Front-Line Treatment for Patients with Chronic Lymphocytic Leukemia (CLL)

Anthony R Mato, MD, MSCE

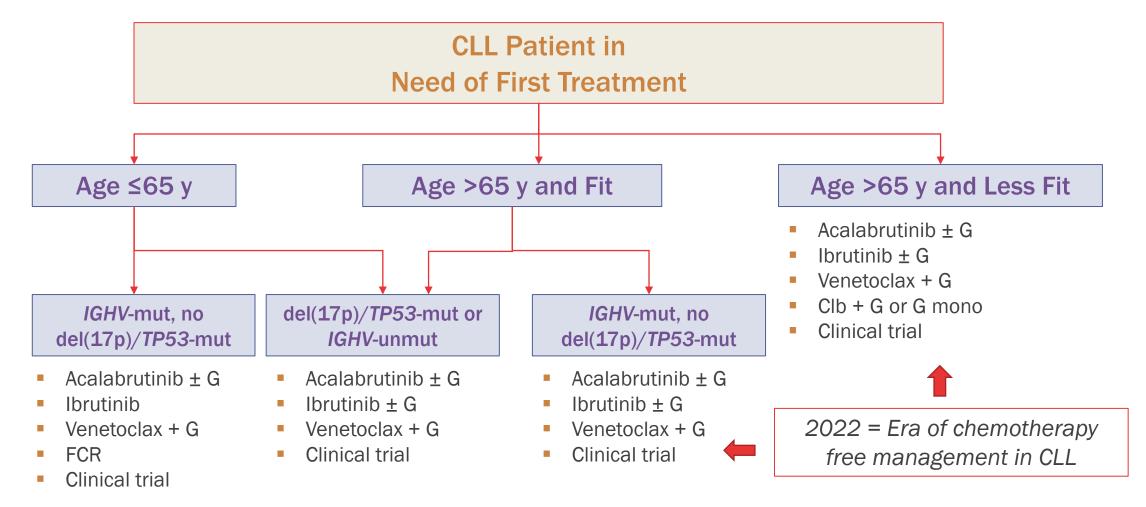
Key Factors in Managing Patients With CLL/SLL

Timing of Therapy

- Deciding when to start therapy
 - Many patients discovered incidentally; how to handle the "worried well"
 - Comorbidities and "fitness";
 where the patient is in their "life cycle"
- Deciding when to stop therapy

Key Prognostic Factors

- The importance of FISH;
 TP53; and mutational status of immunoglobulin genes
- How to test for MRD


 (ie, flow cytometry or molecular methods) and how to use it to guide clinical decision-making

Key Classes of Drugs

- BTK inhibitors (eg, ibrutinib, acalabrutinib, zanubrutinib)
- BCL-2 inhibitors (eg, venetoclax)
- Anti-CD20 antibodies (eg, rituximab, obinutuzumab)
- Chemotherapy/ chemoimmunotherapy (eg, chlorambucil, FCR, BR)

Common Approaches to Treatment of TN CLL in 2021

BR, bendamustine, rituximab; Clb, chlorambucil; CLL, chronic lymphocytic leukemia; G, obinutuzumab; FCR, fludarabine, cyclophosphamide, rituximab; IGHV, immunoglobulin heavy-chain variable region; mut, mutated; TN, treatment naive; unmut, unmutated.

Adapted from Woyach JA, et al. Hematology Am Soc Hematol Educ Program. 2019;2019(1):476-481.

High-Risk Cytogenetics and Mutational Status

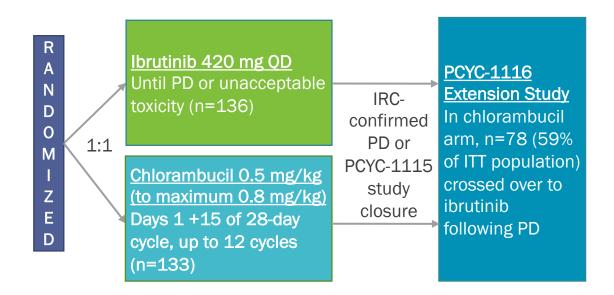
Incidence of High-Risk Features in Previously Untreated Patients¹⁻⁴

High-Risk Feature	Incidence in CLL
17p deletion	~10%
TP53 mutation	~10%
11q deletion	~20%
Unmutated IGHV	~60%
Complex karyotype (≥3 abnormalities)	~20%

Real-World Prognostic Testing Patterns in TN CLL⁵

	Frontline CLL Patients (n=889)
Genetic testing performed	65%
FISH testing	58%
Cytogenetic testing	39%
FISH and cytogenetic testing	32%
IGHV testing performed	8%

MAJOR EDUCATIONAL OPPORTUNITY TO GUIDE TREATMENT DECISION MAKING!

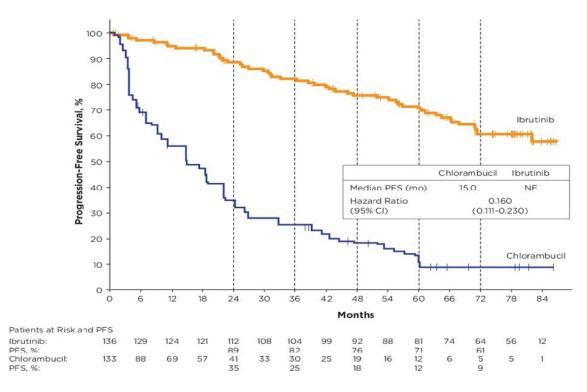

Ibrutinib in treatment naïve CLL

How does long-term follow-up data from RESONATE 2 inform clinical decision making?

