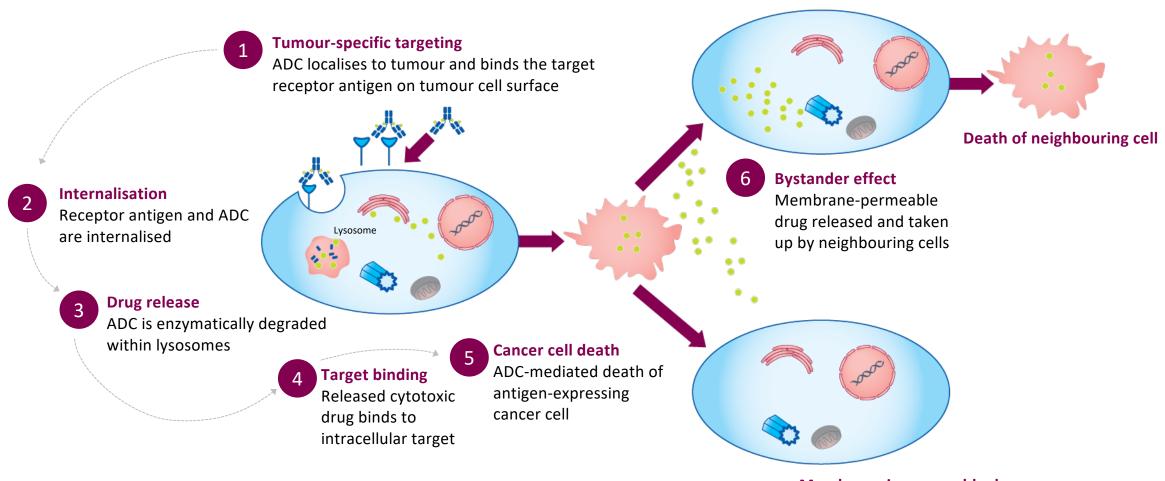


Other Novel Treatment Options and Investigational Strategies for TNBC


Hope S. Rugo, MD

Professor of Medicine

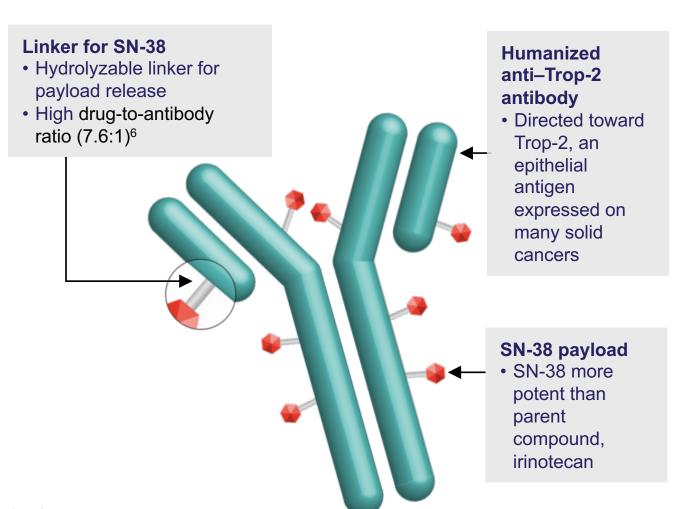
Director, Breast Oncology and Clinical Trials Education

