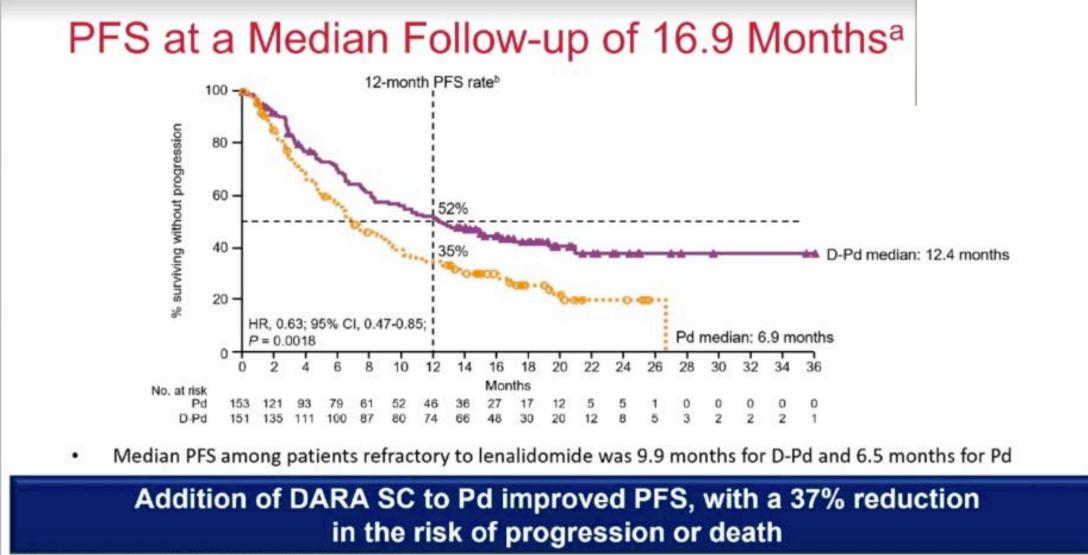
American Society of Hematology

GRIFFIN: Summary of Response Rates and MRD Negativity (10⁻⁵) Rates Over Time



- MRD negativity (10⁻⁵) rates in the intent-to-treat population by the end of induction therapy, end of consolidation and last follow-up
- All MRD data are from the analysis with a median follow-up of 22.1 months
- MRD was evaluated at baseline, first evidence of suspected CR or sCR, at the end of induction and consolidation, and after 12 and 24 months of maintenance, regardless of response (per protocol amendment 2)

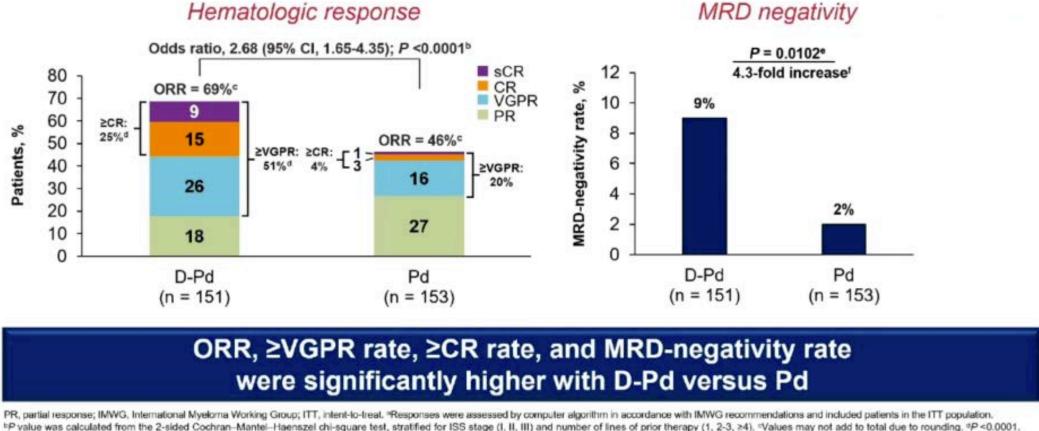
American Society of Hematology Helping hematologists conquer blood diseases worldwide


APOLLO: Phase 3 Randomized Study of Subcutaneous Daratumumab Plus Pomalidomide and Dexamethasone (D-Pd) Versus Pomalidomide and Dexamethasone (Pd) Alone in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM)*

Meletios A. Dimopoulos,¹ Evangelos Terpos,¹ Mario Boccadoro,² Sosana Delimpasi,³ Meral Beksac,⁴ Eirini Katodritou,⁵ Philippe Moreau,⁶ Luca Baldini,⁷ Argiris Symeonidis,⁸ Jelena Bila,⁹ Albert Oriol,¹⁰ Maria-Victoria Mateos,¹¹ Hermann Einsele,¹² Ioannis Orfanidis,¹³ Tahamtan Ahmadi,¹⁴ Jon Ukropec,^{15,†} Tobias Kampfenkel,¹⁶ Jordan M. Schecter,¹⁷ Yanping Qiu,¹⁸ Himal Amin,¹⁷ Jessica Vermeulen,¹⁶ Robin Carson,¹⁹ Pieter Sonneveld²⁰

¹National and Kapodistrian University of Athens, Athens, Greece; ²University of Torino, Turin, Italy; ³Evangelismos Hospital, Athens, Greece; ⁴Ankara University, Ankara, Turkey; ⁵Theagenio Cancer Hospital, Thessaloniki, Greece; ⁶Hematology, University Hospital Hôtel-Dieu, Nantes, France; ⁷UO Ematologia, Fondazione IRCCS Cà Granda, OM Policlinico, Università degli Studi, Milan, Italy; ⁸University of Patras, Patras, Greece; ⁹University of Belgrade, Belgrade, Belgrade, Serbia; ¹⁰Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias I Pujol, Barcelona, Spain; ¹¹University Hospital of Salamanca/IBSAL/Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain; ¹²Würzburg University Medical Centre, Würzburg, Germany; ¹³Health Data Specialists S.A., Dublin, Ireland; ¹⁴Genmab US, Inc., Princeton, NJ, USA; ¹⁵Janssen Global Medical Affairs, Horsham, PA, USA; ¹⁶Janssen Research & Development, LLC, Raritan, NJ, USA; ¹⁸Janssen Research & Development, Beijing, China; ¹⁹Janssen Research & Development, LLC, Spring House, PA, USA; ²⁰Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands. ([†]At the time of study)

*ClinicalTrials.gov Identifier: NCT03180736.


HR, hazard ratio; CI, confidence interval. Intent-to-treat population. Kaplan-Meier estimate.

S American Society of Hematology

Dimopoulos MA et al. ASH 2020; Abstract 412.

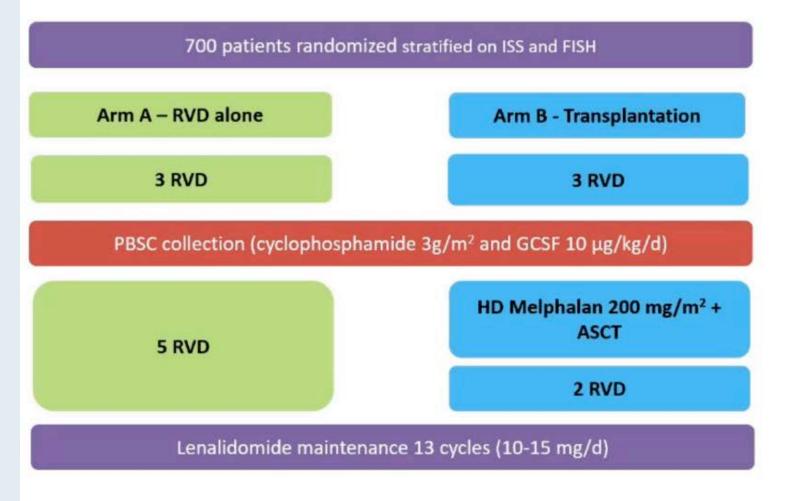
Depth of Response^a

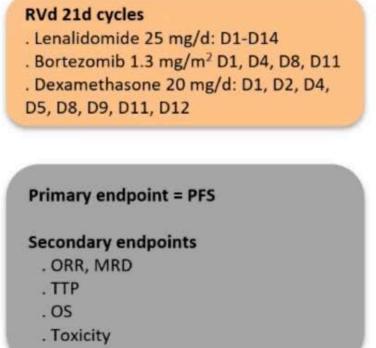
"P value (2-sided) was calculated using the Fisher's exact test. Non-rounded values are 8.6% and 2.0%.

9

Dimopoulos MA et al. ASH 2020; Abstract 412.

American Society of Hematology Helping hematologists conquer blood diseases worldwide

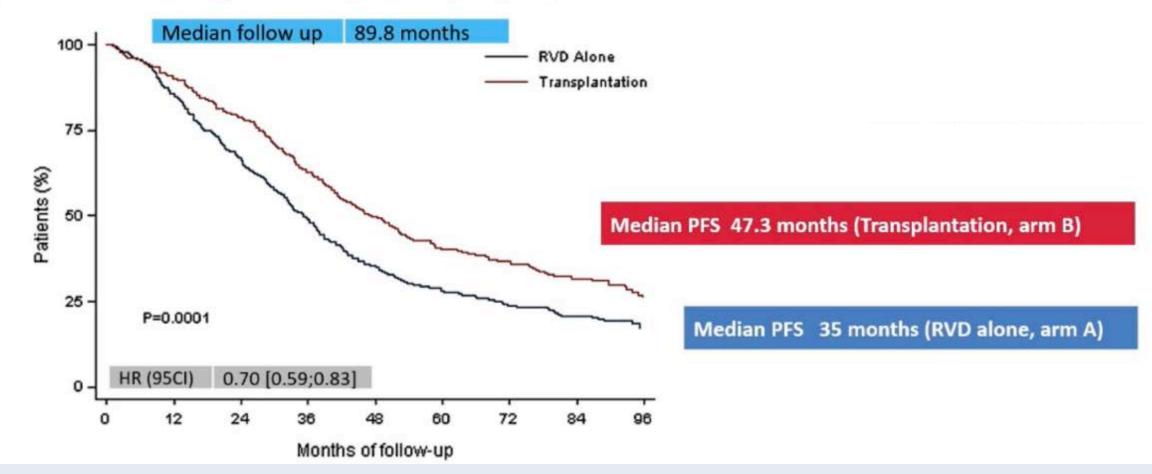



Autologous stem cell transplant in newly diagnosed multiple myeloma: long-term follow-up analysis of the IFM 2009 trial

<u>Aurore Perrot</u>¹, Valérie Lauwers-Cances², Titouan Cazaubiel³, Thierry Facon⁴, Denis Caillot⁵, Lauriane Clément-Filliatre⁶, Margaret Macro⁷, Olivier Decaux⁸, Karim Belhadj⁹, Mohamad Mohty¹⁰, Lionel Karlin¹¹, Jean Claude Eisenmann¹², Mourad Tiab¹³, Frédérique Orsini¹⁴, Cyrille Touzeau¹⁵, Xavier Leleu¹⁶, Hervé Avet-Loiseau¹⁷, Nikhil C. Munshi¹⁸, Kenneth Anderson¹⁹, Paul G. Richardson²⁰, Philippe Moreau²¹, Michel Attal²².

¹CHU de Toulouse, IUCT-O, Université de Toulouse, UPS, Service d'Hématologie, Toulouse, France; ²USMR, service d'Epidémiologie, CHU Toulouse, Toulouse, France; ³CHU de Bordeaux, Service d'Hématologie et de Thérapie Cellulaire, Bordeaux, France; ⁴Centre Hospitalier Universitaire (CHU) Lille, Service des Maladies du Sang, University of Lille, Lille, France; ⁵CHU de Dijon, Service d'Hématologie, Dijon, France; ¹⁰CHU de Nancy, Service d'Hématologie, Nancy, France; ⁷Service d'Hématologie, CHU de Caen, Caen, France; ⁸Centre Hospitalier Universitaire Henri Mondor, Créteil, France; ¹⁰Hôpital Saint Antoine, Service d'Hématologie et Thérapie Cellulaire, Paris, Paris, France; ¹¹Hématologie, CHU de Caen, Caen, France; ¹⁰Hôpital Saint Antoine, Service d'Hématologie, CHU de Rennes, Rennes, France; ¹¹Hématologie, CHU de Caen, Caen, France; ¹⁰Hôpital Saint Antoine, Service d'Hématologie et Thérapie Cellulaire, Paris, France; ¹¹Hématologie, Centre Hospitalier Lyon-Sud, Hospices Clvils de Lyon, Pierre-Bénite, France; ¹²Centre Hospitalier de Mulhouse, MULHOUSE, FRA; ¹³CH la Roche Sur Yon, La Roche Sur Yon, La Roche Sur Yon Cedex 9, France; ¹⁴Service Hématologie, CH Annecy, ANNECY, France; ¹⁵Hématologie, CHU de Nantes, Nantes, France; ¹⁶CHU de Poitiers - Hôpital La Milétrie, Service d'Hématologie et Thérapie Cellulaire, Pôle Régional de Cancérologie, POITIERS, France; ¹⁹Unite de Génorique du Myélome, IUC-T Oncopole, Toulouse, France; ¹⁸Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; ¹⁹Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; ¹³Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; ¹³Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; ¹³Department of Hematology, University Hospital of Nantes, Nantes, France; ²¹Institut Universitaire du Cancer de Toulouse, France

IFM 2009 Study design



Perrot A et al. ASH 2020; Abstract 143.

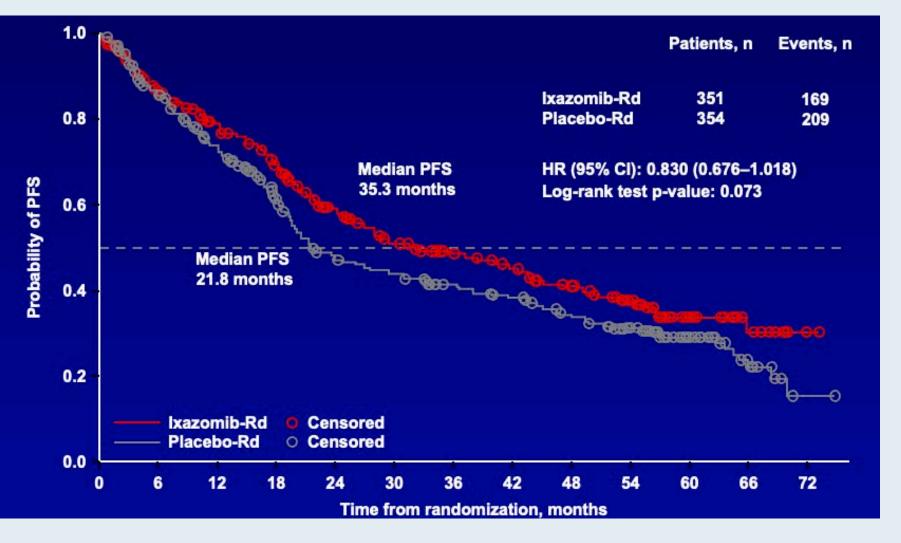
Updated PFS (primary endpoint)

Perrot A et al. ASH 2020; Abstract 143.