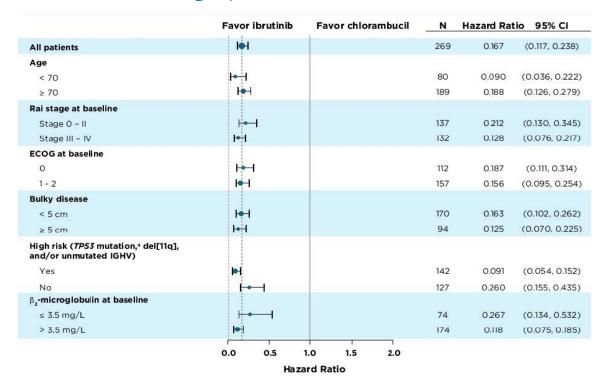
7 Years of Follow-Up in the RESONATE-2 Study of Ibrutinib for Patients With TN CLL: Study Design and Patients

Key eligibility criteria

- TN CLL/SLL requiring treatment
- Age ≥65 years
- No del(17p)


Objective: Describe the long-term efficacy and safety from RESONATE-2

Patient Charac	(N=269)	
Median age, ye	ears	73
Bulky disease		35
Anemia (Hb <1	L1g/dL)	39
Elevated β2M (>3.5 mg/L)		65
ITT Population, % (n/N)	One or more high-risk features (TP53 mutation, del[11q], and/or unmutated IGHV)	53 (142/269)
Evaluable	Del(11q)	22 (54/251)
Population, % (n/N)	Unmutated IGHV	58 (118/204)


^aPatients could enroll in separate extensions study PCYC-1116 after IRC-confirmed PD or at study PCYC-1115 closure for continuing treatment and follow-up Barr PB, et al. ASCO 2020, Abstract 7523.

Up to 7 Years of Follow-Up in the RESONATE-2 Study of Ibrutinib for Patients With TN CLL: Efficacy

PFS: Ibrutinib vs Chlorambucil

PFS in Patient Subgroups of Interest

Efficacy

- Ibrutinib-treated patients had an 84% reduction in risk of progression or death
- Ibrutinib led to a 97% reduction in risk of PD or death in patients with del(11q) and 80% for those without del(11q) vs chlorambucil
- Ibrutinib led to an 89% and 80% reduction in risk of PD or death in patients with unmutated and mutated IGHV, respectively, vs chlorambucil

Up to 7 Years of Follow-Up in the RESONATE-2 Study of Ibrutinib for Patients With TN CLL: Treatment and Summary

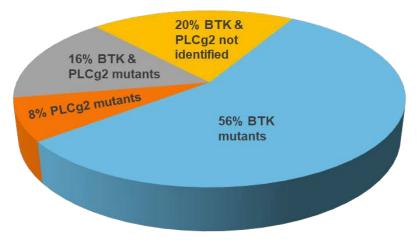
Ibrutinib Treatment Disposition	First-Line Ibrutinib (N=136°)
Median duration of ibrutinib treatment, years ^a (range)	6.2 (0.06-7.2)
Continuing ibrutinib on study, n (%)	64 (47)
Discontinued ibrutinib, n (%)	53%
AE	31 (23)
PD	16 (12)
Death	11 (8)
Withdrawal by patient	9 (7)
Investigator decision	4 (3)

Summary

- Single-agent ibrutinib displayed sustained PFS and OS benefit vs chlorambucil over 7 years of follow up
- Ibrutinib treatment arm did not reach median PFS and OS, though 6.5-year estimates were 61% and 78%, respectively
- PFS benefit for ibrutinib vs chlorambucil was similar for patients with high-risk and lower-risk genomic features, and CR/CRi rates increased over time with ibrutinib
- No new safety signals developed with long-term follow-up
- Nearly half of patients maintained ibrutinib use at up to 7 years of follow-up

Room for improvement?

Overall 53% discontinuation rate


50% of all discontinuations are due to AE

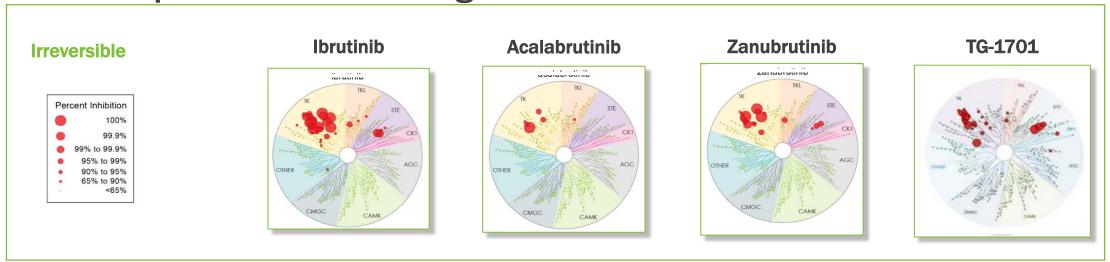
Limitation to Ibrutinib: Resistance and Intolerance

Ibrutinib discontinuation from 4 sequential studies¹

Onmulative Incidence of CILL progression Other events 25% Disease progression 19%

Ibrutinib acquired resistance in patients with progressive CLL²

Do next
generation cBTKi
address the
issues of
resistance and
intolerance?


