New Therapeutic Approaches for Hormone Receptor-Positive Early Breast Cancer

Joyce O'Shaughnessy, MD

Celebrating Women Chair in Breast Cancer

Baylor University Medical Center

Texas Oncology

US Oncology

Mechanisms of Action of CDK4/6 Inhibitors

Reprinted from The Lancet, 395, Spring LM, et al. Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: past, present, and future. 817–27, 2020, with permission from Elsevier.

Is There a Role for CDK4/6 Inhibition for Early-Stage HR+ Disease?

 PENELOPE-B palbociclib
After neoadjuvant, high risk
MonarchE
abemaciclib
High-risk anatomic factors, Ki67
PALLAS
palbociclib
Stage II, III

NATALEE
ribociclib
Stage II, III

WSG PlanB Trial in Luminal B Early Breast Cancer Tumor Biology and Ki-67 Impact Survival

PENELOPE-B: IDFS by Intrinsic Molecular Subtyping: LumB with high Ki-67

Gene expression data (906 of 1,250 [72%] patients)

- 663 LumA
- 64 LumB
- 135 NormL
- 16 BasalL and 28 HER2E

Prognostic Factors for Premenopausal ER+ Pts: SOFT and TEXT Trials: High Ki-67

Time Since Random Assignment (years)

Pagani O, et al. J Clin Oncol. 2020;38:1293-1303.

monarchE Study Design (NCT03155997)

^aRecruitment from July 2017 to August 2019; ^bEndocrine therapy of physician's choice [e.g. aromatase inhibitors, tamoxifen, LHRH agonist]; ^cKi-67 expression centrally assessed in all patients from both cohorts with suitable untreated breast tissue using Ki-67 immunohistochemistry Assay by Dako/Agilent

Abbreviations: ALN = positive axillary lymph nodes; CPF = clinicopathological features; HER2 = human epidermal receptor 2; HR = hormone receptor; ITT = intent-to-treat population; N = number of patients in the ITT population; R = randomized; SOC = standard of care

Baseline Charact	teristics of ITT	Abemaciclib + ET N=2808, %	ET Alone N=2829, %
Age	Median (range)	51 (23-89)	51 (22-86)
Age categories	<65 years	84.4	85.4
Gender	Female	99.3	99.5
Menopausal Status ¹	Premenopausal	43.5	43.5
	Postmenopausal	56.5	56.5
Prior Chemotherapy ¹	Neoadjuvant	37.0	37.0
	Adjuvant	58.5	58.2
	None	4.5	4.7
Baseline ECOG PS	0	85.7	83.8
Pathologic Tumor Siz	ze <2 cm	27.8	27.1
	2 - 5 cm	48.9	50.2
	≥5 cm	21.6	21.6
Number of Positive	1-3	39.8	40.4
Lymph Nodes	≥4	59.9	59.6
Histological Grade	Grade 1	7.4	7.6
	Grade 2	49.0	49.3
	Grade 3	38.7	37.6
Central Ki-67	<20%	33.9	34.4
	≥20%	44.9	43.6
	Unavailable	21.1	21.8

EARLY BREAST CANC

Note: data generated at Primary Outcome analysis (July 2020); where values do not add up to 100%, remaining data are missing, unavailable, or could not be assessed ¹Per Interactive Web Response System (IWRS)

Abbreviations: ECOG PS = Eastern Cooperative Oncology Group Performance Status; ET = Endocrine Therapy

IDFS Benefit Maintained with Additional Follow-up in ITT population

30.4% reduction in the risk of developing an IDFS event.

The absolute difference in IDFS rates between arms was 5.4% at 3 years.