The Phase 3 TOURMALINE-MM2 Trial: Oral Ixazomib, Lenalidomide, and Dexamethasone Vs Placebo-Rd for Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma

Thierry Facon,¹ Christopher P. Venner,² Nizar J. Bahlis,³ Fritz Offner,⁴ Darrell J. White,⁵ Lotfi Benboubker,⁶ Sophie Rigaudeau,⁷ Philippe Rodon,⁸ Sung-Soo Yoon,⁹ Kenshi Suzuki,¹⁰ Hirohiko Shibayama,¹¹ Xiaoquan Zhang,¹² Godwin Yung,¹² Robert M. Rifkin,¹³ Philippe Moreau,¹⁴ Sagar Lonial,¹⁵ Shaji K. Kumar,¹⁶ Paul G. Richardson,¹⁷ and S. Vincent Rajkumar¹⁶ on behalf of the TOURMALINE-MM2 study group

¹Centre Hospitalier Universitaire (CHU) Lille, Service des Maladies du Sang, University of Lille, Lille, France; ²Division of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada; ³Division of Hematology and Oncology, Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, Canada; ⁴Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium; ⁵QEII Health Sciences Center and Dalhousie University, Halifax, NS, Canada; ⁶Service d'Hématologie et Thérapie Cellulaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire (CHRU), Tours, France; ⁷Department of Clinical Hematology, Centre Hospitalier Versailles, Le Chesnay, France; ⁸Unité d'Hématologie et d'Oncologie, Centre Hospitalier Périgueux, Périgueux, France; ⁹Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea; ¹⁰Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan;
¹¹Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; ¹²Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited; ¹³Rocky Mountain Cancer Centers/US Oncology Research, Denver, CO, USA; ¹⁴Department of Hematology, University Hospital Hôtel Dieu, University of Nantes, Nantes, France; ¹⁵Department of Hematology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA


TOURMALINE-MM2: Progression-Free Survival

 Median follow-up for PFS: 53.3 vs 55.8 months in ixazomib-Rd and placebo-Rd arms, respectively.

Median DOT: 20 cycles in each arm.

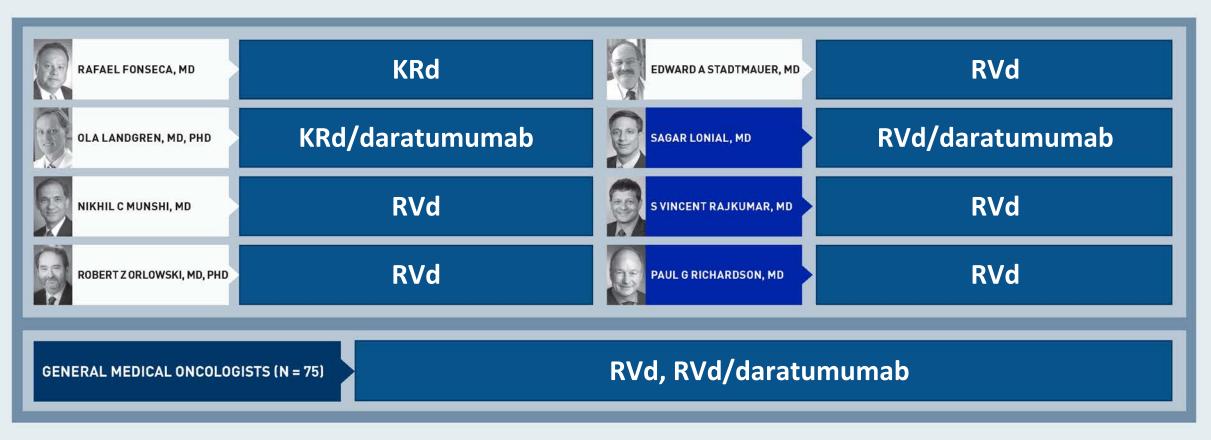
•

- 54% of patients in the ixazomib-Rd arm and 54% in the placebo-Rd arm entered cycle 19.
- Mean relative dose intensity for all agents was similar between arms.

Treatment of High Risk Smoldering Myeloma with Carfilzomib, Lenalidomide, and Dexamethasone followed by Lenalidomide Maintenance: A Phase 2 Clinical and Correlative Study

Dickran Kazandjian¹, Elizabeth Hill¹, Candis Morrison¹, Alexander Dew⁷, Neha Korde⁸, Sham Mailankody⁸, Elisabet Manasanch⁹, Mary Kwok⁷, Manisha Bhutani¹⁰, Nishant Tageja¹¹, Yong Zhang¹, Ashley Carpenter¹, Monica Epstein¹, Michael Emanuel¹, Crystal Lu⁵, Raul Braylan⁶, Katherine Calvo⁶, Peter Choyke⁶, Alina Dulau-Florea⁶, Esther Mena², Liza Lindenberg², Irina Maric⁶, Nisha Patel⁶, Maryalice Stetler-Stevenson³, Hao-Wei Wang³, Constance Yuan³, Jane Trepel⁴, Seth Steinberg⁴, William Figg⁴, Mark Roschewski¹, and Ola Landgren⁸

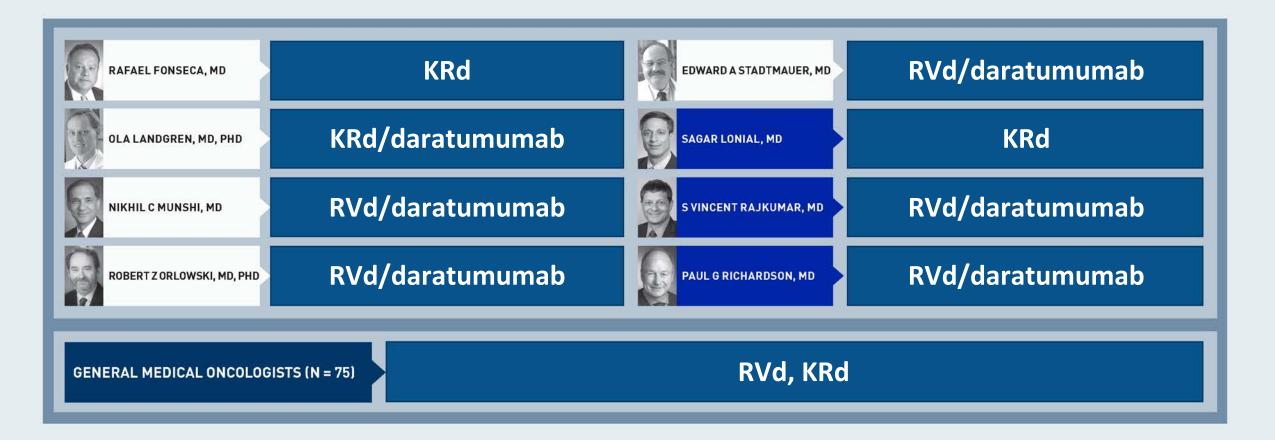
¹Multiple Myeloma Program, Lymphoid Malignancies Branch, ²Molecular Imaging Program, and ³Laboratory of Pathology at ⁴Center for Cancer Research, National Cancer Institute and Clinical Center ⁵Pharmacy and ⁶Hematopathology Section, National Institutes of Health; ⁷Walter Reed Medical Center; ⁸Myeloma Service, Memorial Sloan Kettering Cancer Center; ⁹Department of Lymphoma and Myeloma, MD Anderson Cancer Center; ¹⁰Levine Cancer Institute; ¹¹Wheeling Hospital



Conclusions

- Treatment of HR-SMM with KRd-R to prevent symptomatic multiple myeloma resulted in an MRD negative CR rate of 70.2% with a median duration of 5.5 years
- At the 8-year landmark, less than 10% of patients developed symptomatic MM which is favorable compared to historical rates of >75% with no treatment
- The use of KRd-R triplet therapy appeared to be more tolerable (less treatment discontinuation) and significantly more efficacious than alternative approaches using lenalidomide +/- dexamethasone
- Efficacy of KRd-R appeared similar to more aggressive approaches incorporating HDM-ASCT with KRd-R
- Overall, the benefit compared to risk with KRd in SMM is very favorable however, future randomized trials will be needed to confirm and lock down this conclusion

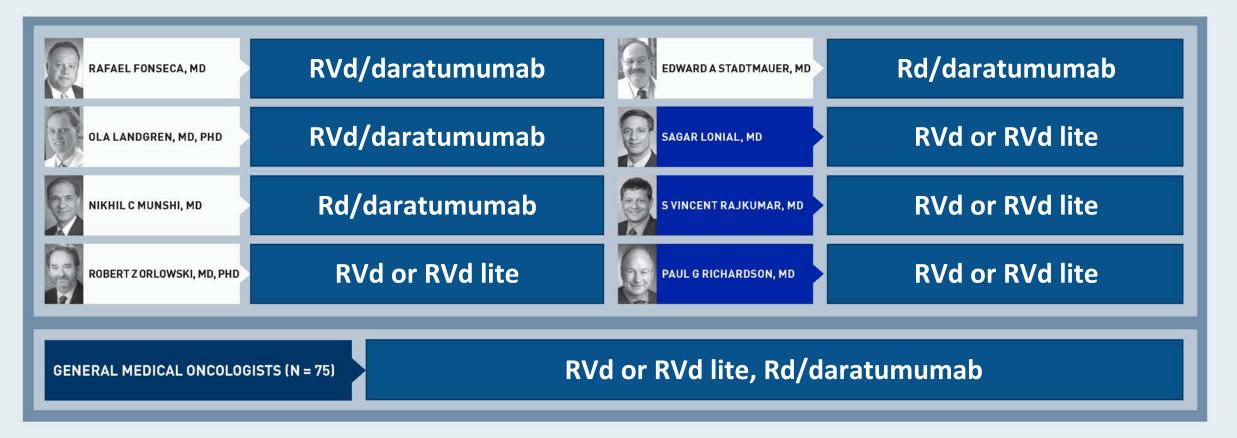
Regulatory and reimbursement issues aside, what is your preferred pretransplant induction regimen for a younger, otherwise healthy patient with MM and no high-risk features?


K = carfilzomib; R = lenalidomide; d = dexamethasone; V = bortezomib

Regulatory and reimbursement issues aside, what is your preferred pretransplant induction regimen for a younger, otherwise healthy patient with MM and del(17p)?

- 1. RVd
- 2. KRd
- 3. CyBorD
- 4. Rd/daratumumab
- 5. RVd/daratumumab
- 6. KRd/daratumumab
- 7. MPV (melphalan/prednisone/bortezomib)/daratumumab
- 8. Other

Regulatory and reimbursement issues aside, what is your preferred pretransplant induction regimen for a younger, otherwise healthy patient with MM and del(17p)?



Regulatory and reimbursement issues aside, what is your preferred induction regimen for an <u>80-year-old</u> patient with MM who is transplant ineligible with normal renal function and <u>del(17p)</u>?

- 1. Rd
- 2. RVd or RVd lite
- 3. KRd
- 4. CyBorD
- 5. MPV/daratumumab
- 6. Rd/daratumumab
- 7. VTd (bortezomib/thalidomide/dexamethasone)/daratumumab
- 8. Other

Regulatory and reimbursement issues aside, what is your preferred induction regimen for an <u>80-year-old</u> patient with MM who is transplant ineligible with normal renal function and <u>del(17p)</u>?

Outside of a clinical trial setting, have you ordered or would you order a minimal residual disease (MRD) assay to inform the decision regarding autotransplant after induction treatment?

- 1. I haven't and would not
- 2. I haven't but would for the right patient
- 3. I have

Outside of a clinical trial setting, have you ordered or would you order an MRD assay to inform the decision regarding treatment in the postinduction autotransplant setting?

Agenda

Module 1: Up-front management

• GRIFFIN, APOLLO, IMF 2009, TOURMALINE-MM2

Module 2: Relapsed/refractory disease

• Isatuximab, belantamab mafadotin, selinexor

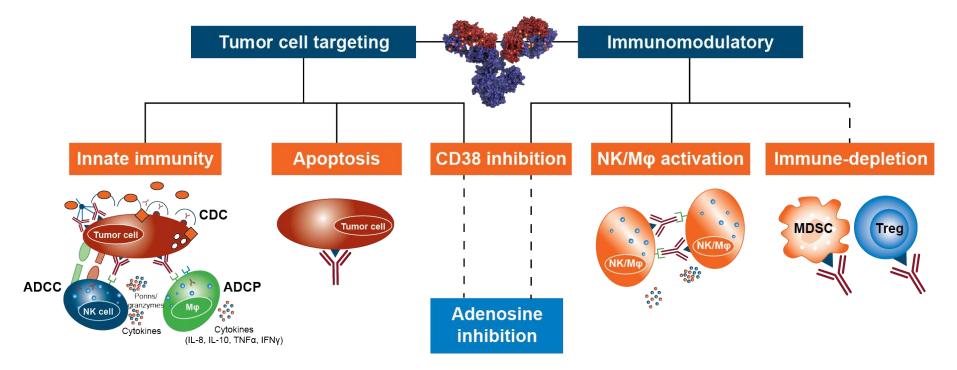
Module 3: Chimeric antigen receptor T-cell therapy; bispecific antibodies

Module 4: Other novel strategies

• Venetoclax, melflufen, iberdomide, BRAF inhibitors

Therapeutic Advances in Multiple Myeloma

- 11 new Agents in last 15 years:
- Proteasome inhibitors: bortezomib, Carfilzomib, Ixazomib
- Immunomodulator: thalidomide, lenalidomide, pomalidomide
- HDAC inhibitor: Panobinostat
- Monoclonal antibodies: elotuzumab, daratumumab
- Exportin inhibitor: Selinexor
- Alkylating Agent: bendamustine
- Existing older agents: melphalan, dexamethasone. cyclophosphamide, anthracycline, etoposide
- Near approval: Ide-cel, Cilta-cel, melflufen, venetoclax, BCMA-bispecifics
- 2-, 3-, 4-drug combinations effective in relapsed/refractory myeloma