• Front line: Ibrutinib discontinuation rate at 5 years = 41%¹

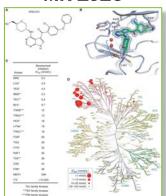
Time (years)

- Relapsed/refractory: Predicted ibrutinib discontinuation rate at 5 years = 53.7% (4 sequential studies)
- The appearance of BTK C481 mutations is the dominant reason for progressive CLL after covalent BTK inhibitors 1-8
- BTK C481 mutations prevent covalent BTK inhibitors from effective target inhibition¹⁻⁶

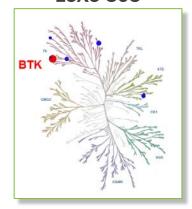
Alternative BTKis in treatment naïve CLL

Several BTKi options to consider with differences in BTKi specificity, MOA and potential for off target effects

Reversible

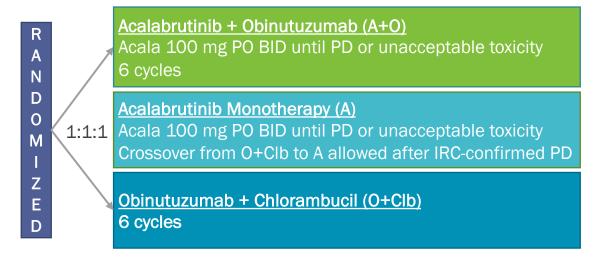

Vecabrutinib

Thr474
(gatekeeper) ibrutinib


Activation loop vecabrutinib

Cys481

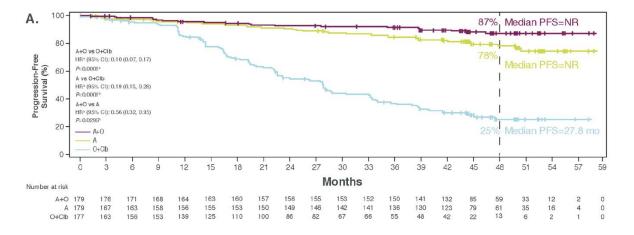
MK-1026


LOXO-305

4-Year Follow Up of ELEVATE-TN, Acalabrutinib ± Obinutuzumab vs Obinutuzumab + Chlorambucil in TN CLL: Study Design

Key Eligibility Criteria

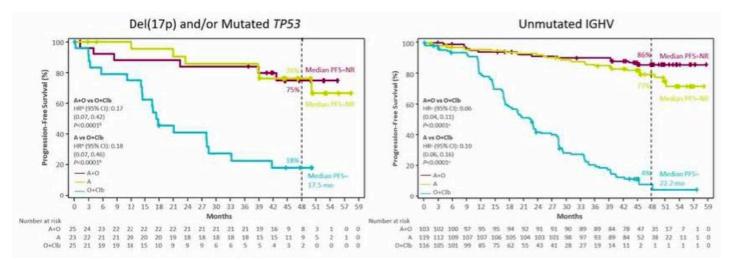
- Age ≥65 years or >18 to <65 years with comorbidities (defined as CrCl 30-69 mL/min and CIRS-G >6)
- Untreated CLL requiring treatment per iwCLL 2008 criteria
- ECOG PS ≤2
- No significant cardiovascular disease



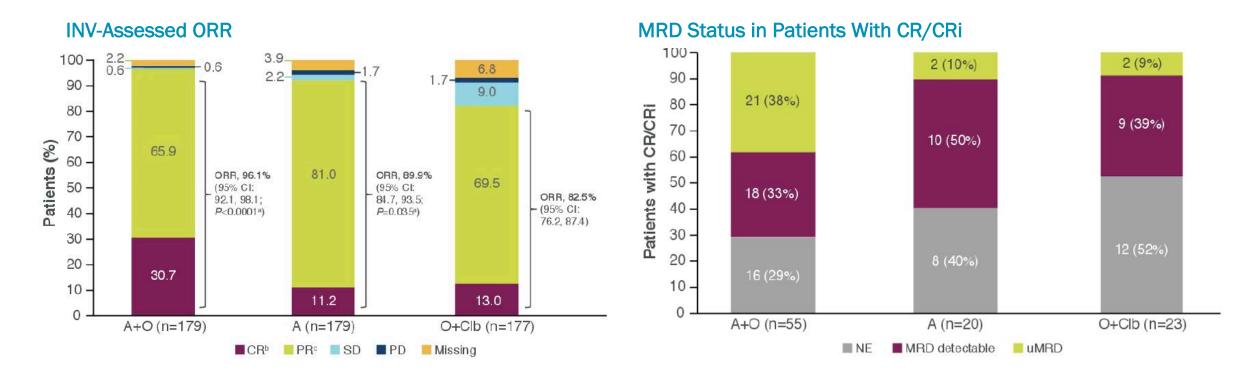
Primary endpoint: IRC-assessed PFS (A+O vs O+Clb)
Secondary endpoints: IRC-assessed PFS (A vs O+Clb), INV-assessed PFS, ORR, TTNT, OS, uMRD, safety