Consistent IDFS Treatment Benefit Observed in Prespecified Subgroups

/	Abema	ciclib + ET	ET	Alone	Favors Abemaciclib + ET	Favors ET Alone	
	No.	Events	No.	Events		HR (95% CI)	Interaction p-value
Overall	2808	232	2829	333	⊢+-1	0.696 (0.588, 0.823)	
Number of Pos. lymph nodes						1	0.597
1-3	1118	75	1142	105	· · · · · · · · · · · · · · · · · · ·	0.722 (0.537, 0.971)	l.
4-9	1107	75	1126	126		0.607 (0.456, 0.808)	1
10 or more	575	80	554	102	••••	0.738 (0.550, 0.988)	
Histologic Grade							0.787
Grade 1	209	11	216	12	• • • • • •	0.941 (0.415, 2.133)	
Grade 2	1377	101	1395	146		0.697 (0.541, 0.898)	
Grade 3	1086	112	1064	151		0.723 (0.566, 0.923)	
Primary Tumor Size							0.024
<2 cm	781	40	767	86		0.452 (0.311, 0.658)	1
2-5 cm	1371	125	1419	155	· •	0.837 (0.661, 1.059)	1
≥5 cm	607	62	610	87	├ ── ♦ ─── 	0.701 (0.506, 0.971)	
Prior Chemotherapy							0.339
Neoadjuvant	1039	119	1048	184		0.634 (0.504, 0.799)	
Adjuvant	1642	101	1647	135		0.751 (0.580, 0.972)	
Menopausal Status							0.082
Premenopausal	1221	85	1232	142		0.580 (0.443, 0.759)	1
Postmenopausal	1587	147	1597	191	→	0.789 (0.636, 0.978)	1
Region							0.938
North America/Europe	1470	111	1479	156		0.719 (0.564, 0.917)	
Asia	574	41	582	60		0.663 (0.446, 0.986)	
Other	764	80	768	117		0.689 (0.518, 0.916)	
Age							0.391
<65 years	2371	192	2416	285	.⊢-♦1	0.675 (0.562, 0.811)	1
≥65 years	437	40	413	48	• • • • • • • • • • • • • • • • • • •	0.827 (0.544, 1.258)	
Progesterone Receptor							0.846
Negative	298	42	295	58			
	2426	185	2456	270		0.687 (0.570, 0.828)	0 400
	004	45	050				0.422
	324	15	353	28	•		1
	392	31	387	32			
	1029	73	1026	104		0.700 (0.519, 0.945)	
Stage IIIC	950	100	963	156		0.634 (0.493, 0.815)	
Baseline ECOG PS							0.207
0	2405	193	2369	280		0.668 (0.556, 0.803)	1
_1	401	39	455	52	├	0.898 (0.593, 1.360)	0.000
Race	10.1-	100	4070	007			0.299
vvnite	1947	166	1978	237		0.708 (0.580, 0.863)	
Asian	6/5	47	669	/5		0.597 (0.415, 0.860)	
All others	146	17	140	16		1.120 (0.565, 2.218)	

Analysis landmark		IDFS		DRFS		
	Events		Piecewise HR*	Events		Piecewise HR*
	Abemaciclib + ET	ET Alone	(95% CI**)	Abemaciclib + ET	ET Alone	(95% Cl**)
Year 0-1	93	116	0.795 (0.589, 1.033)	67	91	0.732 (0.520, 0.987)
Year 1-2	98	146	0.681 (0.523, 0.869)	85	129	0.675 (0.507, 0.875)
Year 2+	41	71	0.596 (0.397, 0.855)	39	58	0.692 (0.448, 1.032)

* Piecewise hazard ratio was estimated using piecewise exponential model to assess the yearly treatment effect size

** 95% credible intervals were calculated by equal tails in the posterior samples of Bayesian exponential models

Increasing magnitude of IDFS and DRFS effect size from the first year to the second year, with maintained treatment benefit beyond the 2-year study treatment period.

IDFS in ITT Ki-67 High (≥ 20%) Population

33.7% reduction in the risk of developing an IDFS event. The absolute difference in IDFS rates between arms was 6.0% at 3 years.

IDFS in Cohort 1 Ki-67 High (≥ 20%) Population

37.4% reduction in the risk of developing an IDFS event.

The absolute difference in IDFS rates between arms was 7.1% at 3 years.

Ki-67 as a prognostic marker in Cohort 1

As expected, high Ki-67 index was prognostic of worse outcome. However, abemaciclib benefit was consistent regardless of Ki-67 index.

Mature Safety Findings Consistent with Previous Analyses

Adjuvant Abemaciclib for High-Risk, HR+/HER2-, Early Breast Cancer^{1,2}

ORIGINAL ARTICLE

Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: updated efficacy and Ki-67 analysis from the monarchE study

N. Harbeck^{1+†}, P. Rastogi^{2†}, M. Martin³, S. M. Tolaney⁴, Z. M. Shao⁵, P. A. Fasching⁶, C. S. Huang⁷, G. G. Jaliffe⁸, A. Tryakin⁹, M. P. Goetz¹⁰, H. S. Rugo¹¹, E. Senkus¹², L. Testa¹³, M. Andersson¹⁴, K. Tamura¹⁵, L. Del Mastro^{16,17}, G. G. Steger¹⁸, H. Kreipe¹⁹, R. Hegg²⁰, J. Sohn²¹, V. Guarneri^{22,23}, J. Cortés^{24,25}, E. Hamilton²⁶, V. André²⁷, R. Wei²⁷, S. Barriga²⁷, S. Sherwood²⁷, T. Forrester²⁷, M. Munoz²⁷, A. Shahir²⁷, B. San Antonio²⁷, S. C. Nabinger²⁷, M. Tol²⁸, S. R. D. Johnston²⁹, & J. O'Shaughnessy³⁰; On behalf of the monarchE Committee Members