Isatuximab, Belantamab mafodotin

Courtesy of Nikhil C Munshi, MD

12

Isatuximab: Mechanism of Action

• Active in combination studies in R/R MM

- Effective combinations
 - ICARIA-MM Isa Pd
 - IKEMA Isa Kd

Courtesy of Nikhil C Munshi, MD

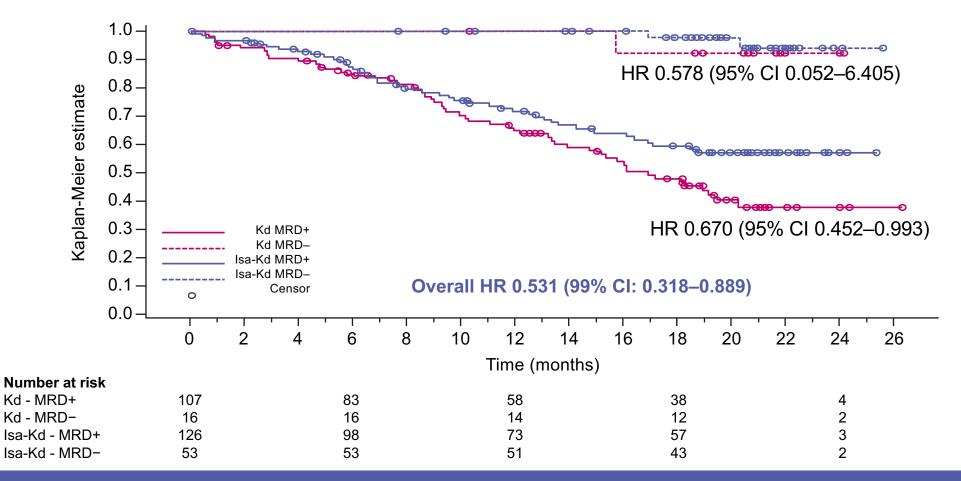
IKEMA Depth of Response and Response Kinetics of Isatuximab plus Carfilzomib and Dexamethasone in Relapsed Multiple Myeloma: IKEMA Interim Analysis

Thomas Martin,¹ Joseph Mikhael,² Roman Hajek,³ Kihyun Kim,⁴ Kenshi Suzuki,⁵ Cyrille Hulin,⁶ Mamta Garg,⁷ Hang Quach,⁸ Hanlon Sia,⁹ Anup George,¹⁰ Tatiana Konstantinova,¹¹ Marie-Laure Risse,¹² Gaelle Asset,¹³ Sandrine Macé,¹² Helgi van de Velde,¹⁴ Philippe Moreau¹⁵


¹Department of Medicine, University of California, San Francisco, CA, USA; ²Translational Genomics Research Institute, City of Hope Cancer Center, Phoenix, AZ, USA;
³Faculty of Medicine, University Hospital Ostrava, Ostrava, Czech Republic; ⁴Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ⁵Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan;
⁶Department of Hematology, University Hospital Bordeaux, Bordeaux, France; ⁷Department of Haematology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom; ⁸Faculty of Medicine, University of Melbourne and St Vincent's Hospital, Victoria, Australia;
⁹Cancer Care & Haematology Unit, The Tweed Hospital, Tweed Heads, NSW, Australia; ¹⁰Wellington Blood and Cancer Center, Wellington, New Zealand;
¹¹Hematology Department, Regional Hospital #1, Ekaterinburg, Russia; ¹²Sanofi Research and Development, Vitry-Sur-Seine, France;
¹³Sanofi Research and Development, Chilly-Mazarin, France; ¹⁴Sanofi, Cambridge, MA; ¹⁵Department of Hematology, University Hospital of Nantes, Nantes, France

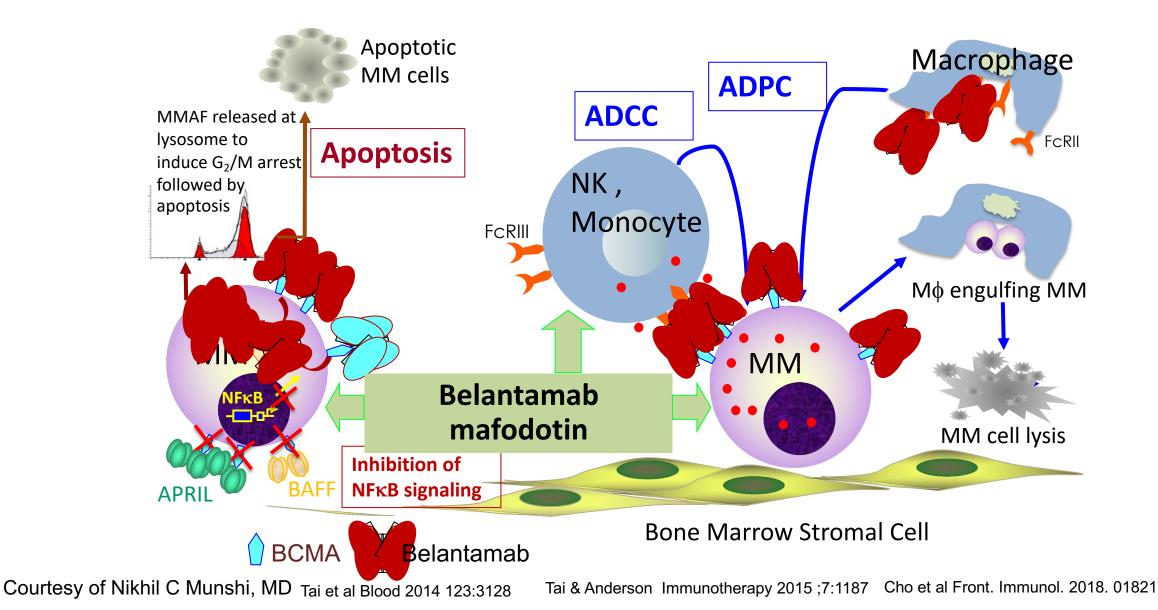
Presentation at the 62nd American Society of Hematology (ASH) Virtual Scientific Meeting, December 5–8, 2020

Presentation Code: 414


IKEMA: PFS

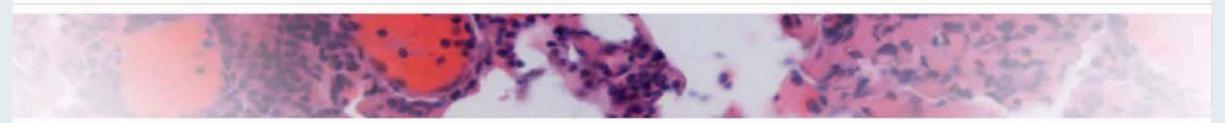
Moreau P et al. EHA 2020; Abstract LBA2603.

IKEMA: PFS According to MRD Status


A more pronounced PFS benefit was seen in MRD– patients

PFS HR in favor of Isa-Kd for both MRD– and MRD+ patients and consistent with the primary PFS HR

d, dexamethasone; HR, hazard ratio; Isa, isatuximab; K, carfilzomib; MRD, minimal residual disease; PFS, progression-free survival.


Martin T et al. ASH 2020: Abstract 414

Belantamab Mafodotin - a BCMA Auristatin Immunotoxin Induces Strong Anti-MM Effects via Multiple MOAs

American Society of Hematology Helping hematologists conquer blood diseases worldwide

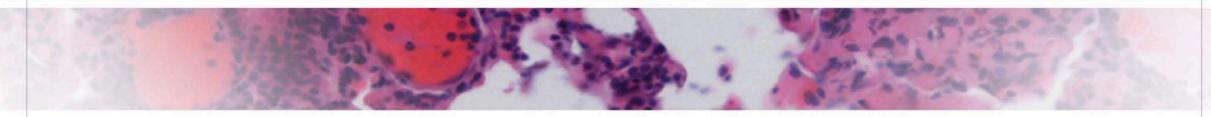
DREAMM-2: Single-Agent Belantamab Mafodotin (Belamaf) in Patients with Relapsed/Refractory Multiple Myeloma (RRMM) – 1-Year Outcomes by Prior Therapies

Sagar Lonial¹, Hans C. Lee², Ashraf Badros³, Suzanne Trudel⁴, Ajay K. Nooka¹, Ajai Chari⁵, Al-Ola Abdallah⁶, Natalie Callander⁷, Douglas Sborov⁸, Attaya Suvannasankha⁹, Katja Weisel¹⁰, Peter M. Voorhees¹¹, Joanna Opalinska¹², Eric Zhi¹², January Baron¹², Trisha Piontek¹², Ira Gupta¹², Adam D. Cohen¹³

¹Emory University, Winship Cancer Institute, Atlanta, GA, USA; ²MD Anderson Cancer Center, Houston, TX, USA; ³University of Maryland at Baltimore, Baltimore, Baltimore, MD, USA; ⁴Princess Margaret Cancer Centre, Toronto, ON, Canada; ⁵Icahn School of Medicine at Mount Sinal, New York, NY, USA; ⁶University of Kansas Cancer Center, Fairway, KS, USA; ⁷University of Wisconsin, Carbone Cancer Center, Madison, WI, USA; ⁸Huntsman Cancer Institute, University of Kansas Cancer Center, Fairway, KS, USA; ⁷University of Wisconsin, Carbone Cancer Center, Madison, WI, USA; ⁸Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; ⁹Indiana University Simon Cancer Center and Roudebush VAMC, Indianapolis, IN, USA; ¹⁰University Medical Center of Hamburg-Eppendorf, Hamburg, Germany; ¹³Levine Cancer Institute, Atrium Health, Charlotte, NC, USA; ¹²GlaxoSmithKline, Philadelphia, PA, USA; ¹⁴Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA;

Poster No. 1417 | Presented at the 62nd American Society of Hematology Annual Meeting and Exposition | December 5–8, 2020

DREAMM-2: Single-Agent Belantamab Mafodotin Efficacy Outcomes


	Patients with 3-6 prior therapies (n = 47)	Patients with ≥7 prior therapies (n = 50)
ORR, % (97.5% CI)	34 (19.3-51.4)	30 (16.5-46.6)
Median DoR (95% CI estimates), months	11.0 (4.2-NR)	13.1 (4.0-NR)
Probability of DoR ≥6 months, % (95% CI estimates)	63 (31-83)	73 (44-89)
Median PFS (95% CI estimates), months	2.9 (1.5-5.7)	2.2 (1.2-3.6)
Probability of PFS at 6 months, % (95% CI estimates)	35 (20-50)	30 (17-43)

ORR = overall response rate; CI = confidence interval; DoR = duration of response; NR = not reached; PFS = progression-free survival

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Recovery of Ocular Events with Longer-term Follow-up in the DREAMM-2 Study of Single-Agent Belantamab Mafodotin (Belamaf) in Patients with Relapsed or Refractory Multiple Myeloma (RRMM)

Sagar Lonial,¹ Ajay K. Nooka,¹ Praneetha Thulasi,² Ashraf Z. Badros,³ Bennie H. Jeng,⁴ Natalie S. Callander,⁵ Douglas Sborov,⁶ Brian E. Zaugg,⁷ Rakesh Popat,⁸ Simona Degli Esposti,⁹ Julie Byrne,¹⁰ Joanna Opalinska,¹⁰ January Baron,¹⁰ Trisha Piontek,¹⁰ Ira Gupta,¹⁰ Reza Dana,¹¹ Asim V. Farooq,¹² Andrzej Jakubowiak¹²

¹Emory University, Winship Cancer Institute, Atlanta, GA, USA; ²Emory Eye Center, Emory University, Atlanta, GA, USA; ³University of Maryland School of Medicine, Baltimore, MD, USA; ⁴Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; ⁴Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; ⁵University of Wisconsin, Carbone Cancer Center, Madison, WI, USA; ⁶Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; ⁷Moran Eye Center, University of Utah, Salt Lake City, UT, USA; ⁸University College London Hospitals, NHS Foundation Trust, London, UK; ⁹NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK; ¹⁰GlaxoSmithKline, Upper Providence, PA, USA; ¹¹Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; ¹²University of Chicago Medical Center, Chicago, IL, USA

Poster No. 3224 | Presented at the 62nd American Society of Hematology Annual Meeting and Exposition | December 5–8, 2020

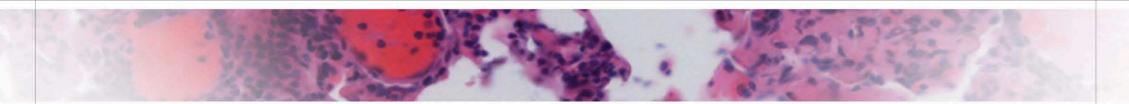
Conclusions

Long-term follow-up in this DREAMM-2 post-hoc analysis demonstrated that although ocular events were common, the majority of patients recovered while remaining on treatment. No new ocular safety signals were observed at 13-month follow-up

Though keratopathy (MECs) were frequently observed on eye exam (72% of patients), 44% of patients did not experience symptoms such as a clinically meaningful BCVA decline, and treatment discontinuation was rare

Most patients recovered from the first keratopathy (MECs) event (77%) or from clinically meaningful BCVA decline (82%)

With some patients lost to follow-up, it is not possible to obtain full recovery data for all events


Implications for managing belamaf-treated patients The recovery of most ocular events is consistent with the established safety profile of belamaf¹ Events can be asymptomatic so close monitoring by an eye care professional is important Ocular events can be managed by dose modifications, without impacting efficacy²⁻⁴

Lonial S et al. ASH 2020;Abstract 3224.

American Society of Hematology Helping hematologists conquer blood diseases worldwide

DREAMM-6: Safety, Tolerability, and Clinical Activity of Belantamab Mafodotin (Belamaf) in Combination with Bortezomib/Dexamethasone (Vd) in Relapsed/Refractory Multiple Myeloma (RRMM)

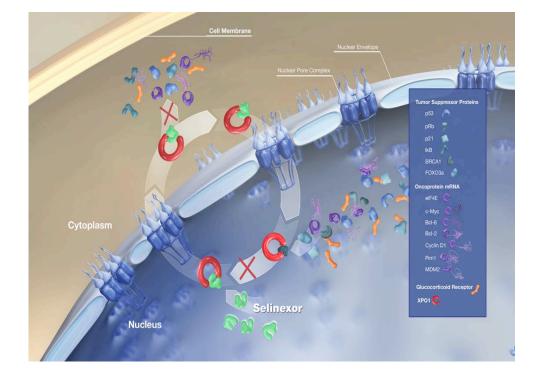
Rakesh Popat,¹ Ajay Nooka,² Keith Stockerl-Goldstein,³ Rafat Abonour,⁴ Ryan Ramaekers,⁵ Amit Khot,⁶ Adam Forbes,⁷ Cindy Lee,⁸ Bradley Augustson,⁹ Andrew Spencer,¹⁰ Maria Victoria Mateos,¹¹ Bikramjit Chopra,¹² Rachel Rogers,¹³ Deborah A. Smith,¹⁴ Jacqueline Davidge,¹² Rocio Montes de Oca,¹³ Geraldine Ferron-Brady,¹³ Anne Yeakey,¹³ Mala Talekar,¹³ Brandon E. Kremer,¹³ Ira Gupta,¹³ Hang Quach,¹⁵

¹University College London Hospitals, NHS Foundation Trust, London, UK; ²Emory University, Winship Cancer Institute, Atlanta, GA, USA; ³Washington University Medical School, St. Louis, MO, USA; ⁴Queen Elizabeth Hospital, Adelaide, SA, Australia; ⁵CHI Health St Francis Cancer Treatment Center, Grand Island, NE, USA; ⁶Peter MacCallum Cancer Centre and Royal Melbourne Hospital, University of Melbourne, VIC, Australia; ⁷Royal Cornwall Hospital, Truro, Cornwall, UK; ⁸Department of Haematology, Queen Elizabeth Hospital, Adelaide, SA, Australia; ⁹Department of Haematology, Sir Charles Gairdner Hospital, Perth, WA, Australia; ¹⁰Department of Haematology, The Alfred Hospital, Melbourne, VIC, Australia; ¹¹University Hospital of Salamanca-Instituto de Investigación Biomédica de Salamanca, Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain; ¹²GlaxoSmithKline (GSK), Uxbridge, Middlesex, UK; ¹³GSK, Upper Providence, PA, USA; ¹⁴GSK, Waltham, MA, USA; ¹⁵University of Melbourne, St. Vincent's Hospital Melbourne, VIC, Australia.