Patient Characteristics		A+0 (n=179)	A (n=179)	0+Clb (n=177)
Median age (r	ange), years	70 (41-88)	70 (44-87)	71 (46-91)
ECOG PS,	0-1	169 (94.4)	165 (92.2)	167 (94.4)
n (%)	2	10 (5.6)	14 (7.8)	10 (5.6)
Bulky disease	≥5 cm, n (%)	46 (25.7)	68 (38.0)	54 (30.5)
Rai stage,	III	47 (26.3)	51 (28.5)	40 (22.6)
n (%)	IV	38 (21.2)	37 (20.7)	38 (21.5)
	del(17p)	17 (9.5)	16 (8.9)	16 (9.0)
Cytogenetics,	del(17p) and/or mut <i>TP</i> 53	25 (14.0)	23 (12.8)	25 (14.1)
n (%)	del(11q)	31 (17.3)	31 (17.3)	33 (18.6)
	Complex karyotype	15 (8.4)	13 (7.3)	25 (14.1)
Mutated TP53, n (%)		21 (11.7)	19 (10.6)	21 (11.9)
Unmutated IGHV, n (%)		103 (57.5)	119 (66.5)	116 (65.5)
Treatment ongoing, n (%)		134 (74.9)	124 (69.3)	0

4-Year Follow Up of ELEVATE-TN, Acalabrutinib ± Obinutuzumab vs Obinutuzumab + Chlorambucil in TN CLL: PFS and OS


INV-Assessed PFS Overall

A beautiful study design!


Assessment of the relative contribution of obinutuzumab to acalabrutinib.

INV-Assessed PFS in Patients With del(17p) and/or Mutated TP53 or Unmutated IGHV

AO combination: IGHV mutated and TP53 intact benefit most

4-Year Follow Up of ELEVATE-TN, Acalabrutinib ± Obinutuzumab vs Obinutuzumab + Chlorambucil in TN CLL: Response

AO results in deeper remissions (CR / uMRD): Does this open the window for BTK+CD20 as a time limited therapy?

4-Year Follow Up of ELEVATE-TN, Acalabrutinib ± Obinutuzumab vs Obinutuzumab + Chlorambucil in TN CLL: Safety and Summary

AFa of Clinical Interest in (94)	A+O (n	=178)	A (n=	179)	O+Clb (n=169)
AEs of Clinical Interest, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Cardiac events	37 (20.8)	14 (7.9)	34 (19.0)	15 (8.4)	13 (7.7)	3 (1.8)
Atrial fibrillation	7 (3.9)	1 (0.6)	11 (6.1)	2 (1.1)	1 (0.6)	0
Bleeding	84 (47.2)	5 (2.8)	75 (41.9)	5 (2.8)	20 (11.8)	0
Major bleeding	7 (3.9)	5 (2.8)	7 (3.9)	5 (2.8)	2 (1.2)	0
Hypertension	14 (7.9)	6 (3.4)	13 (7.3)	5 (2.8)	7 (4.1)	6 (3.6)
Infections	134 (75.3)	42 (23.6)	132 (73.7)	29 (16.2)	75 (44.4)	14 (8.3)
SPMs	28 (15.7)	13 (7.3)	24 (13.4)	5 (2.8)	7 (4.1)	3 (1.8)
Excluding non-melanoma skin	15 (8.4)	10 (5.6)	11 (6.1)	4 (2.2)	3 (1.8)	2 (1.2)

Safety

- Most AEs in the A-containing arms occurred primarily during the 1st year of treatment
- AEs that occurred more frequently in A+O and A vs O+Clb included headache, diarrhea, fatigue, arthralgia, cough, and URTI
- AEs that occurred more frequently with O+Clb included neutropenia, nausea, and IRR

Authors' Conclusions

 Acalabrutinib ± obinutuzumab demonstrated durable disease control, tolerability, and flexibility to tailor treatment as a monotherapy or in combination

Results From Arm C of the Phase 3 SEQUOIA Trial of Zanubrutinib for Patients With TN del(17p) CLL/SLL: Study Design and Patients

Key eligibility criteria

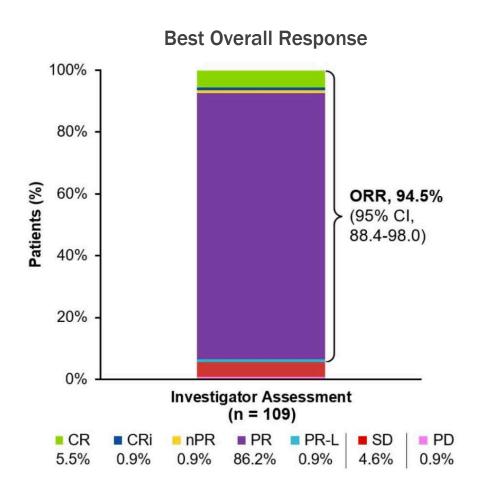
- Age ≥65 years or unsuitable for treatment with FCR
- Verification of del(17p) by FISH with >7% aberrant nuclei^a
- TN with treatment required per iwCLL criteria
- Anticoagulants and CYP3A inhibitors allowed

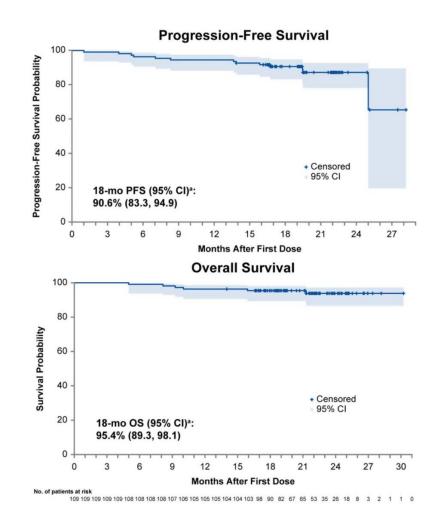
Cohort 2 with del(17p) (n~100)