University of California San Francisco Comprehensive Cancer Center

ADC technology enables tumour-specific targeting

Membrane-impermeable drug

Overview of ADCs in development for breast cancer

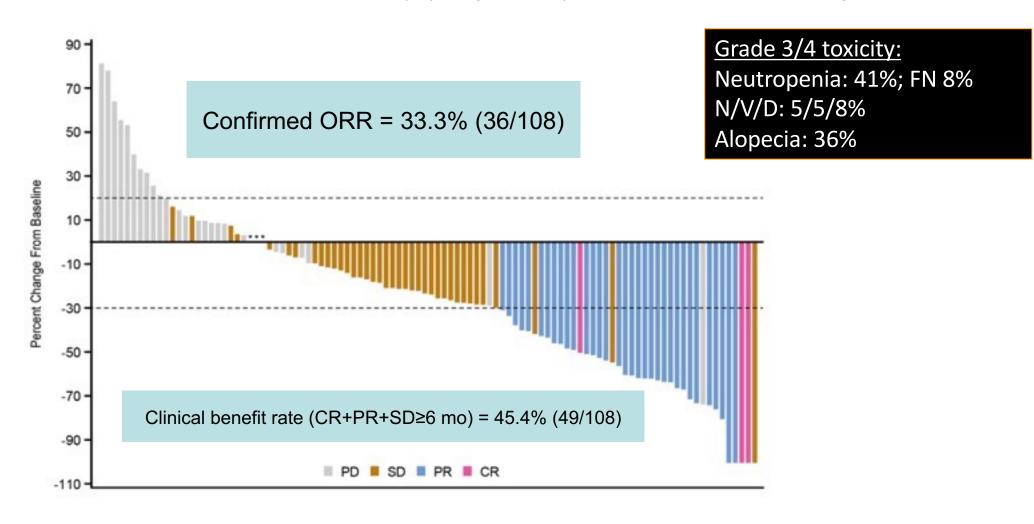

ADC	Target	Antibody	Payload	DAR	Clinical programme	Company
Trastuzumab emtansine (T-DM1, KADCYLA)	HER2	Trastuzumab	DM1	3.5	Approved in mBC with prior therapy, multiple trials in mBC	Roche Holding AG
Trastuzumab deruxtecan (T-DXd, DS-8201, ENHERTU)	HER2	Trastuzumab	DXd	8	Approved in mBC with two prior therapies, multiple trials in mBC	AstraZeneca and Daiichi Sankyo
(vic-)trastuzumab duocarmazine (SYD985)	HER2	Trastuzumab	Seco-DUBA	2.8	Phase 1 BC, Phase 3 mBC	Synthon Biopharmaceuticals BV
Sacituzumab govitecan (TRODELVY)	TROP2	RS7	SN-38	7.6	Approved in TNBC with two prior therapies, multiple trials in mTNBC, mBC	Gilead Sciences, Inc.
Datopotamab deruxtecan (Dato-DXd, DS-1062)	TROP2	Datopotamab	DXd	4	Phase 1 TNBC and HR+/HER2-	AstraZeneca and Daiichi Sankyo
Ladiratuzumab vedotin (SGN-LIV1A)	LIV1	hLIV22	Vc-MMAE	4	Phase 1 mBC, Phase 1/2 mTNBC	Seagen
RC48-ADC	HER2	Hertuzumab	MMAE	4	Phase 1 BC	RemeGen Co
Patritumab deruxtecan (U3-1402)	HER3	Patritumab	DXd	8	Phase 1/2 mBC	Daiichi Sankyo
A166	HER2	Trastuzumab	ND	ND	Phase 1/2 BC	Klus Pharma, Inc.
ALT-P7 (HM2-MMAE)		We will discu	uss these AD	Cs in	more detail in this session	
ARX788	HENZ	ND	Amberstatinzos	1.0	T Hado T Hibb	Amera Biopharma
DHES0815A (anti-HER2/PBC-MA)	HER2	ND	PBD-MA	ND	Phase 1 mBC	Genentech and Roche Holding AG
MEDI4276	HER2	Trastuzumab scFv	AZI13599185	4	Phase 1 BC	MedImmune, LLC
XMT-1522 (TAK-522)	HER2	HT-18	AF-HPA	12	Phase 1 BC	Mersana Therapeutics, Inc.
AVID100	EGFR	MAB100	DM1	ND	Phase 1/2 TNBC	Formation Biologics, Inc.
CAB-ROR2-ADC	Ror2	CAB	ND	ND	Phase 1/2 TNBC	BioAtla
Anti-CA6-DM4 immunoconjugate (SAR566658)	CA6	DS6	SPDB-DM4	1	Phase 2 TNBC	Sanofi

ADC=antibody-drug conjugate; AF-HPA=auristatin F-hydroxypropylamide; DM1=mertansine; DXd=trastuzumab deruxtecan; mBC=metastatic breast cancer; HER2/3=human epidermal growth factor receptor 2/3; MMAE=monomethyl auristatin E; ND=not defined; PBD-MA=pyrrolo benzodiazepine monoamide; T-DM1=trastuzumab emtansine; T-DXd=trastuzumab deruxtecan; (m)TNBC=(metastatic) triple-negative breast cancer; TROP-2=trophoblast cell surface antigen 2

^{1.} Nagayama A, et al. Ther Adv Med Oncol. 2020;121758835920915980; 2. Rinnerthaler G, et al. Int J Mol Sci. 2019;20:1115.