Poster No. 1419 | Presented at the 62nd American Society of Hematology Annual Meeting and Exposition (Virtual Format) | December 5–8, 2020

DREAMM-6: Belamaf + Vd Clinical Activity

- Response was evaluable in all patients:
 - ORR = 78%
 - VGPR = 50%
 - PR = 28%
 - SD = 17%
 - CBR = 83%
- Median DoR = not reached (median 18.2 weeks on treatment)

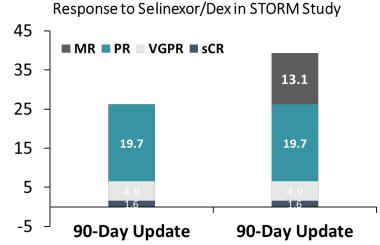


DREAMM-6: Overview of Adverse Events

Patients with AE, n (%)	Belamaf 2.5 mg/kg SINGLE + BorDex (N = 18) [Parts 1 and 2]
AEs related to study treatment	18 (100)
Grade 3/4 AE	16 (89)
AEs leading to permanent discontinuation of a study treatment	5 (28)
AEs leading to permanent discontinuation of belamaf	0
AEs leading to dose reductions	13 (72)
Corneal events	7 (39)
Thrombocytopenia	6 (33)
AEs leading to dose interruption/delay	18 (100)
Corneal events	15 (83)
Thrombocytopenia	7 (39)
Any serious AE (SAE)	12 (67)
Fatal SAE	0
SAEs related to study treatment	5 (28)

Selinexor approved for use in pts with RRMM who have received four prior therapies (including pts refractory to two proteasome inhibitors or IMiDs and an anti-CD38 antibody)

Selinexor is an oral XPO-1 inhibitor that induces nuclear retention and activation of TSPs and the GR in the presence of steroids, and suppresses oncoprotein expression¹

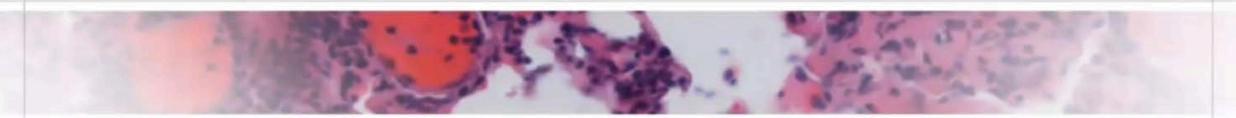

> ¹Schmidt et al., Leukemia, 2013, ²Tai et al., Leukemia, 2013, ³Argueta et al., Oncotarget, 2018 ⁴Turner et al, 2017 unpublished

Courtesy of Nikhil C Munshi, MD

Targeting Nuclear Transport Selinexor

- Inhibits XPO1
 - XPO1 is the major nuclear export protein
 - XPO1 is overexpressed in MM
- Results of STORM Study
 - N = 122; median 7 prior treatments
 - 86% refractory to bortezomib, carfilzomib, lenalidomide, pomalidomide, and daratumumab
 - mDOR = 4.4 months
 - Associated with hematologic and GI toxicity
 - Aggressive supportive care needed

• Chari A, et al. N Engl J Med. 2019;381:727-738.



FDA-Approved July 2019 In combination with Dex in adults with RRMM after \geq 4 prior therapies (\geq 2 PIs, \geq 2 immunomodulatory drugs, and an anti-CD38 antibody)

Courtesy of Nikhil C Munshi, MD

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Selinexor in Combination with Pomalidomide and Dexamethasone (SPd) for Treatment of Patients with Relapsed Refractory Multiple Myeloma (RRMM)

Christine I Chen MD¹, Nizar Bahlis MD², Cristina Gasparetto MD³, Sascha A Tuchman MD⁴, Brea C Lipe MD⁵, Muhamed Baljevic MD⁶, Rami Kotb MD⁷, Heather J Sutherland MD PhD⁸, William I. Bensinger MD⁹, Michael Sebag MD PhD¹⁰, Richard LeBlanc MD FRCPC¹¹, Christopher P Venner MD¹², Gary J Schiller MD¹³, Suzanne Lentzsch MD PhD¹⁴, Natalie Scott Callander MD¹⁵, Adriana C Rossi MD¹⁶, Noa Biran¹⁷, Heidi Sheehan¹⁸, Dane Van Domelen¹⁸, Kazuharu Kai MD PhD¹⁸, Hongwei Wang MD¹⁸, Jatin Shah MD¹⁸, Sharon Shacham PhD MBA¹⁸, Michael G Kauffman MD PhD¹⁸ and Darrell J White MD¹⁹

¹Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada; ²Charbonneau Cancer Research Institute, Calgary, AB, Canada; ³Duke Univ. Medical Center, Durham, NC; ⁴University of North Carolina, Chapel Hill, NC; ⁵University of Rochester Medical College, Rochester, NY; ⁶University of Nebraska Medical Center, Omaha, NE; ⁷Cancer Care Manitoba, Winnipeg, MB, Canada; ⁸Vancouver General Hospital, Vancouver, BC, Canada; ⁹Myeloma and Transplant Program, Swedish Cancer Institute, Seattle, WA; ¹⁰Royal Victoria Hospital, Montreal, QC, Canada; ¹¹ Maisonneuve-Rosemont Hospital, University of Montreal, QC, Canada; ¹²Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada; ¹³David Geffen School of Medicine at UCLA, Los Angeles, CA; ¹⁴Colombia University, New York; ¹⁵Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI; ¹⁶NYPH Weill Cornell, New York, NY; ¹⁷ Hackensack Meridian Health, Hackensack University Medical Center; ¹⁸Karyopharm Therapeutics, Newton, MA; ¹⁹Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada

Summary and Conclusions

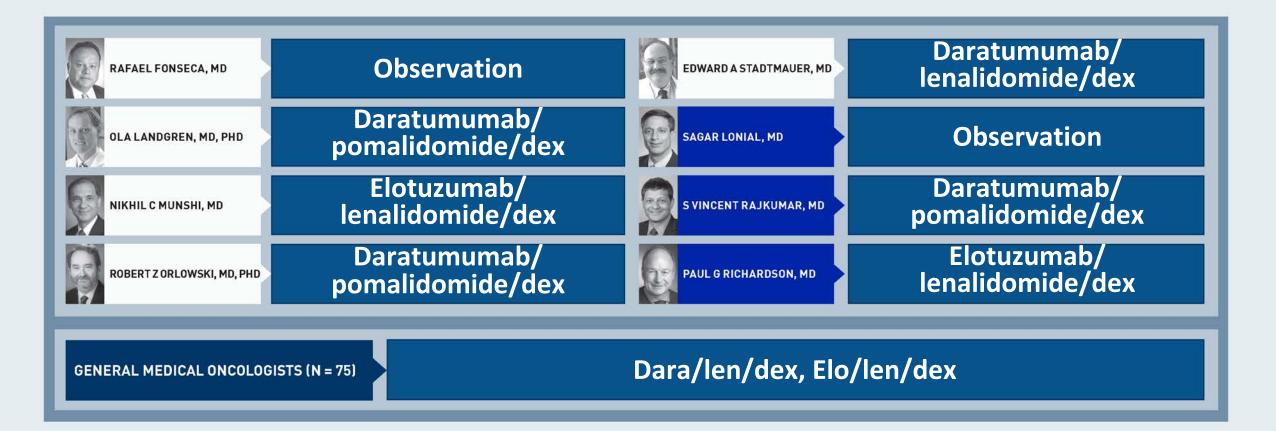
Selinexor, once-weekly, can be safely combined with pomalidomide and low-dose dexamethasone (SPd) in patients with heavily pretreated MM

- RP2D is selinexor 60 mg QW (pomalidomide 4 mg QD + dexamethasone 40 mg QW)
- The most common TRAEs were: nausea, neutropenia, anemia, thrombocytopenia, fatigue
 - Expected and can be managed with appropriate supportive care and/or dose modifications

The all oral SPd combination is very active and responses are durable

- ORR 60% (≥ VGPR 30%) at the RP2D (compared to expected ORR ≤30% for pomalidomide + dex)¹
- CBR was 70% across all patient at RP2D
- PFS was 12.2 months for all patients and not reached for RP2D

Data support planned phase 3 study of all oral combination of SPd vs Pd in patients with a prior PI, Imid and CD-38 mAb (XPORT-MM-031)


Chen CI et al. ASH 2020; Abstract 726.

What is your usual treatment recommendation for a 65-year-old patient with MM treated with RVd \rightarrow ASCT and maintenance lenalidomide for 1.5 years who then experiences asymptomatic biochemical relapse?

- 1. Carfilzomib + dexamethasone (dex)
- 2. Pomalidomide + dex
- 3. Carfilzomib + pomalidomide + dex
- 4. Elotuzumab + lenalidomide + dex
- 5. Elotuzumab + pomalidomide + dex
- 6. Daratumumab + lenalidomide + dex
- 7. Daratumumab + pomalidomide + dex
- 8. Other

What is your usual treatment recommendation for a 65-year-old patient with MM treated with RVd \rightarrow ASCT and maintenance lenalidomide for 1.5 years who then experiences asymptomatic biochemical relapse?

Which of the following agents would you generally use first for a patient with relapsed MM who has experienced disease progression on multiple prior therapies, including daratumumab, proteasome inhibitors and IMiDs?

- 1. Isatuximab
- 2. Selinexor
- 3. Belantamab mafodotin
- 4. BCMA-directed CAR T-cell therapy
- 5. I would not recommend any of these

Which of the following agents would you generally use first for a patient with relapsed MM who has experienced disease progression on multiple prior therapies, including daratumumab, proteasome inhibitors and IMiDs?

RAFAEL FONSECA, MD	BCMA-directed CAR T-cell therapy	EDWARD A STADTMAUER, MD	Belantamab mafodotin
OLA LANDGREN, MD, PHD	BCMA-directed CAR T-cell therapy	SAGAR LONIAL, MD	Belantamab mafodotin
NIKHIL C MUNSHI, MD	BCMA-directed CAR T-cell therapy	S VINCENT RAJKUMAR, MD	Belantamab mafodotin
ROBERT Z ORLOWSKI, MD, PHD	BCMA-directed CAR T-cell therapy	PAUL G RICHARDSON, MD	Selinexor
GENERAL MEDICAL ONCOLOGISTS (N = 75) BCMA-directed CAR T-cell therapy, Belantamab mafodotin			

Who performs eye examinations for your patients with MM receiving belantamab mafodotin?

- 1. Optometrist
- 2. Ophthalmologist
- 3. I do not recommend regular eye examinations for my patients receiving belantamab mafodotin
- 4. I have not administered belantamab mafodotin to a patient with MM
- 5. Other

Who performs eye examinations for your patients with MM receiving belantamab mafodotin?

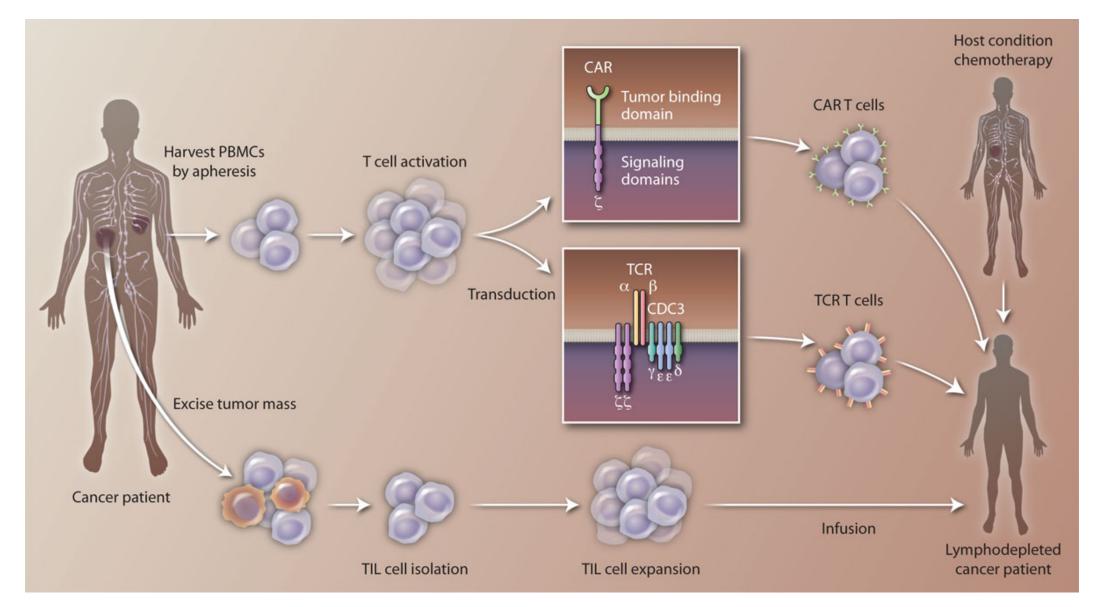
Agenda

Module 1: Up-front management

• GRIFFIN, APOLLO, IMF 2009, TOURMALINE-MM2

Module 2: Relapsed/refractory disease

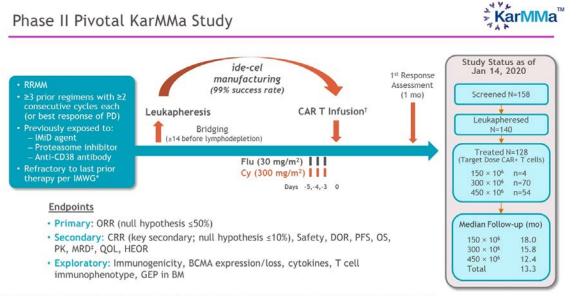
• Isatuximab, belantamab mafadotin, selinexor


Module 3: Chimeric antigen receptor T-cell therapy; bispecific antibodies

Module 4: Other novel strategies

• Venetoclax, melflufen, iberdomide, BRAF inhibitors

Adoptive T-cell therapy (three major approaches)