Arm C (n=109)

 Nonrandomized; zanubrutinib 160 mg BID until PD, intolerable toxicity, or end of study

Primary endpoint: PFS (IRC) **Secondary endpoints:** ORR (IRC and INV), DOR, safety


Patient Characteristics			(N=109)
Median age (range)	, years		70.0 (42-86)
ECOG PS 2, n (%)			14 (12.8)
Median time since of	diagnosis (Q1-Q3),	months	21.62 (7.69-54.77)
SLL, n (%)			10 (9.2)
Binet stage C for CL	L, n/N (%)		40/99 (40.4)
del(13q), n (%)		72 (66.1)	
del(11q), n (%)			37 (33.9)
IGHV unmutated, n/N (%)			69/104 (66.3)
Bulky disease,	Any target lesion LDi ≥5 cm		42 (38.5)
n (%)	Any target lesion LDi ≥10 cm		11 (10.1)
	Non-complex (0-2 abnormalities)		54/86 (62.8)
Karyotype,b n (%)	Karyotype, ^b n (%) Complex (abnormalities)	3 or more	32/86 (37.2)
		5 or more	23/86 (26.7)


BID, twice daily; CLL, chronic lymphocytic leukemia; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; FCR, fludarabine, cyclophosphamide, rituximab; FISH, fluorescence in situ hybridization; IGHV, immunoglobulin heavy-chain variable region; INV, investigator; IRC, independent review committee; LDi, longest travers diameter of a lesion; ORR, overall response rate; PD, progressive disease; PFS, progression-free survival; SLL, small lymphocytic leukemia; TN, treatment naive.

^aTP53 mutational status was not centrally assessed prior to enrollment. ^b23 patients had insufficient metaphases available for analysis.

Brown JR, et al. ASH 2020, Abstract 1306

Results From Arm C of the Phase 3 SEQUOIA Trial of Zanubrutinib for Patients With TN del(17p) CLL/SLL: Efficacy

Largest front line dataset for BTKi in del17p CLL

Will this be BTKi of choice for high-risk patients?

How do these data compare to Ven-G in high-risk disease?

CR, complete response; CRi, complete response with incomplete blood count recovery; nPR, nodular partial response; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; PR-L, partial response with lymphocytosis; SD, stable disease.

aData cutoff for 2019 ASH presentation: August 7, 2019.

Brown JR, et al. ASH 2020. Abstract 1306.

Positive Topline Results Announced from the Phase III SEQUOIA Trial: Zanubrutinib versus BR for Treatment-Naïve CLL Press Release: July 29, 2021

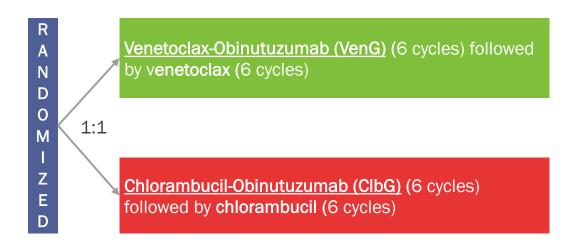
"The SEQUOIA trial met the primary endpoint at interim analysis, with zanubrutinib significantly prolonging progression-free survival compared to chemoimmunotherapy, and safety and tolerability consistent with its known profile. SEQUOIA is the second positive global Phase 3 trial of zanubrutinib in chronic lymphocytic leukemia, following ALPINE in the relapsed or refractory setting.

With a median follow-up of 25.8 months, the SEQUOIA trial met the primary endpoint of progression-free survival (PFS) as assessed by independent review committee (IRC), as zanubrutinib achieved a highly statistically significant improvement in PFS compared to B + R.

In addition, the trial demonstrated a statistically significant improvement in PFS per investigator assessment, a secondary endpoint. Zanubrutinib was also generally well-tolerated, consistent with its known safety profile."

Summary: Alternate covalent BTK inhibitors

- Intolerance: Front line setting: Cross trial comparisons suggest next generation cBTKi MAY lead to lower discontinuation rates due to AEs BUT no data to suggest < AEs lead to better PFS. No head to head data available for front line setting.
- Resistance: Limited data from more selective cBTKi suggest similar mechanisms of resistance