¹Breast Center, Department of OB & GYN and CCC Munich, LMU University Hospital, Munich, Germany; ²University of Pittsburgh/UPMC, NSABP Foundation, Pittsburgh, USA; ³Hospital General Universitario Gregorio Marañon, Universidad Complutense, CIBERONC, GEICAM, Madrid, Spain; ⁴Dana-Farber Cancer Institute, Boston, USA; ⁵Fudan University Ishanghai Cancer Center, Shanghai, China; ⁶University Hospital Erlangen, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; ⁷National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; ⁸Grupo Medico Camino S.C., Mexico City, Mexico; ⁹N.N.Blokhin Russian Cancer Research Center, Moscow, Russia; ¹⁰Mayo Clinic, Rochester; ¹¹Department of Medicine (Hematology/Oncology), University of California San Francisco, San Francisco, USA; ¹²Department of Oncology & Radiotherapy, Medical University of Galnisk, Golanisk, Golanisk, Poland; ¹³Instituto D'Or de Pesquisa e Ensino (IDOR), Sao Paulo, Brazil; ¹⁴Rigshospitalet, Copenhagen, Denmark; ²⁰Clin. Pesq. e Centro São Paulo, São Paulo, Brazil; ²¹Yonsei Cancer Center, Seoul, Korea; ²²Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua; ²³Istituto Oncologic Veneto IOV-IRCCS, Padua, Italy; ²⁴International Breast Cancer Center (IBCC), Madrid & Barcelona; ²⁶Sanah Cannon Research Institute of Oncology, Barcelona; ²⁵Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain; ²⁶Srah Cannon Research Institute of Oncology, Barcelona; ²⁵Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain; ²⁶Sarah Cannon Research Institute of Oncology, Barcelona; ²⁵Universidad Europea de Madrid, Faculty of Biomedical University Hospital, Kyoto, Japan; ²⁶Royal Marsden N

On October 12, 2021, the FDA approved abemaciclib for adjuvant treatment of adult patients with HR+/HER2-, node-positive, early breast cancer at high risk of recurrence and a Ki-67 score ≥20%, as determined by an FDA approved test

The FDA also approved the Ki-67 IHC MIB-1 pharmDx (Dako Omnis) assay as a companion diagnostic for selecting patients for this indication

Harbeck N et al. Ann Oncol. 2021;S0923-7534(21)04494-X.
https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-hematologic-malignancies-approval-notifications.

Why Are the Results Different From Other Adjuvant Trials?

Aditya Bardia, MD, Discussion monarchE, ESMO VP, 2021

	PENELOPE-B ¹	PALLAS ²	MONARCH-E ³
Sample size	1,250	5,600	5,637
Study population	High risk	Moderate to high risk	High risk
Study drug (duration)	Palbociclib (1 year)	Palbociclib (2 years)	Abemaciclib (2 years)
IDFS results, HR (95%CI)	0.93 (0.76-1.15)	0.93 (0.74-1.17)	0.69 (0.58-0.82)
3-year IDFS (<i>P</i>)	81.2% vs 77.7% (NS)	88.2% vs 88.5% (NS)	88.8% vs 83.4% (< .0001)
Discontinuation rate, %	17.5	42.2	17.4
Duration of follow-up, mo	42.8	23.7	27.1

- Higher-risk population: In PALLAS, no benefit with palbociclib in patients with N2/N3 disease (HR = 0.89, 95%CI, 0.68-1.17); however, subset analysis, and need to exert appropriate caution
- Discontinuation: In PALLAS, no significant differences based on dose exposure noted; however, power limited by few events
- **Differences in drugs:** Continuous vs intermittent dosing in EBC vs MBC; spectrum and potency of kinome inhibition

1. Loibl S et al. J Clin Oncol. 2021;39:1518-1530. 2. Mayer EL et al. Lancet Oncology. 2021:22:212-222. 3. Harbeck N et al. Ann Oncol. 2021;S0923-7534(21)04494-X.

Abemaciclib vs Palbociclib: Primary Endocrine-Resistant Setting¹⁻⁴

OS in Primary Endocrine-Resistant MBC

PALOMA-3

1. Turner NC et al. N Engl J Med. 2018;379:1926-1936. 2. Sledge GW et al. JAMA Oncol. 2020;6:116-124. 3. Dicklet MN et al. Clin Cancer Res. 2017;23:5218-5224. 4. Wander SA et al. J Natl Compr Canc Netw. 2021;1-8.

Clinical Benefit With Abemaciclib Post-Palbociclib

Single-Agent Activity With Abemaciclib

Abemaciclib vs Palbociclib: Molecular Differences^{1,2}

- Seemingly similar drugs, but there may be differences in different settings
- Deeper understanding of kinome differences might help identify novel targets
- Hypothesis generating, and ideally, we need a randomized clinical trial to compare the drugs (neoadjuvant?)

Ongoing Adjuvant CDK4 and 6 Inhibitor Trial: NATALEE¹

- Women or men
- Pre-a/post-menopausal
- With or without prior adjuvant/neoadjuvant chemo
- No distant metastases

Primary objective: IDFS (STEEP criteria)

Key secondary objectives: RFS, distant DFS, OS, PROs, PK, and safety

^a Premenopausal and male patients will also receive goserelin 3.6 mg/28 d. 1. Slamon et al. *J Clin Oncol.* 2019;37(suppl 15):TPS597-TPS597.