June et al Sci Trans Med 2015

Courtesy of Edward A Stadtmauer, MD

BCMA Directed CAR T Studies: ASH 2019, ASCO 2020

EudraCT: 2017-002245-29 ClinicalTrials.gov: NCT03361748

R, complete response rate; Cy, cyclophosphamide; DDR, duration of response; Flu, fludurablee; GEP in BM, gene expression profile in bose marrow; HEOR, health economics and outcomes researc D, incrumomodulatory drug; BWHG, Identational Myeloma Working Group; MRD, minimal residual disease; ORR, overail response rate; OS, overail survival; PD, progressive disease; PFS, progressive

R/R MM, ECOG PS ≤ 1. ≥ 3 prior therapies including ASCT, PI, IMID, and anti-CD38 agents; refractory to last tx; no selection based on BCMA

Orva-cel manufacturing

Optional bridging

chemotherapy

Primary objectives (phase I): safety and tolerability (DLTs, AEs) and RP2D

Eligibility

reconfirmed

 Secondary objectives (phase I): orva-cel pharmacokinetics, preliminary antitumor activity

Day 15: BM examination Day 29: disease assessment Follow-up: 2-24 mos post treatment; long-term 24 mos to 15 yrs

ABRAMSON CANCER CENTER

Day 1: CAR T-Cells

DL1: 50 x 10⁶ CAR T-cells

DL2: 150 x 10⁶ CAR T-cell

DL2A: 300 x 10^s CAR T-cells

DL3: 450 x 10⁶ CAR T-cells

DL3A: 600 x 10⁴ CAR T-cells

Mailankody, ASCO 2020. Abstr 8504

expression

(N = 62)

CARTITUDE-1: Phase 1b/2 Study Design

Lymphodepletion

Fludarabine 30 mg/m² x 3 day.

hosphamide 300 mg/m²/day

Primary Objectives

EVOLVE: Study Design

Leukapheresis

- Phase 1b: Characterize safety and confirm phase 2 dose as informed by the LEGEND-2 study
- Phase 2: Evaluate efficacy of JNJ-4528

Key Eligibility Criteria

- Progressive MM per IMWG criteria
- ECOG PS s1
- Measurable disease
- Received ≥3 prior therapies or double refractory. Prior PI, IMiD, anti-CD38 therapy
- Median administered dose = 0.73x10⁶ (0.52 - 0.89x10⁶) CAR+ viable T cells/kg
- Median follow-up at data cut-off = 6 mo (3 14)

2-5 Days

Similar approach in 3 studies:

R/R MM Steady state T cell collection CY/FLU lymphodepletion Single infusion

Courtesy of Edward A Stadtmauer, MD

BCMA Directed CAR T Studies: ASH 2019, ASCO 2020

Response Rates

	KarMMa	EVOLVE	CARTITUDE-1
↓ ANC ≥G3, %	89	90	100
↓ plts ≥G3, %	52	47	69
CRS: all, ≥G3,%	84, 6	89, 3	93, 7
Med. time to CRS, duration, days	1 (1-12) 5 (1-63)	2 (1-4) 4 (1-10)	7 (2-12) 4 (2-64)
ICANS: all, ≥G3,%	17, 3	13, 3	10, 3
HLH/MAS, %		5	? 7 (lfts)
Infections: all, ≥G3 %	69,	40, 13	, 19
Toci/steroid/ anakinra use, %	52/15/0	76/52/ <mark>23</mark>	79/21/ <mark>21</mark>

	KarMMa (n = 128)	EVOLVE (n = 62)	CARTITUDE-1 (n = 29)
ORR, %	73 (66-81)	92	100
sCR/CR, %	33	36	86
MRD neg ≥10 ⁻⁵ , % (of evaluable)	94	84	81
PFS/DoR, months	8.8/10.7	NR*	NR**
Screened Apheresed Treated	150 140 128		35 35 29

Efficacy and safety of idecabtagene vicleucel (ide-cel, bb2121) in elderly patients with relapsed and refractory multiple myeloma: KarMMa subgroup analysis

Jesús Berdeja,¹ Noopur S. Raje,² David S. Siegel,³ Yi Lin,⁴ Larry D. Anderson, Jr,⁵ Paula Rodriguez-Otero,⁶ Salomon Manier,⁷ Hermann Einsele,⁸ Michele Cavo,⁹ Anna Truppel-Hartmann,¹⁰ Everton Rowe,¹¹ Jill Sanford,¹¹ Julie Wang,¹¹ Timothy B. Campbell,¹¹ and Sundar Jagannath¹²

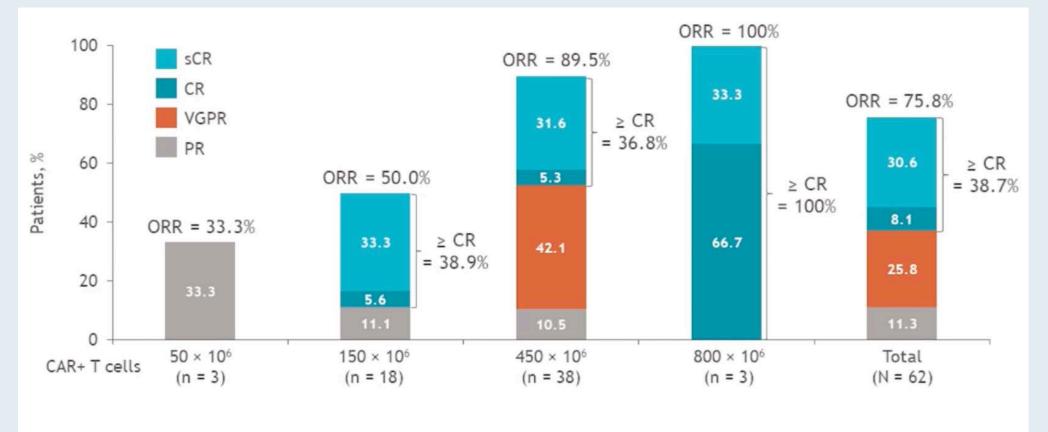
¹Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN, USA; ²Massachusetts General Hospital, Boston, MA, USA; ³Hackensack University Medical Center, Hackensack, NJ, USA; ⁴Mayo Clinic, Rochester, MN, USA; ⁵Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁶Clinical Universidad de Navarra, Navarra, Spain; ⁷Service des Maladies du Sang, CHU Lille, Lille, France; ⁸University Hospital of Würzburg, Würzburg, Germany; ⁹"Seràgnoli" Institute of Hematology, Bologna University School of Medicine, Bologna, Italy; ¹⁰bluebird bio, Cambridge, MA, USA; ¹¹Bristol Myers Squibb, Princeton, NJ, USA; and ¹²Mount Sinai Medical Center, New York, NY, USA

KarMMa: Ide-Cel for Elderly Patients with R/R MM Subgroup Analysis by Age

		Age ≥65 Years (n=45)	Age ≥70 Years (n=20)	All ide-cel Treated (N=128)
Efficacy Outco	omes			
ORR, n (%) [9	5% CI]	38 (84) [70.5–93.5]	18 (90) [76.9–100]	94 (73) [65.8–81.1]
CR rate, n (%)	[95% CI]	14 (31) [18.2–46.6]	7 (35) [14.1–55.9]	42 (33) [24.7–40.9]
PFS, median (95% Cl), mo	8.6 (4.9–12.2)	10.2 (3.1–12.3)	8.8 (5.6–11.6)
DOR, ^a mediar	n (95% Cl), mo	10.9 (4.5–11.4)	11.0 (3.9–11.4)	10.7 (9.0–11.3)
Adverse Even	ts of Interest ^b			
CRS, n (%)	Overall Grade ≥3	40 (89) 2 (4)	20 (100) 2 (10)	107 (84) 7 (5)
NT, n (%)	Overall Grade ≥3	11 (24) 4 (9)	6 (30) 1 (5)	23 (18) 4 (3)

CR, complete response; CRS, cytokine release syndrome; DOR, duration of response; NT, investigator-identified neurotoxicity; ORR, overall response rate; PFS, progression-free survival.

^aDuration of response among responders.


^bNT was graded according to NCI CTCAE v4.03. CRS was graded according to Lee et al. criteria (*Blood* 2014; 124:188-95).

Idecabtagene vicleucel (ide-cel, bb2121), a BCMA-directed CAR T cell therapy, in patients with relapsed and refractory multiple myeloma: updated results from phase 1 CRB-401 study

Yi Lin,¹ Noopur S. Raje,² Jesús G. Berdeja,³ David S. Siegel,⁴ Sundar Jagannath,⁵ Deepu Madduri,⁵ Michaela Liedtke,⁶ Jacalyn Rosenblatt,⁷ Marcela V. Maus,² Monica Massaro,⁸ Fabio Petrocca,⁸ Andrea Caia,⁹ Zhihong Yang,⁹ Timothy B. Campbell,⁹ Kristen Hege,⁹ Nikhil C. Munshi,¹⁰ and James N. Kochenderfer¹¹

¹Mayo Clinic, Rochester, MN; ²Massachusetts General Hospital Cancer Center, Boston, MA; ³Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN; ⁴Hackensack University Medical Center, Hackensack, NJ; ⁵Mount Sinai Medical Center, New York, NY; ⁶Stanford University Medical Center, Palo Alto, CA; ⁷Beth Israel Deaconess Medical Center, Boston, MA; ⁸bluebird bio, Inc, Cambridge, MA; ⁹Bristol Myers Squibb, Princeton, NJ; ¹⁰Dana-Farber Cancer Institute, Boston, MA; ¹¹Surgery Branch, National Cancer Institute/National Institutes of Health, Bethesda, MD

CRB-401: Response, Survival, Duration of Response, Rates of CRS and Neurotoxicity

All 15 patients with ≥ CR who had a qualified assessment were MRD negative by NGS^a

- PFS = 8.8 months
- OS = 19.4 months
- DoR = 10.7 months

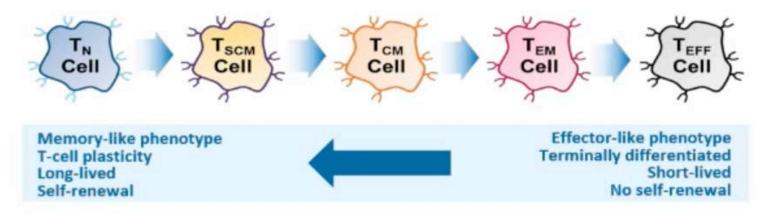
- CRS: common but typically not severe
- Neurologic toxicity: uncommon and rarely severe

CRB-401: Safety and Tolerability

AEs of special interest, n (%)	Any grade N = 62	Grade 3/4 N = 62	
Any AE	62 (100)	61 (98.4)	
Neutropenia	57 (91.9)	55 (88.7)	
Febrile neutropenia	10 (16.1)	8 (12.9)	
Anemia	47 (75.8)	35 (56.5)	
Infection ^a	47 (75.8)	14 (22.6)	
CRS ^b	47 (75.8)	4 (6.5)	
Thrombocytopenia	46 (74.2)	35 (56.5)	
Leukopenia	40 (64.5)	38 (61.3)	
Lymphopenia	23 (37.1)	22 (35.5)	
Neurologic toxicity ^c	22 (35.5)	1 (1.6)	

- Median time to recovery of grade 3/4 neutropenia and thrombocytopenia (in patients without recovery by month 1) was 1.9 and 2.2 months, respectively^d
- 1 (1.6%) death within 8 weeks of infusion
 - Grade 2 CRS events on days 1 and 8 resolved on days 4 and 12, respectively
 - MR on day 31; persistent cytopenias requiring transfusions
 - Withdrew from care and died in hospice of unknown cause 51 days after infusion
- 7 (11.3%) additional deaths within 6 months
 - 1 (1.6%) due to AE (cardiopulmonary arrest not attributable to ide-cel)
 - 6 (9.7%) due to myeloma

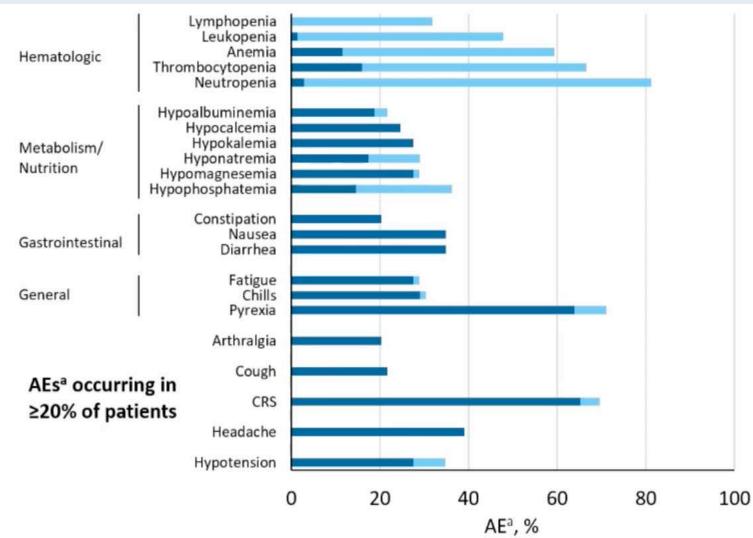
ASH 2020


Updated Results from the Phase 1 CRB-402 Study of Anti-BCMA CAR-T Cell Therapy bb21217 in Patients with Relapsed and Refractory Multiple Myeloma: Correlation of Expansion and Duration of Response with T-Cell Phenotypes

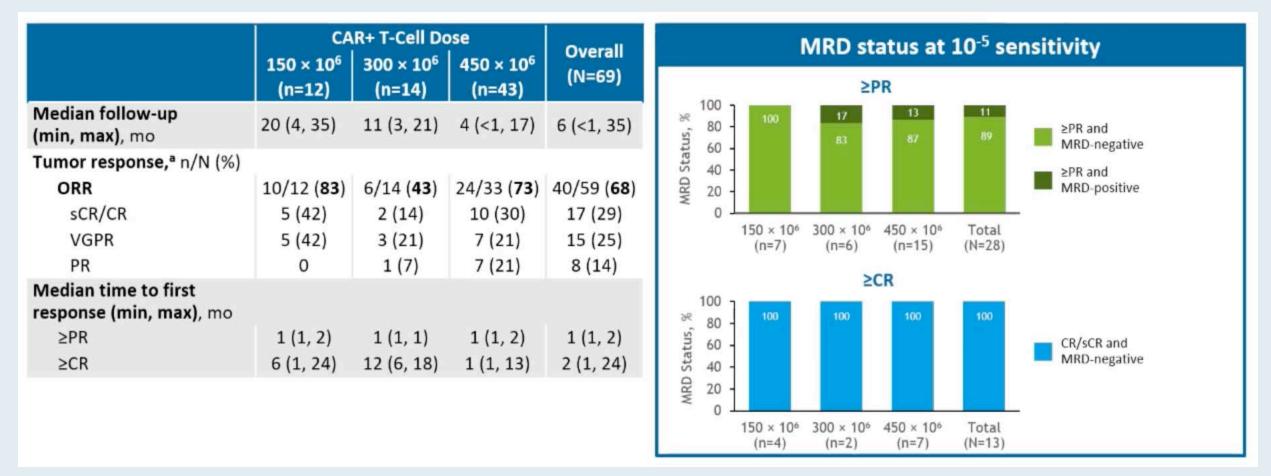
Melissa Alsina, MD¹, Nina Shah, MD², Noopur S. Raje, MD³, Sundar Jagannath, MD⁴, Deepu Madduri, MD⁵, Jonathan L. Kaufman, MD⁶, David S. Siegel, MD, PhD⁷, Nikhil C. Munshi, MD⁸, Jacalyn Rosenblatt, MD⁹, Yi Lin, MD, PhD¹⁰, Andrzej Jakubowiak, MD, PhD¹¹, Jagoda Jasielec, MD¹¹, Alison Timm, MS¹², Ashley Turka¹², Pingping Mao, PhD¹², Nathan Martin, PhD¹³, Timothy B. Campbell, MD, PhD¹³, Kristen Hege, MD¹³, Hans Bitter, PhD¹², Fabio Petrocca, MD¹² and Jesus G. Berdeja, MD¹⁴