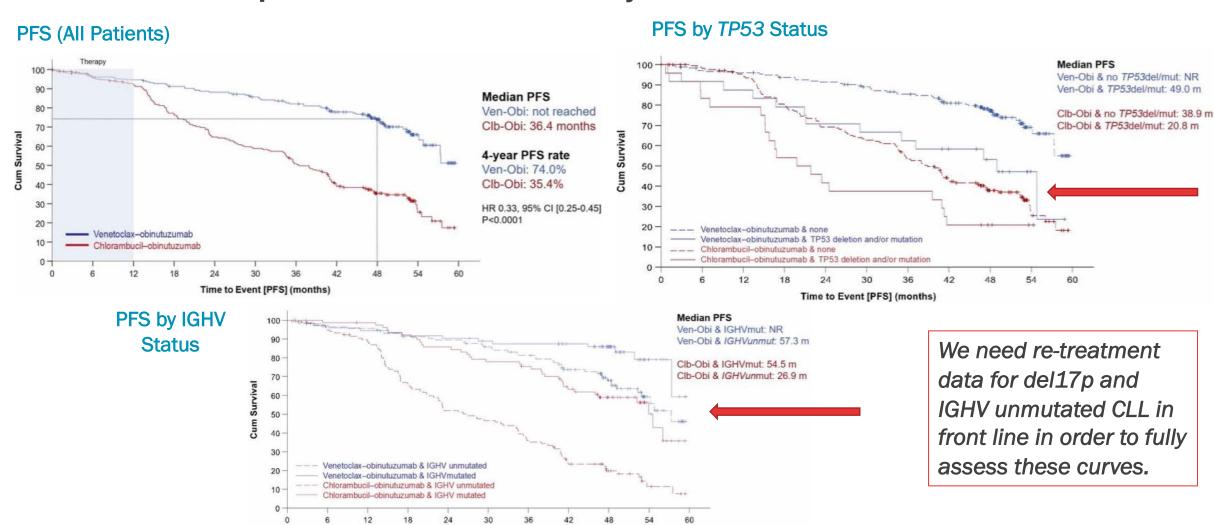

Venetoclax in treatment naïve CLL

Who should and should not be receiving venetoclax based time limited therapy?

4-Year Follow-Up From the CLL14 Study: Study Design and Patients

Key Eligibility Criteria

- Patients with TN CLL and coexisting medical conditions
- CIRS >6 and/or CrCl <70 ml/min

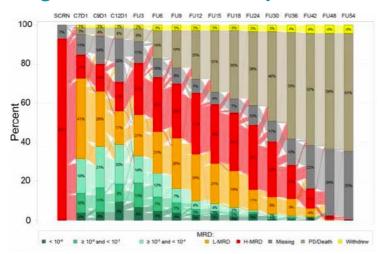


Patient Characte	eristics	VenG (n=216)	ClbG (n=216)
Median age, yea	ars	72	71
	А	21	20
Binet stage, %	В	35	37
	С	44	43
Median total CIF	RS score	9	8
Median estimat	ed CrCl, ml/min	65.2	67.4
TI 0 : 1	Low	14	12
TLS risk category, %	Intermediate	64	68
	High	22	20

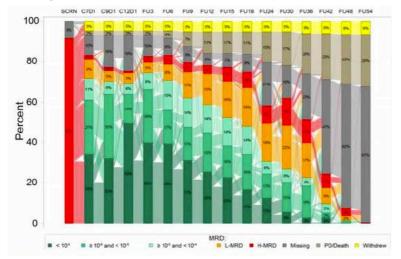
Primary endpoint: PFS

Secondary endpoints: Response, MRD, OS

4-Year Follow-Up From the CLL14 Study: PFS

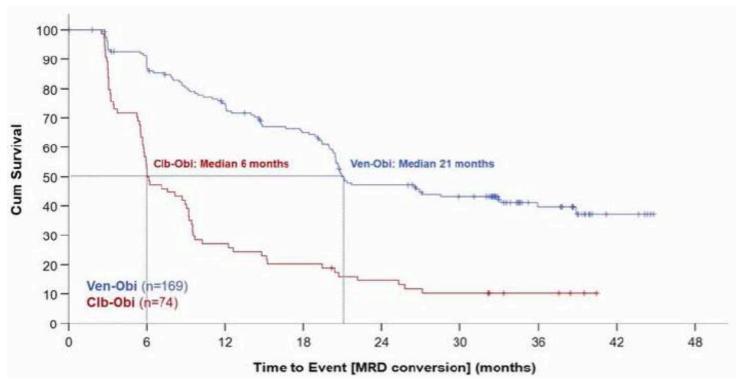


Time to Event [PFS] (months)


Median observation time: 52.4 months. Al-Sawaf O, et al. EHA 2021. Abstract S146.

4-Year Follow-Up From the CLL14 Study: MRD

Longitudinal MRD Assessment by NGS in PB: ClbG



Longitudinal MRD Assessment by NGS in PB: VenG

Median observation time: 52.4 months. Al-Sawaf O, et al. EHA 2021. Abstract S146.

Time to MRD Conversion from 10-4 by NGS at EoT

For Ven-based approaches: Fixed duration or MRD driven approach? Based on CLL14 and Captivate: Which approach does the data support?

BTKi Combinations for Patients With Treatment-Naïve CLL

Various Combinations With BTKi Are Being Explored for TN CLL

Doublet Regimens	Triplet Regimens
Ibrutinib + venetoclax (I+VEN)¹ ■ Phase 3 study of ibrutinib + venetoclax vs G-Clb in TN CLL without del(17p) or TP53 mutation - Primary endpoint: PFS - Key secondary endpoints: MRD rates, ORR, CR rate, DOR, OS	 Ibrutinib + venetoclax + obinutuzumab (IVO)² ■ Phase 3 study of ibrutinib and venetoclax ± obinutuzumab in TN CLL <70 years of age, without del(17p) − Primary endpoint: PFS − Secondary endpoints: OS, safety − Exploratory endpoints: QOL, MRD, and adherence

Acalabrutinib + venetoclax (AV) and acalabrutinib + venetoclax + obinutuzumab (AVO)³

