Management of Secondary AML (sAML); New Directions in AML Care

Geoffrey L Uy, MD

Secondary AML

- AML which occurs after antecedent MDS or MPN (sAML): 25-35%
- Complication of cytotoxic chemotherapy and/or radiation administered for unrelated disease (tAML): 10-20% of AML
 - Alkylator/ionizing radiation: 5-10 yr latency, loss of chromosome 5/7, TP53
 - DNA topoisomerase inhibitor related: 1-5 yr latency, rearrangements of 11q23/KMT2A
- Compared to *de novo* AML
 - Higher frequency of adverse-risk karyotype
 - More likely to be older, have poor PS and comorbidity

Patterns of clonal evolution during the progression of MDS to secondary AML

Menssen and Walter. Blood (2020) 136 (1): 50–60.

Clonal evolution during progression from MDS to secondary AML

Menssen and Walter. Blood (2020) 136 (1): 50–60.

Outcome of AML receiving intensive therapy

Granfeldt Østgård et al. JCO 2015; 33:3641-3649.

CPX-351 (Cytarabine:Daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia

CPX-351

- Liposomal formulation of Daunorubicin:cytarabine 1:5 molar ratio
- Maintains drug exposure for 7 days
- Selective uptake by leukemic vs normal cells in bone marrow of leukemia-bearing mice

Key Eligibility

- Ages 60-75 years
- Untreated AML
- High-risk AML
 - Therapy-related AML
 - AML with history of MDS w/ and w/out prior HMA therapy
 - AML with history of CMML
 - *de novo* AML with MDS karyotype

Primary Endpoint: Overall survival

Lancet et al., J Clin Oncol. 2018 Sep 10;36(26):2684-2692.

CPX-351-301 Study

Lancet et al., J Clin Oncol. 2018 Sep 10;36(26):2684-2692. Lancet et al., Lancet Haematol. 2021 Jul;8(7):e481-e491.

Transplant Outcomes in CPX-351-301

Lancet et al., Lancet Haematol. 2021 Jul;8(7):e481-e491.

Adverse Events in CPX-351-301

Hematologic Recovery	CPX-351 (n=58)	7 + 3 (n=34)
ANC ≥ 500/uL, median	35	29
Platelets ≥ 50,000/uL, median	36.5	29
Early Mortality	CPX-351	7 + 3
Mortality at 30 days	5.9%	10.6%
Mortality at 60 days	13.7%	21.2%

Lancet et al., J Clin Oncol. 2018 Sep 10;36(26):2684-2692.

Outcomes in CPX-351-301 by TP53 status

Decitabine + Venetoclax in TP53 AML

Kim et al., Cancer. 2021 Oct 15;127(20):3772-3781.

Azacitidine / Venetoclax in VIALE-A

Subgroup	Azacitidine plus Venetoclax	Azacitidine plus Placebo	Hazard Ratio for (95% CI)	Death
	no. of events/	/total no. (%)		
All patients	161/286 (56.3)	109/145 (75.2)	H=H	0.64 (0.50-0.82
De novo	120/214 (56.1)	80/110 (72.7)	⊢ ∎1	0.67 (0.51-0.90
Secondary	41/72 (56.9)	29/35 (82.9)	⊢ ∎−-1	0.56 (0.35–0.91
AML with myelodysplasia-relation	ted changes			
Yes	56/92 (60.9)	38/49 (77.6)	⊢ ∎→1	0.73 (0.48–1.11
No	105/194 (54.1)	71/96 (74.0)	⊢ ∎1	0.62 (0.46-0.83
Molecular marker				
FLT3	19/29 (65.5)	19/22 (86.4)	⊢	0.66 (0.35-1.26
IDH1	15/23 (65.2)	11/11 (100.0) ⊢		0.28 (0.12-0.65
IDH2	15/40 (37.5)	14/18 (77.8)	⊢	0.34 (0.16-0.71
IDH1 or IDH2	29/61 (47.5)	24/28 (85.7)	⊢ ∎−-1	0.34 (0.20-0.60
TP53	34/38 (89.5)	13/14 (92.9)	⊢_ ∎,	0.76 (0.40-1.4
NPM1	16/27 (59.3)	14/17 (82.4)	⊢	0.73 (0.36–1.5
		0.1	1.0	10.0
				idine plus bo Better

DiNardo et al, N Engl J Med 2020; 383:617-629

Magrolimab: Macrophage Immune Checkpoint Inhibitor Targeting CD47

Control mAb: No Phagocytosis

Anti-CD47 mAb: Phagocytosis

Macrophages Cancer cells

- CD47 is a "do not eat me" signal that is overexpressed in multiple cancers, including acute myeloid leukemia, leading to macrophage immune evasion
- Magrolimab, an IgG4 anti-CD47 monoclonal antibody (mAb), eliminates tumor cells through macrophage phagocytosis
- Magrolimab is being investigated in multiple cancers with >500 patients dose

Sallman et al., ASH 2020

5F9005 Study: Magrolimab in Combination With AZA in AML and MDS

- A magrolimab priming dose (1 mg/kg) and dose ramp-up were utilized to mitigate on-target anemia
- Data from the AML expansion cohort are presented
 - *Dose ramp-up from 1 mg/kg to 30 mg/kg by week 2, then 30 mg/kg maintenance dosing.
 - IPSS-R: Revised International Prognostic Scoring System.