¹Department of Blood & Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Ctr. Hematologic Malignancies Program, Tampa, FL; ²Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA; ³Massachusetts General Hospital Cancer Center, Boston, MA; ⁴Department of Hematology and Medical Oncology, Tisch Cancer Institute, Mount Sinai Medical Center, New York, NY; ⁵Icahn School of Medicine at Mount Sinai, New York, NY; ⁶Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA; ⁷John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ; ⁸Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; ⁹Beth Israel Deaconess Medical Center, Boston, MA; ¹⁰Mayo Clinic, Rochester, MN; ¹¹University of Chicago, Chicago, IL; ¹²bluebird bio, Cambridge, MA; ¹³Bristol Myers Squibb Company, Princeton, NJ; ¹⁴Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN

bb21217: Mechanism of Action


- bb21217 uses the same CAR molecule as bb2121,¹ but is cultured with the PI3K inhibitor, bb007, to enrich for T cells displaying a memory-like phenotype
- CAR T cells enriched for this phenotype may persist and function for longer than non-enriched CAR T cells²
- Persistence of functional CAR T cells after infusion may be one determinant of duration of response³

 When cultured in the presence of the PI3K inhibitor bb007, donor cells become enriched for memory-like CAR T cells and the percentage of senescent CAR T cells decreases.

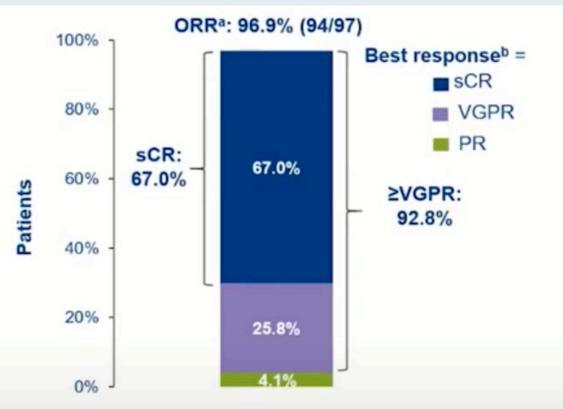

CRB-402: Safety and Tolerability (Primary Endpoint)

- Grade 1/2
- Grade 3/4
- Cytopenias were common and not dose related
 - Median time to recovery of Gr 3/4 neutropenia and Gr 3/4 thrombocytopenia was 2.0 mos and 2.2 mos
- Grade 3/4 infections were reported in 18 patients (26%)^b
 - One death from infection within 6 months, in the absence of MM progression
- Two deaths within 8 weeks of bb21217 infusion, both due to CRS

CRB-402: Response, MRD Status, Duration of Response, Rates of CRS and Neurotoxicity

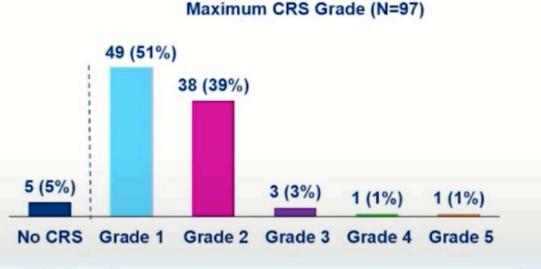
- Median duration of response across all doses = 17 months
- Low rates of Grade 3 or higher CRS (4%) and neurotoxicity (4%)

CARTITUDE-1: Phase 1b/2 Study of Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen–Directed Chimeric Antigen Receptor T-Cell Therapy, in Relapsed/Refractory Multiple Myeloma


Deepu Madduri¹, Jesus G Berdeja², Saad Z Usmani³, Andrzej Jakubowiak⁴, Mounzer Agha⁵, Adam D Cohen⁶, A Keith Stewart⁷, Parameswaran Hari⁸, Myo Htut⁹, Elizabeth O'Donnell¹⁰, Nikhil C Munshi¹¹, David Avigan¹², Abhinav Deol¹³, Alexander Lesokhin¹⁴, Indrajeet Singh¹⁵, Enrique Zudaire¹⁵, Tzu-Min Yeh¹⁶, Alicia J Allred¹⁵, Yunsi Olyslager¹⁷, Arnob Banerjee¹⁵, Jenna D Goldberg¹⁶, Jordan M Schecter¹⁶, Carolyn C Jackson¹⁶, William Deraedt¹⁷, Sen Hong Zhuang¹⁶, Jeffrey Infante¹⁶, Dong Geng¹⁸, Xiaoling Wu¹⁸, Marlene J Carrasco-Alfonso¹⁸, Muhammad Akram¹⁸, Farah Hossain¹⁸, Syed Rizvi¹⁸, Frank Fan¹⁹, Sundar Jagannath¹, Yi Lin²⁰, Thomas Martin²¹

¹Mount Sinai Medical Center, New York, NY, USA; ²Sarah Cannon Research Institute, Nashville, TN, USA; ³Levine Cancer Institute-Atrium Health, Charlotte, NC, USA;
⁴University of Chicago, Chicago, IL, USA; ⁵UPMC Hillman Cancer Center, Pittsburgh, PA, USA; ⁶Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA;
⁷UHN and the Princess Margaret Cancer Centre, Toronto, ON, Canada; ⁸Medical College of Wisconsin, Milwaukee, WI, USA; ⁹City of Hope Comprehensive Cancer Center, Duarte, CA, USA;
¹⁰Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; ¹¹Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ¹³Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA; ¹⁴Memorial Sloan Kettering Cancer Center, New York, NY, USA;
¹⁵Janssen R&D, Spring House, PA, USA; ¹⁶Janssen R&D, Raritan, NJ, USA; ¹⁷Janssen R&D, Beerse, Belgium; ¹⁸Legend Biotech USA, Inc, Piscataway, NJ, USA;
¹⁹Nanjing Legend Biotechnology Co, Ltd, Nanjing, China; ²⁰Mayo Clinic, Rochester, MN, USA; ²¹UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA

PRESENTED AT THE 62ND AMERICAN SOCIETY OF HEMATOLOGY (ASH) ANNUAL MEETING & EXPOSITION; DECEMBER 5–8, 2020 PRESENTATION #177 Additional information can be viewed by scanning the QR code or accessing this link: <u>https://epa-digital.com/u/ASH2020-Madduri</u> The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way



CARTITUDE-1 – Ciltacabtagene Autoleucel (JNJ-4528) for R/R MM: Response and Rates of CRS

- Median time to first response: 1 month (0.9–8.5)
- Responses ongoing in 70 (72.2%) patients
- 93.0% (evaluable patients) achieved MRD 10⁻⁵ negativity in median 1 month^c
- In patients with 6 months follow-up, most had cilta-cel CAR+ T cells below the level of quantification in peripheral blood

	N=97
Patients with a CRS event, ^a n (%)	92 (94.8)
Time to onset, median (range) days	7 (1–12)
Duration, median (range) days	4 (1–97) ^b

- CRS onset
 - Day 4 or later: 89.1% (n=82)
 - Day 6 or later: 73.9% (n=68)
- CRS resolved in 91 (98.9%) patients within 14 days of onset

Madduri D et al. ASH 2020; Abstract 177.

Updated Phase 1 Results of Teclistamab, a B-cell Maturation Antigen (BCMA) × CD3 Bispecific Antibody, in Relapsed and/or Refractory Multiple Myeloma (RRMM)

<u>Alfred L. Garfall¹</u>, Saad Z. Usmani², María-Victoria Mateos³, Hareth Nahi⁴, Niels W.C.J. van de Donk⁵, Jesus F. San-Miguel⁶, Albert Oriol⁷, Laura Rosinol⁸, Ajai Chari⁹, Manisha Bhutani², Lixia Pei¹⁰, Raluca Verona¹⁰, Suzette Girgis¹⁰, Tara Stephenson¹⁰, Jenna D. Goldberg¹⁰, Arnob Banerjee¹⁰, Amrita Krishnan¹¹

¹Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ²Levine Cancer Institute-Atrium Health, Charlotte, NC, USA;
³Hospital Clinico Universitario de Salamanca, Salamanca, Spain; ⁴Karolinska University Hospital at Huddinge, Stockholm, Sweden; ⁵Amsterdam University Medical Center, Location VU University Medical Center, Amsterdam, The Netherlands; ⁶Clínica Universidad de Navarra, Navarra, Spain; ⁷Institut Català d'Oncologia and Institut Josep Carreras. Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain; ⁸Hospital Clínic, Barcelona, Spain; ⁹Mt. Sinai School of Medicine, New York, NY, USA; ¹⁰Janssen R&D, Spring House, PA, USA; ¹¹City of Hope, Duarte, CA, USA

Additional information can be viewed by scanning the QR code or accessing this link: <u>https://oncologysciencehub.com/ASH2020/bispecifics/Garfall</u>. The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way A Phase 1, First-in-Human Study of Talquetamab, a G Protein-Coupled Receptor Family C Group 5 Member D (GPRC5D) x CD3 Bispecific Antibody, in Patients with Relapsed and/or Refractory Multiple Myeloma (RRMM)

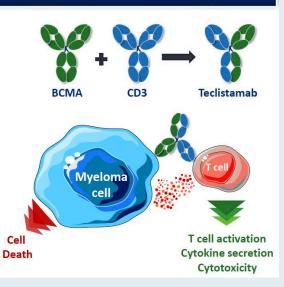
<u>Ajai Chari</u>¹, Jesus G. Berdeja², Albert Oriol³, Niels W.C.J. van de Donk^{4,} Paula Rodriguez-Otero⁵, Elham Askari⁶, Maria-Victoria Mateos⁷, Monique C. Minnema⁸, Raluca Verona⁹, Suzette Girgis⁹, Thomas Prior⁹, Brandi W. Hilder⁹, Jeffery Russell⁹, Jenna D. Goldberg⁹, Amrita Krishnan¹⁰

¹Mount Sinai Medical Center, New York, NY, USA; ²Sarah Cannon Research Institute, Nashville, TN, USA; ³Institut Català d'Oncologia and Institut Josep Carreras. Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain; ⁴Amsterdam University Medical Center, Location VU University Medical Center, Amsterdam, The Netherlands; ⁵Clínica Universidad de Navarra, Navarra, Spain; ⁶Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; ⁷Hospital Clínico Universitario de Salamanca, Salamanca, Spain; ⁸University Medical Center Utrecht, Utrecht, The Netherlands; ⁹Janssen R&D, Spring House, PA, USA; ¹⁰City of Hope, Duarte, CA, USA

Additional information can be viewed by scanning the QR code or accessing this link: <u>https://oncologysciencehub.com/ASH2020/bispecifics/Chari</u>. The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

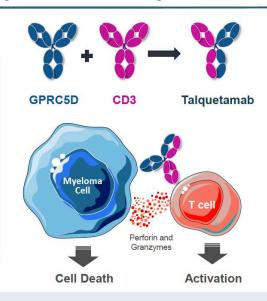
Initial Clinical Activity and Safety of Cevostamab (BFCR4350A), a FcRH5xCD3 T-Cell-Engaging Bispecific Antibody, in Relapsed/Refractory Multiple Myeloma

Adam D Cohen¹, Simon Harrison², Amrita Krishnan³, Rafael Fonseca⁴, Peter A Forsberg⁵, Andrew Spencer⁶, Jesus G Berdeja⁷, Jacob P Laubach⁸, Mengsong Li⁹, Voleak Choeurng⁹, Anjali Vaze⁹, Divya Samineni⁹, Teiko Sumiyoshi⁹, James Cooper⁹, Bernard M Fine⁹, Suzanne Trudel¹⁰


¹Abramson Cancer Center and University of Pennsylvania, Philadelphia, PA, USA; ²Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia; ³City of Hope, Duarte, CA, USA; ⁴Mayo Clinic in Arizona, Phoenix, AZ, USA; ⁵University of Colorado School of Medicine, Aurora, CO, USA; ⁶Alfred Health-Monash University, Melbourne, VIC, Australia; ⁷Sarah Cannon Research Institute, Nashville, TN, USA; ⁸Dana-Farber Cancer Institute, Boston, MA, USA; ⁹Genentech, Inc., South San Francisco, CA, USA; ¹⁰Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada

Accepted as an Oral Presentation at the 62nd ASH Annual Meeting and Exposition

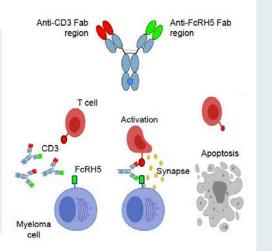
Bispecific Antibodies for R/R MM


Teclistamab: BCMA × CD3 DuoBody[®] Antibody

- Prognosis is poor for patients who progress on available classes of therapies, with ORR ~30%, mPFS of ~3 months, and mOS between 6–11 months¹
- Teclistamab (JNJ-64007957)^a is a humanized BCMA × CD3 bispecific IgG-4 antibody that redirects CD3⁺ T cells to BCMA-expressing myeloma cells
- Teclistamab induces T cell-mediated killing of myeloma cells from heavily-treated patients and in xenograft models²⁻⁴
- Updated results from an ongoing phase 1 study of teclistamab administered IV or SC in patients with RRMM (NCT03145181) are presented here⁵

Talquetamab: GPRC5D x CD3 Bispecific Antibody

- Talquetamab is a first-in-class DuoBody[®] IgG4 PAA antibody that binds to both GPRC5D and CD3
- Talquetamab redirects T cells to GPRC5D-expressing myeloma cells to mediate cell killing
- Antitumor activity was demonstrated in primary myeloma cells and xenograft models of MM¹⁻³
- Talquetamab's pharmacokinetic profile presents an opportunity for less frequent SC dosing
- First-in-human phase 1 study is ongoing to evaluate talquetamab in patients with RRMM (NCT03399799)



Cevostamab: FcRH5xCD3 bispecific antibody

Garfall AL et al. ASH 2020;Abstract 180; Chari A et al. ASH 2020;Abstract 290; Cohen AD et al. ASH 2020;Abstract 292.