- Phase 3 study of AV or AVO vs FCR/BR in TN CLL without del(17p) or TP53 mutation
 - Primary endpoint: PFS (IRC-assessed) of AV vs FCR/BR
 - Secondary endpoints: PFS (IRC-assessed) of AVO vs FCR/BR, PFS (INV-assessed) of AV vs FCR/BR

Zanubrutinib + venetoclax⁴

- Phase 3 study of zanubrutinib + venetoclax (Arm D) vs
 zanubrutinib (Arm C) in TN CLL with del(17p) or TP53 mutation
 - Key secondary endpoints for Arm D: ORR, PFS, DOR, MRD rates

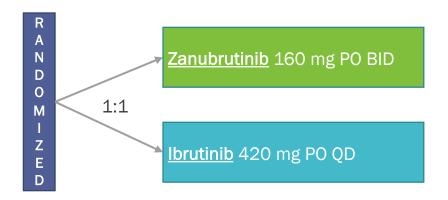
Zanubrutinib + venetoclax + obinutuzumab (BOVen)⁵

- Phase 2 study of zanubrutinib, venetoclax, and obinutuzumab in TN CLL
 - Primary endpoint: MRD rates

- BR, bendamustine, rituximab; BTKi, Bruton tyrosine kinase inhibitor; CLL, chronic lymphocytic leukemia; CR, complete response; DOR, duration of response; FCR, fludarabine, cyclophosphamide, rituximab; INV, investigator; IRC, independent review committee; MRD, minimal residual disease; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; OOL, quality of life; TN, treatment naive.
- 1. https://clinicaltrials.gov/ct2/show/NCT03462719. 2. https://clinicaltrials.gov/ct2/show/NCT03701282.
 - 3. https://clinicaltrials.gov/ct2/show/NCT03836261. 4. https://clinicaltrials.gov/ct2/show/NCT03336333.
 - 5. https://clinicaltrials.gov/ct2/show/NCT03824483.

How to judge success of novel agent combination therapy in CLL

- Does combination tx allow for a time limited approach? By inducing deep uMRD?
- Has the combination demonstrated superiority over a clinically relevant control?
- Has the combination been tested against sequential monotherapies that comprise the combination?
- Is the combination well tolerated?
- Do we have data on mechanisms of resistance to the combination?
- Do we have data on sequencing next therapies following the combination?
 Including retreatment?
- Does the combination prolong overall survival?

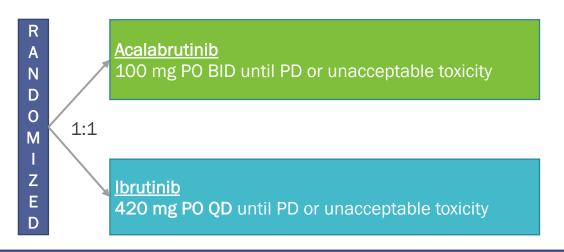

BTKi: Head-to-head comparisons

Can lessons learned be applied to the front-line setting?

ALPINE and **ELEVATE** R/R: Head to Head comparisons

Key Eligibility Criteria

- R/R to ≥1 prior systemic therapy for CLL/SLL
- Measurable lymphadenopathy by CT or MRI
- No current or past RT, prior BTKi therapy, or warfarin/other VKA

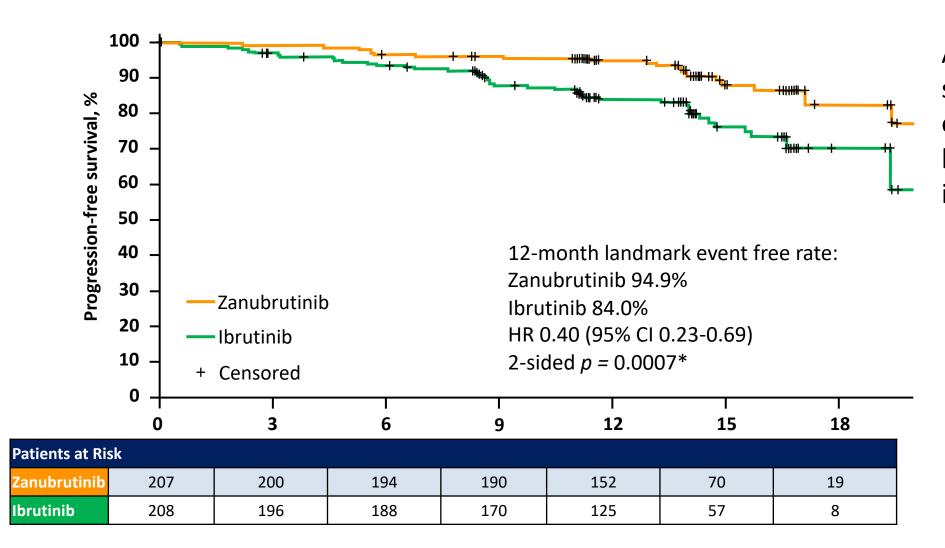


Primary endpoint: ORR (CR+PR) noninferiority and INV-assessed superiority

Secondary endpoints: Any-grade atrial fibrillation, DoR, PFS, OS, time to treatment failure, PR-L or higher, PROs, safety

Key Eligibility Criteria

- Previously treated CLL requiring treatment per iwCLL 2008 criteria
- Presence of del(17p) or del(11q)
- ECOG PS ≤2
- No significant CV disease, no concomitant treatment with warfarin or equivalent vitamin K antagonist, and no prior treatment with ibrutinib, a BCRi, or a BCL-2i