Magrolimab + AZA Induces High Response Rates in AML

Figure 14.2.2.7 Best Relative Change from Baseline in Bone Marrow Blast (Treated Subjects with At Least 1 Response Assessment - TN/U AML cohort)

- Magrolimab + AZA induces a 63% ORR and 42% CR rate in AML, including similar responses in TP53-mutant patients
- Median time to response is 1.95 months (range 0.95 to 5.6 mo), more rapid than AZA monotherapy
- 9.6% of patients proceeded to bone marrow stem cell transplantation
- Magrolimab + AZA efficacy compares favorably to AZA monotherapy (CR rate 18%–20%)^{1,2}
 - Response assessments per 2017 AML ELN criteria. Patients with at least 1 post-treatment response assessment are shown. *Three patients not shown due to missing values; <5% blasts imputed as 2.5%.
 - 1. Fenaux P, et al. J Clin Oncol. 2010;28(4):562-569. 2. Dombret H, et al. Blood. 2015;126(3):291-299.

Preliminary Median Overall Survival Is Encouraging in Both *TP53* Wild-Type and Mutant Patients

- The median OS is 18.9 months in TP53 wild-type patients and 12.9 months in TP53-mutant patients
- This initial median OS data may compare favorably to venetoclax + hypomethylating agent combinations (14.7-17.5 mo in all-comers,^{1,3} 5.2–7.2 mo in patients who are *TP53* mutant^{2,3})
- Additional patients and longer follow-up are needed to further characterize the survival benefit

1. DiNardo CD, et al. N Eng J Med. 2020;383(7):617-629. 2. Kim K, et al. Poster presented at: 62nd ASH Annual Meeting; December 5-8, 2020 (virtual). 3. DiNardo CD, et al. Blood. 2019;133(1):7-17.

NE, not evaluable.

Menin Inhibitors for KMT2A (MLL) rearranged and NPM1^{mut} AML

- KMT2A (MLL)
 - histone methyltransferase that regulates gene expression via chromatin remodeling
 - >120 fusion partners have been described in acute leukemia
 - Associated with infantile leukemia, topoisomerase II inhibitors t-AML
- Menin: scaffold protein that interacts with cell signaling and gene regulators
- Orally available menin inhibitors currently in P1/2 studies
 - KO-539
 - SNDX-5613

Kuhn and Armstrong, Cancer Cell. 2015 Apr 13;27(4):431-3.

KO-539 Shows Encouraging Early Clinical Activity

*Expanded to characterize PK

Data as of 02 November 2020

Wang et al., ASH 2021

ASH Abstracts in AML

Title	Presenter	Time
Abstract 2316. Phase 1b Study of Lower-Dose CPX-351 Plus Venetoclax As First-Line Treatment for Patients with AML Who Are Unfit for Intensive Chemotherapy: Preliminary Safety and Efficacy Result	Geoffrey L. Uy	Sunday, December 12, 2021, 6:00 PM-8:00 PM
Abstract 1268. Preliminary Results By Age Group of Treatment with CPX- 351 Plus Venetoclax in Adults with Newly Diagnosed AML: Subgroup Analysis of the V-FAST Phase 1b Master Trial	Vinod A. Pullarkat	Saturday, December 11, 2021, 5:30 PM-7:30 PM
Abstract 3426 A Phase 3, Randomized, Open-Label Study Evaluating the Safety and Efficacy of Magrolimab in Combination with Azacitidine in Previously Untreated Patients with TP53-Mutant Acute Myeloid Leukemia	Naval Daver	Monday, December 13, 2021, 6:00 PM-8:00 PM
Abstract 699. Safety and Efficacy of Menin Inhibition in Patients (Pts) with MLL-Rearranged and NPM1 Mutant Acute Leukemia: A Phase (Ph) 1, First-in-Human Study of SNDX-5613 (AUGMENT 101)	Eytan M. Stein	Monday, December 13, 2021: 3:15 PM
Abstract 540 A Pilot Study of CPX-351 for Transplant Eligible, Higher Risk Patients with Myelodysplastic Syndrome	Megan A. Jacoby	Sunday, December 12, 2021, 4:30 PM-6:00 PM