• Fc receptor-homolog 5 (FcRH5)

- Expressed on myeloma cells with near 100% prevalence¹
- Expression on myeloma and plasma cells > normal B cells¹
- Cevostamab
- Humanized IgG-based T-cell-engaging bispecific antibody1
- Targets FcRH5 on myeloma cells and CD3 on T cells¹
- Ongoing Phase I dose-escalation and expansion trial (NCT03275103) is evaluating the safety and activity of cevostamab monotherapy in patients with RRMM²

Teclistamab: Conclusions

Teclistamab was well-tolerated at the RP2D of 1500 µg/kg SC

- Maximum tolerated dose has not been identified
- All CRS events were grade 1-2 and generally confined to step-up and first full doses
- One grade 1 reversible neurotoxicity at RP2D
- No new safety signals were identified
- High response rate observed at the RP2D
 - − ORR at the RP2D (1500 μ g/kg SC) was 73%; ≥VGPR was 55% and ≥CR was 23%
 - 14/20 (70%) triple-class refractory patients responded; 6/8 (75%) penta-drug refractory patients responded
 - Responses appeared durable and deepened over time
 - At median 3.9-month follow-up, 15/16 (94%) responders are alive and progression-free
- Selection of the 1500 μg/kg SC RP2D was supported by promising safety, efficacy, PK, and pharmacodynamics
- Teclistamab, an off-the-shelf therapy targeting BCMA, showed promising efficacy in heavily-pretreated patients with RRMM
 - Phase 1 of the study is ongoing, and phase 2 expansion study has started

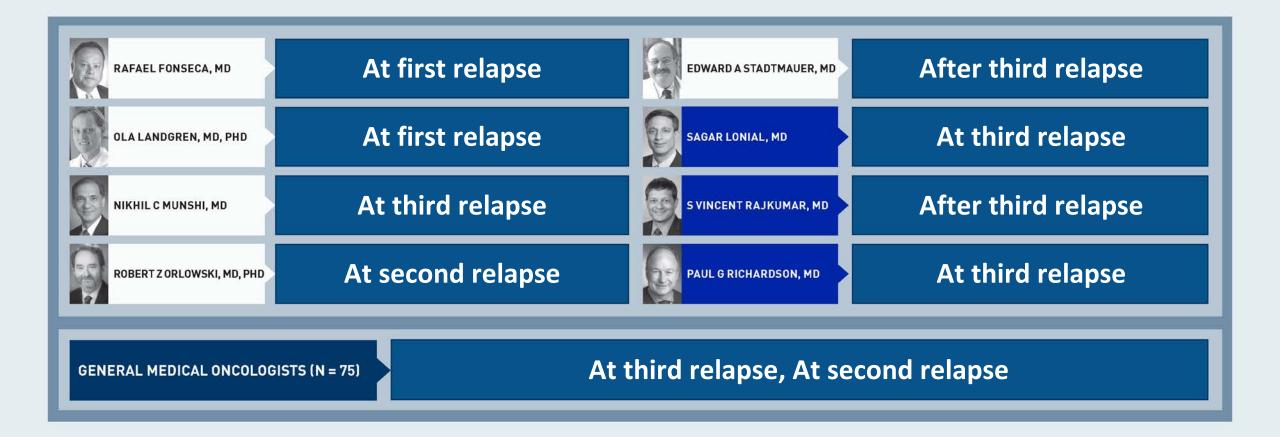
Talquetamab: Conclusions

Talquetamab has a tolerable safety profile at the RP2D of 405 µg/kg SC

- Safety profile at the RP2D was generally consistent with safety at lower doses, with low incidence of infections
- Early DLT of Gr 3 maculopapular rash and dose reductions due to certain toxicities (skin rash, oral toxicity, back pain) were observed in 4/11 patients (36%) at 800 µg/kg SC weekly
- CRS was generally low grade with no grade ≥3 CRS with SC dosing
- Low incidence of neurotoxicity with no grade ≥3 events with SC dosing

High response rate observed at the RP2D

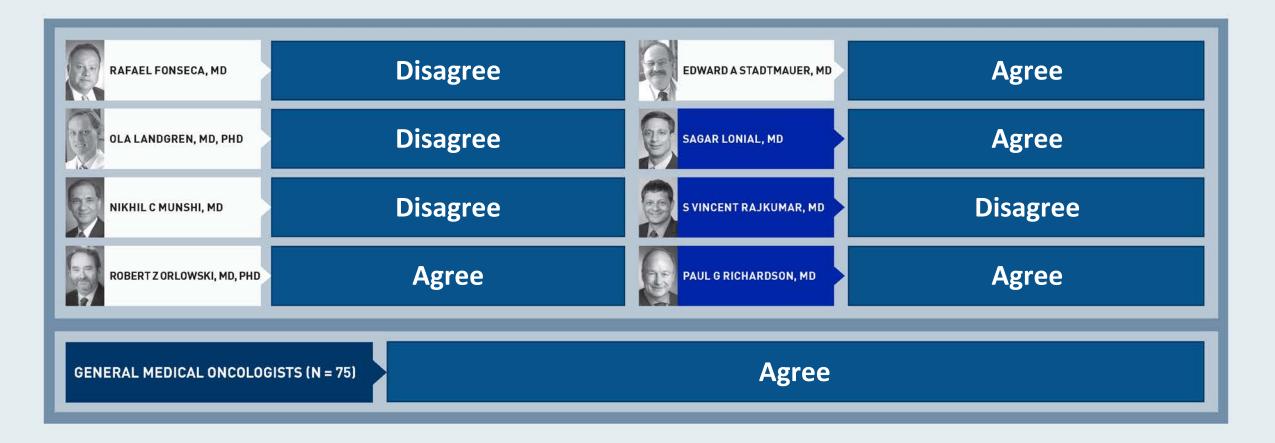
- ORR was 69% (9/13) at the RP2D of 405 µg/kg SC; 39% ≥VGPR
 - Median time to first confirmed response was 1 month
 - 6/9 triple-class refractory patients responded; 2/2 penta-drug refractory patients responded
- Responses were durable and continued to deepen over time
- PK results indicate target exposure levels at the RP2D, and pharmacodynamic data demonstrate consistent T cell activation, cytokine production, and redistribution at the RP2D
- SC dosing is more convenient and may offer an opportunity for less frequent dosing
- Talquetamab, a first-in-class, off-the-shelf therapy targeting GPRC5D, showed encouraging efficacy in heavily-pretreated patients with RRMM
 - Dose expansion is ongoing and phase 2 is planned


Cevostamab Conclusions

 Cevostamab safety profile is manageable, with C1 single step-up dosing effectively mitigating the risk for severe CRS

- CRS in 76% (40/53 pts); Gr 3 in 2% (1 pt)
- Cevostamab is highly active in heavily pre-treated RRMM patients
 - 53% ORR in patients receiving active doses
 - Responses in penta-drug refractory patients and in patients with prior anti-BCMA therapy
 - MRD negative responses in patients with ≥VGPR
 - Response irrespective of target expression level in patients assessed to date (Nakamura et al. ASH 2020; poster presentation 3213, Monday, December 7, 2020)
- These data establish FcRH5 as a novel target in multiple myeloma and demonstrate the activity of cevostamab monotherapy in late-line RRMM; dose-escalation and dose-expansion are ongoing

What do you currently believe is the optimal point at which chimeric antigen receptor (CAR) T-cell therapy should be administered in MM?



A patient with MM should be in adequate physical condition to undergo ASCT in order to be a suitable candidate for BCMAtargeted CAR T-cell therapy.

- 1. Agree
- 2. Disagree
- 3. I don't know

A patient with MM should be in adequate physical condition to undergo ASCT in order to be a suitable candidate for BCMA-targeted CAR T-cell therapy.

How would you compare the risk of cytokine release syndrome and CNS toxicity with BCMA-targeted CAR T-cell therapy to that with the CD19-targeted CAR T-cell therapy that is approved in lymphoma and acute lymphocytic leukemia?

RAFAEL FONSECA, MD	The risk is greater with CD19 CAR T	EDWARD A STADTMAUER, MD	The risk is about the same	
OLA LANDGREN, MD, PHD	The risk is greater with CD19 CAR T	SAGAR LONIAL, MD	The risk is greater with CD19 CAR T	
NIKHIL C MUNSHI, MD	The risk is greater with CD19 CAR T	S VINCENT RAJKUMAR, MD	The risk is greater with CD19 CAR T	
ROBERT Z ORLOWSKI, MD, PHD	The risk is greater with CD19 CAR T	PAUL G RICHARDSON, MD	The risk is greater with CD19 CAR T	
GENERAL MEDICAL ONCOLOGISTS (N = 75) Risk is about the same, Greater with BCMA-targeted CAR T				

Agenda

Module 1: Up-front management

• GRIFFIN, APOLLO, IMF 2009, TOURMALINE-MM2

Module 2: Relapsed/refractory disease

• Isatuximab, belantamab mafadotin, selinexor

Module 3: Chimeric antigen receptor T-cell therapy; bispecific antibodies

Module 4: Other novel strategies

• Venetoclax, melflufen, iberdomide, BRAF inhibitors

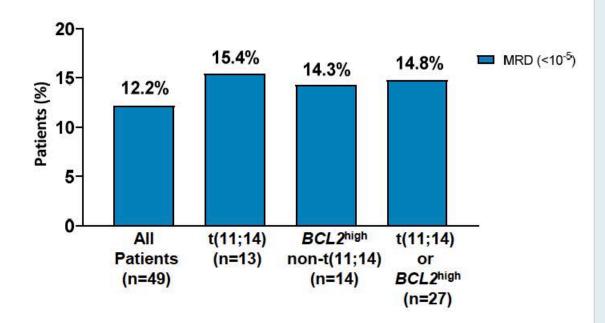
Targeting Bcl-2 for the treatment of multiple myeloma

- Overexpression of anti-apoptotic proteins are hallmarks of cancer
- Tumor cell proliferation is regulated through interactions between anti-apoptotic (Mcl-1, Bcl-2 and Bcl-xL) and pro-apoptotic (Bax and Bak) members
- Subset of myeloma cells with high Bcl-2 expression and low Mcl-1 expression commonly found in CCND1 subset, characterized by the presence of the translocation (11;14)
- Venetoclax binds to Bcl-2 and Bcl-x_L but not to Mcl-1. It induces apoptosis by displacing proapoptotic BH3-only proteins (Bim and Puma) from Bcl-2, leading to caspase-dependent cell death

Assessment of Minimal Residual Disease by Next-generation Sequencing and Fluorodeoxyglucose-positron Emission Tomography in Relapsed/Refractory Multiple Myeloma Patients Treated with Venetoclax in Combination with Carfilzomib and Dexamethasone

Luciano J. Costa¹, Tibor Kovacsovics², Nicholas Burwick³, Andrzej Jakubowiak⁴, Jonathan L. Kaufman⁵, Fernando Cabanillas⁶, Monique Dail⁷, Abdullah Masud⁸, Xiaoqing Yang⁸, Orlando F. Bueno⁸, Sarah R. Mudd⁸, Jeremy A. Ross⁸, Faith Davies⁹

¹University of Alabama at Birmingham, Birmingham, AL; ²Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; ³VA Puget Sound Health Care System, University of Washington, Seattle, WA; ⁴The University of Chicago Medicine, Chicago, IL; ⁵Winship Cancer Institute of Emory University, Atlanta, GA, USA; ⁶Auxilio Mutuo Cancer Center, San Juan, PR; ⁷Genentech Inc., South San Francisco, CA; ⁸AbbVie Inc., North Chicago, IL; ⁹Perlmutter Cancer Center, New York University Grossman School of Medicine, New York City, NY


> American Society of Hematology (ASH) – 62th Annual Meeting San Diego, CA, USA • December 06, 2020

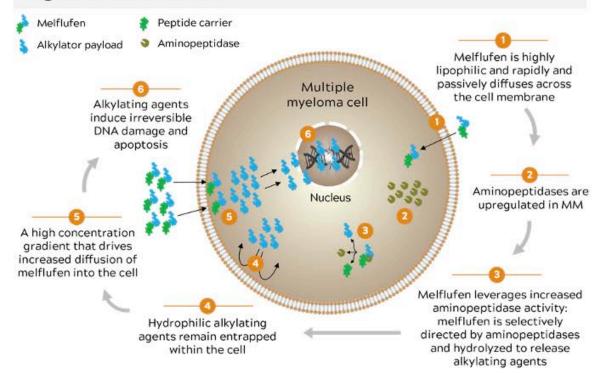
Response Rates in Overall Population and Biomarker Sub-groups

92.3% 100 -85.2% 79.6% 78.6% 15.4 scr. 11.1 75-7.1 CR Patients (%) 14.3 VGPR 21.4 50-29.6 PR 26.5 38.5 25-24.5 42.9 37.0 30.8 14.3 7.4 7.7 7.1 0 BCL2high t(11;14) t(11;14) AII non-t(11;14) (n=13) Patients or BCL2high (n=49) (n=14)(n=27)

Response rates

MRD negative (<10⁻⁵) rates

Costa LJ et al. ASH 2020; Abstract 2251.