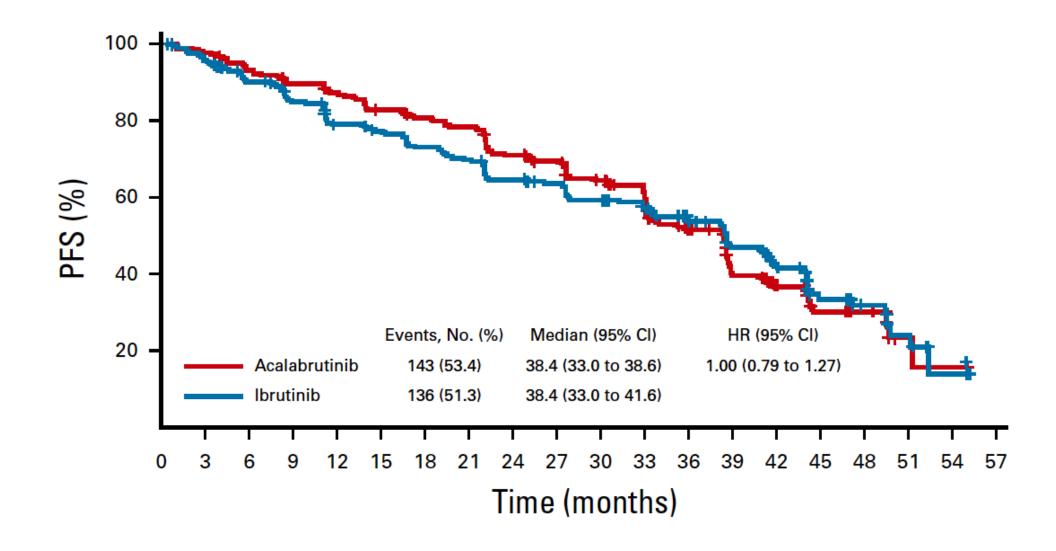

Primary endpoint: Noninferiority on IRC-assessed PFS Secondary endpoints: Incidence of any atrial fibrillation/flutter, incidence of grade ≥3 infection, incidence of RT, OS

ALPINE: Primary Endpoint — ORR by Investigator Assessment

	Zanubrutinib (n = 207), n (%)	Ibrutinib (n = 208), n (%)		
Primary endpoint: ORR (PR + CR)	162 (78.3) 95% CI: 72.0, 83.7	130 (62.5) 95% CI: 55.5, 69.1		
OKK (PK + CK)	Superiority 2-sided $p = 0.0006$ compared with prespecified alpha of 0.0099			
CR/CRi	4 (1.9)	3 (1.4)		
nPR	1 (0.5)	0		
PR	157 (75.8)	127 (61.1)		
ORR (PR-L + PR + CR)	183 (88.4)	169 (81.3)		
PR-L	21 (10.1)	39 (18.8)		
SD	17 (8.2)	28 (13.5)		
PD	1 (0.5)	2 (1.0)		
Discontinued or new therapy prior to first assessment	6 (2.9)	9 (4.3)		
	Del(17p) (n = 24), n (%)	Del(17p) (n = 26), n (%)		
ORR (PC + CR)	20 (83.3)	14 (53.8)		

Hillmen P et al. EHA 2021; Abstract LB1900.

ALPINE: PFS by Investigator Assessment



Although not a prespecified analysis, the overall 12-month PFS was higher with zanubrutinib vs ibrutinib (94.9% vs 84.0%)

Hillmen P et al. EHA 2021; Abstract LB1900.

^{*}Not a prespecified analysis; formal analysis of PFS will be based on all patients when the target number of events is reached.

ELEVATE-RR: Primary Endpoint — Noninferiority Met on IRC-Assessed PFS

Welcome to ASH 2021...

How will this meeting inform decision making in the frontline setting?

- Ibrutinib Plus Rituximab Is Superior to FCR in Previously Untreated CLL: Results of the Phase
 III NCRI FLAIR Trial Presenter: Peter Hillmen
- First-Line Treatment with Ibrutinib (Ibr) Plus Venetoclax (Ven) for Chronic Lymphocytic Leukemia (CLL): 2-Year Post-Randomization Disease-Free Survival (DFS) Results from the Minimal Residual Disease (MRD) Cohort of the Phase 2 Captivate Study Presenter: Paolo Ghia
- A Randomized Phase III Study of Venetoclax-Based Time-Limited Combination Treatments
 (RVe, GVe, GIVe) Vs Standard Chemoimmunotherapy (CIT: FCR/BR) in Frontline Chronic
 Lymphocytic Leukemia (CLL) of Fit Patients: First Co-Primary Endpoint Analysis of the
 International Intergroup GAIA (CLL13) Trial Presenter: Barbara Eichhorst
- Zanubrutinib in Combination with Venetoclax for Patients with Treatment-Naïve (TN) Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL) with del(17p): Early Results from Arm D of the SEQUOIA (BGB-3111-304) Trial Presenter: Alessandra Tedeschi
- First Prospective Data on Minimal Residual Disease (MRD) Outcomes after Fixed-Duration Ibrutinib Plus Venetoclax (Ibr+Ven) Versus Chlorambucil Plus Obinutuzumab (Clb+O) for First-Line Treatment of CLL in Elderly or Unfit Patients: The Glow Study Presenter: Tahla Muni