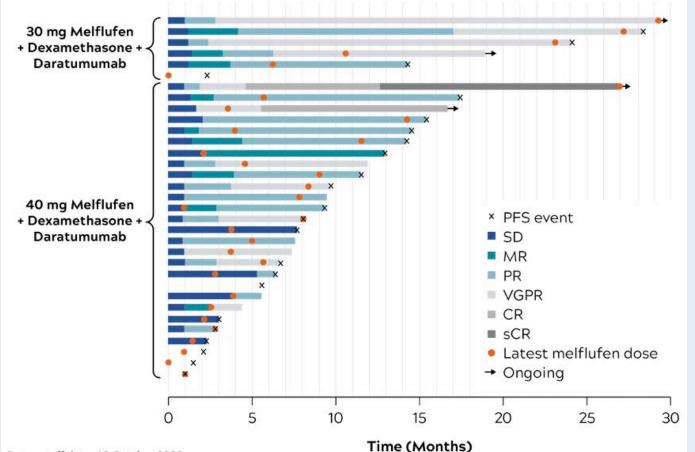

ANCHOR (OP-104): Melflufen Plus Dexamethasone and Daratumumab or Bortezomib in Relapsed/Refractory Multiple Myeloma Refractory to an IMiD and/or a Proteasome Inhibitor — Updated Efficacy and Safety

Enrique M. Ocio, MD, PhD¹; Yvonne A. Efebera, MD²; Roman Hájek, MD, PhD³; Miquel Granell, MD⁴; Vladimir Maisnar, MD⁵; Jan Straub, MD⁶; Jean-Richard Eveillard, MD⁷; Lionel Karlin, MD⁸; Vincent Ribrag, MD⁹; María-Victoria Mateos, MD, PhD¹⁰; Albert Oriol, MD¹¹; Malin Sydvander, MSc¹²; Stefan Norin, MD¹²; Sofia Mannikko, MSc¹²; and Luděk Pour, MD¹³

¹University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, Santander, Spain; ²Division of Hematology, The Ohio State University, Columbus, OH, USA; ³Department of Hemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic; ⁴Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; ⁵Fourth Department of Medicine - Hematology, FN and LF UK Hradec Králové, Hradec Králové, Czech Republic; ⁶Všeobecná fakultní nemocnice, Prague, Czech Republic; ⁷Hôpital Morvan, Brest, France; ⁸Department of Hematology, Centre Hospitalier Lyon-Sud, University Claude Bernard Lyon 1, Pierre-Benite, France; ⁹DITEP, Gustave Roussy, Université Paris-Saclay, Villejuif, France; ¹⁰Hospital Clinico Universitario de Salamanca/IBSAL/CIC, Salamanca, Spain; ¹¹Institut Català d'Oncologia and Josep Carreras Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain; ¹²Oncopeptides AB, Stockholm, Sweden; and ¹³Fakultní nemocnice Brno, Brno, Czech Republic

Melphalan Flufenamide (Melflufen): Mechanism of Action

Melflufen is an investigational first-in-class peptide-drug conjugate (PDC) that targets aminopeptidases and rapidly releases alkylating agents into tumor cells.¹⁻⁵



- In the pivotal phase 2 HORIZON study (OP-106), the activity of melflufen plus dexamethasone was further shown in heavily pretreated RRMM patients refractory to pomalidomide and/or anti-CD38 mAb therapy, with acceptable safety⁶
 - ORR was 29%; median PFS was 4.2 months, and median OS was 11.6 months
 - Grade 3/4 hematologic AEs were common (mainly neutropenia [79%], thrombocytopenia [76%], and anemia [71%]) but clinically manageable; nonhematologic AEs were infrequent

AE, adverse event; mAb, monoclonal antibody; ORR, overall response rate; OS, overall survival; PFS, progression-rate survival; RRMM, relapsed/refractory multiple myeloma.

ANCHOR: Melflufen with Dexamethasone and Daratumumab

Data cutoff date: 19 October 2020.

CR, complete response; DOR, duration of response; MR, minor response; OS, overall survival; PFS, progression-free survival; PR, partial response; sCR, stringent CR; SD, stable disease; VGPR, very good PR.

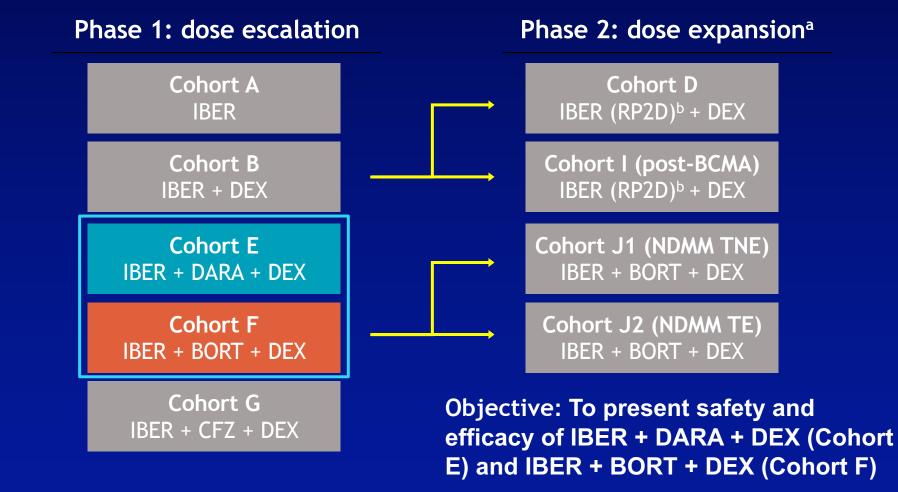
No DLTs were observed at any dose

- 15 patients (45%) experienced SAEs, most commonly pneumonia (12%); influenza (9%); and parainfluenza virus infection, sepsis, urinary tract infection, and febrile neutropenia (6% each)^a
 - 30 mg: 4 patients (67%)
 - 40 mg: 11 patients (41%)
- Four AEs with fatal outcomes
 - 30 mg: sepsis (unrelated to study treatment)
 - 40 mg: sepsis (possibly related to melflufen), and cardiac failure chronic and and general physical health deterioration (unrelated to study treatment)^b

First Results of Iberdomide (IBER; CC-220) in Combination with Dexamethasone (DEX) and Daratumumab (DARA) or Bortezomib (BORT) in Patients with Relapsed/Refractory Multiple Myeloma (RRMM)

Niels W.C.J. van de Donk¹, Rakesh Popat², Jeremy Larsen³, Monique C. Minnema⁴, Sundar Jagannath⁵, Albert Oriol⁶, Jeffrey A. Zonder⁷, Paul G. Richardson⁸, Paula Rodríguez Otero⁹, Ashraf Z. Badros¹⁰, Edward Stadtmauer¹¹, Sara Bringhen¹², Erica Campagnaro¹³, David S. Siegel¹⁴, Barbara Gamberi¹⁵, Mercedes Gironella Mesa¹⁶, Pieter Sonneveld¹⁷, Tuong Vi Nguyen¹⁸, Antonia Di Micco¹⁹, April Sorrell¹⁸, Min Chen¹⁸, Michael Amatangelo¹⁸, Elisabeth Kueenburg¹⁹, Sagar Lonial²⁰

¹Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, Netherlands; ²NIHR UCLH Clinical Research Facility, University College London Hospitals NHS Foundation Trust, London, UK; ³Mayo Clinic, Scottsdale, AZ; ⁴Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; ⁵The Mount Sinai Hospital, New York, NY; ⁶Institut de Recerca contra la Leucèmia Josep Carreras and Institut Català d'Oncologia, Hospital Germans Trias i Puiol, Badalona, Spain; ⁷Karmanos Cancer Institute, Detroit, MI; ⁸Dana-Farber Cancer Institute, Boston, MA; ⁹Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain; ¹⁰The University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD; ¹¹University of Pennsylvania, Philadelphia, PA; ¹²Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy; ¹³Michigan Medicine Hematology Clinic, University of Michigan Rogel Cancer Center, Ann Arbor, MI; ¹⁴Division of Multiple Myeloma, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ; ¹⁵Hematology Unit, AUSL-IRCSS, Reggio Emilia, Italy; ¹⁶Hospital Vall d'Hebron, Barcelona, Spain; ¹⁷Erasmus Medical Center, Rotterdam, Netherlands; ¹⁸Bristol Myers Squibb, Princeton, NJ; ¹⁹Celgene International Sàrl, a Bristol-Myers Squibb Company, Boudry, Switzerland; ²⁰Winship Cancer Institute, Emory University, Atlanta, GA


CC-220-MM-001: Study Design and Objectives

Key eligibility criteria (Cohorts E and F)

- RRMM
- ≥2 prior regimens (≥1 in Cohort F) including LEN/POM and PI
- Disease progression on or within 60 days of last antimyeloma therapy

Study endpoints

- Primary: determine MTD/RP2D and efficacy
- Secondary: assess safety

- Cohort C (IBER monotherapy expansion) was planned, but not opened. b1.6 mg qd.
- BCMA, B-cell maturation antigen; CFZ, carfilzomib; MTD, maximum tolerated dose; NDMM, newly diagnosed multiple myeloma; PI, proteasome inhibitor; qd, once daily; RP2D, recommended phase 2 dose; RRMM, relapsed/refractory multiple myeloma.

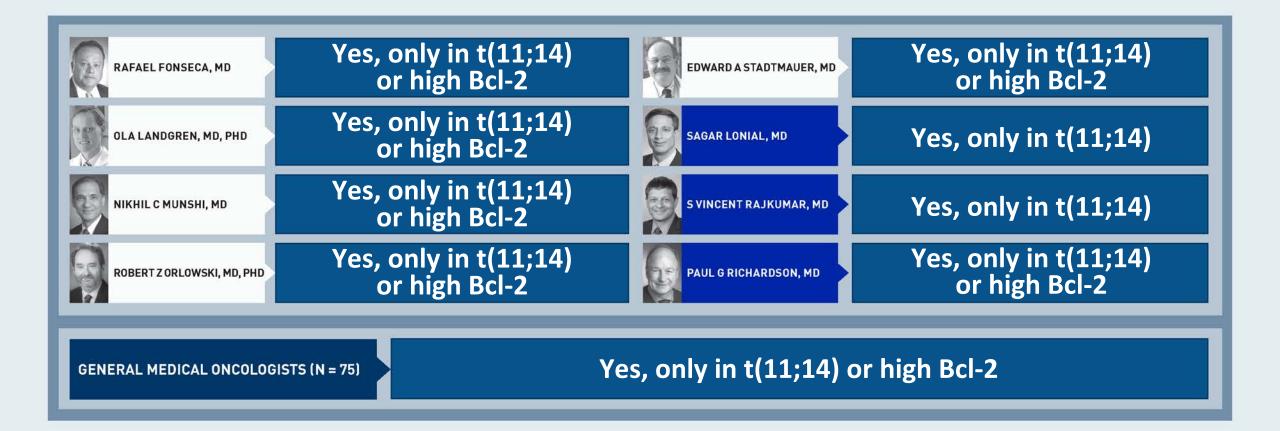
Van De Donk NWCJ et al. ASH 2020; Abstract 724.

Safety and Preliminary Efficacy Results from a Phase II Study Evaluating Combined BRAF and MEK Inhibition in Relapsed/Refractory Multiple Myeloma (RRMM) Patients with Activating BRAF V600E Mutations: the GMMG-BIRMA Trial

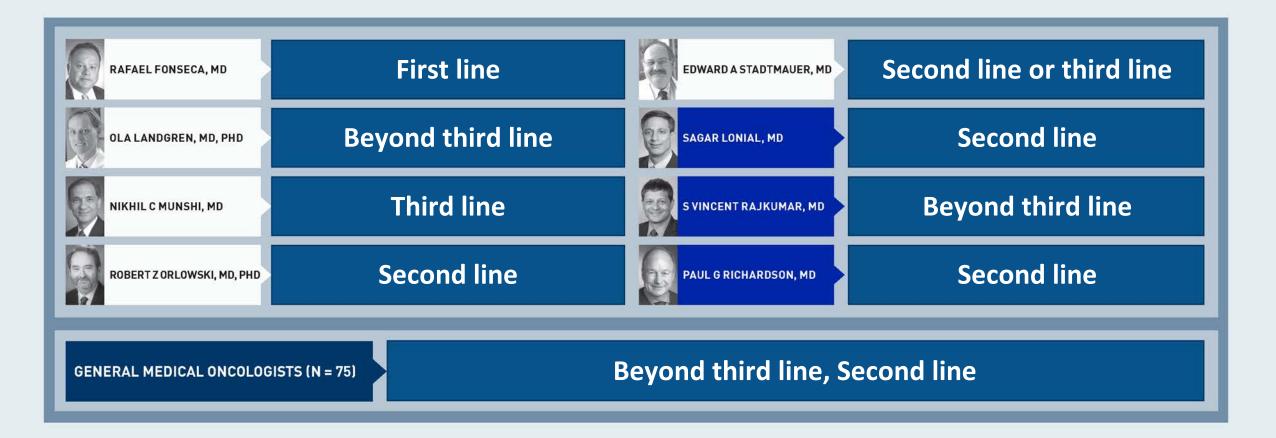
> Marc S. Raab, Nicola Giesen, Christof Scheid, Britta Besemer, Kaya Miah, Axel Benner, Ivana v. Metzler, Cyrus Khandanpour, Andrea Seidel-Glaetzer, Karolin Trautmann-Grill, Gunhild Mechtersheimer, Benjamin Goeppert, Albrecht Stenzinger, Hartmut Goldschmidt, Katja Weisel and Manik Chatterjee

GMMG-BIRMA: Summary

- Combined BRAF/MEK inhibition by encorafenib and binimetinib induces rapid and deep responses in BRAF V600E-mutant relapsed/refractory MM
- Overall Response Rate of >80% in heavily pre-treated MM patients
- Managable safety profile, in line with melanoma experience
- Survival data not mature, but durable responses exceeding 1 year observed
- Emerging RAS mutations and structural variants involving BRAF drive relapse under BRAF/MEK inhibition
- Pre-existing RAS mutations may predict poor response


Raab MS et al. ASH 2020;Abstract 294.

Are there situations in which you would attempt to use venetoclax outside a trial setting for relapsed/refractory MM?


- 1. Yes
- 2. Yes, but only for patients with t(11;14) or high Bcl-2 expression
- 3. No

Are there situations in which you would attempt to use venetoclax outside a trial setting for relapsed/refractory MM?

Reimbursement and regulatory issues aside, at what point, if any, would you attempt to access venetoclax for a patient with MM and t(11;14)?

Cases from the Community: Investigators Discuss Emerging Research and Actual Patients with Colorectal Cancer (Part 3 of a 3-Part Series)

> Thursday, February 11, 2021 5:00 PM – 6:00 PM ET

> Faculty Kristen K Ciombor, MD, MSCI Eric Van Cutsem, MD, PhD

> > Moderator Neil Love, MD

Current Concepts and Recent Advances in Oncology Real World Oncology Rounds A Daylong Clinical Summit Hosted in Partnership with North Carolina Oncology Association (NCOA) and South Carolina Oncology Society (SCOS)

> Saturday, February 13, 2021 8:30 AM – 4:30 PM ET

FACULTY

Courtney D DiNardo, MD, MSCE Robert Dreicer, MD, MS Justin F Gainor, MD Sara Hurvitz, MD Ian E Krop, MD, PhD John M Pagel, MD, PhD Alexander Perl, MD

Daniel P Petrylak, MD Philip A Philip, MD, PhD, FRCP Paul G Richardson, MD Mitchell R Smith, MD, PhD Eric Van Cutsem, MD, PhD Peter Voorhees, MD Heather Wakelee, MD

MODERATOR Neil Love, MD

Saturday, February 13, 2021

8:30 AM — Chronic Lymphocytic Leukemia and Lymphomas John Pagel, Mitchell Smith

9:30 AM — Multiple Myeloma Paul Richardson, Peter Voorhees

10:45 AM — Genitourinary Cancers Robert Dreicer, Daniel Petrylak

11:45 AM — Lung Cancer Justin Gainor, Heather Wakelee

Saturday, February 13, 2021

 1:15 PM — Gastrointestinal Cancers Philip Philip, Eric Van Cutsem
2:15 PM — Breast Cancer Sara Hurvitz, Ian Krop

3:30 PM — Acute Myeloid Leukemia and Myelodysplastic Syndromes Courtney DiNardo, Alexander Perl

Thank you for joining us!

CME credit information will be emailed to each participant within 3 business days.