Sacituzumab Govitecan (SG): First-in-Class Trop-2–Directed ADC

- Trop-2 is expressed in all subtypes of breast cancer and linked to poor prognosis^{1,2}
- Distinct from other ADCs³⁻⁶
 - Antibody highly specific for Trop-2
 - High drug-to-antibody ratio (7.6:1)
 - Internalization and enzymatic cleavage by tumor cell not required for the liberation of SN-38 from the antibody
 - Hydrolysis of the linker also releases the SN-38 cytotoxic extracellularly in the tumor microenvironment, providing a bystander effect
- Accelerated FDA approval for metastatic TNBC in 2020 and fast-track designation in metastatic urothelial cancer⁷

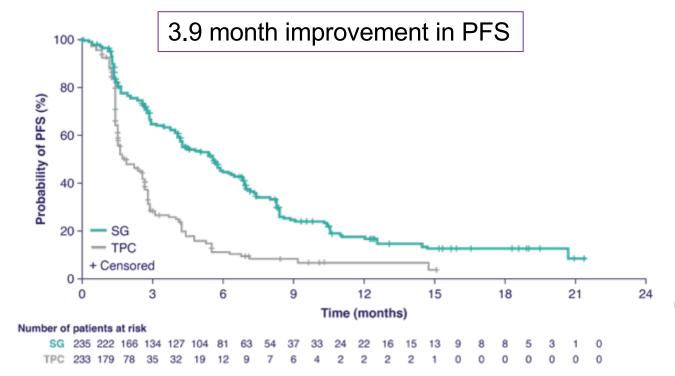


 ${\sf ADC, antibody-drug\ conjugate;\ TNBC,\ triple-negative\ breast\ cancer;\ Trop-2,\ trophoblast\ cell\ surface\ antigen\ 2.}$

1. Vidula N et al. *J Clin Oncol*. 2017;35:15(suppl):Abstract 1075. 2. Ambrogi et al. *PLoS One*. 2014;9(5):e96993. 3. Goldenberg DM et al. *Expert Opin Biol Ther*. 2020 Aug;20(8):871-885. 4. Nagayama A et al. *Ther Adv Med Oncol*. 2020;12:1758835920915980. 5. Cardillo TM et al. *Bioconjugate Chem*. 2015;26:919-931. 6. Goldenberg DM et al. *Oncotarget*. 2015;6:22496-224512. 7. Press Release. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-grants-accelerated-approval-sacituzumab-govitecan-hziy-metastatic-triple-negative-breast-cancer. Accessed August 26, 2020.

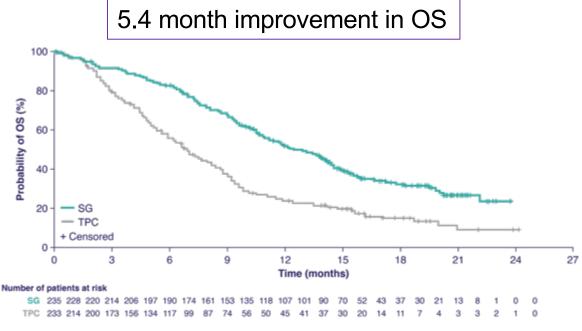
Sacituzumab Govitecan: Phase I/II Trial in mTNBC

108 patients with refractory mTNBC Median of 3 prior lines of therapy (range 2-10) in the advanced setting

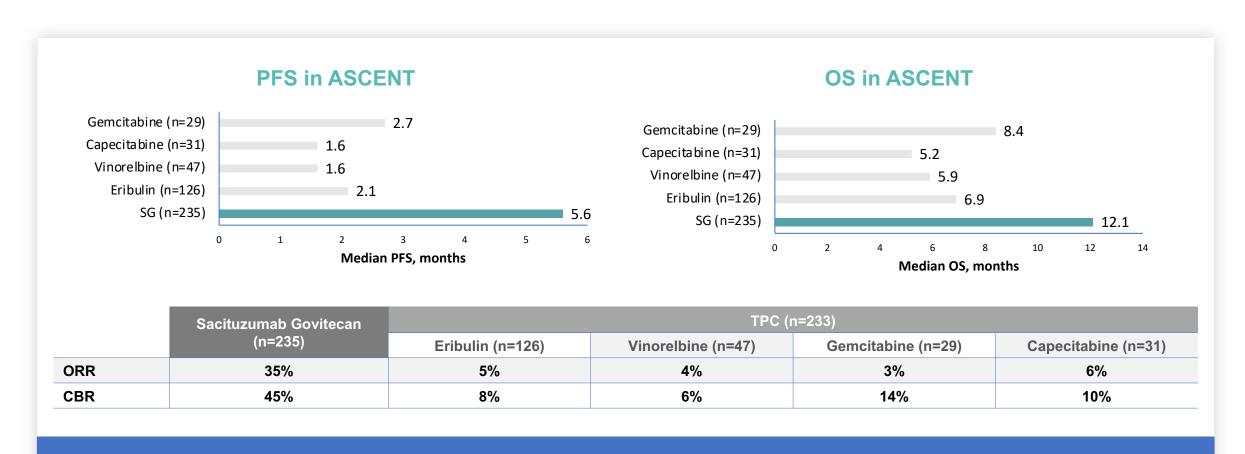


ASCENT: Phase III Confirmatory Trial of SG in Refractory Metastatic TNBC

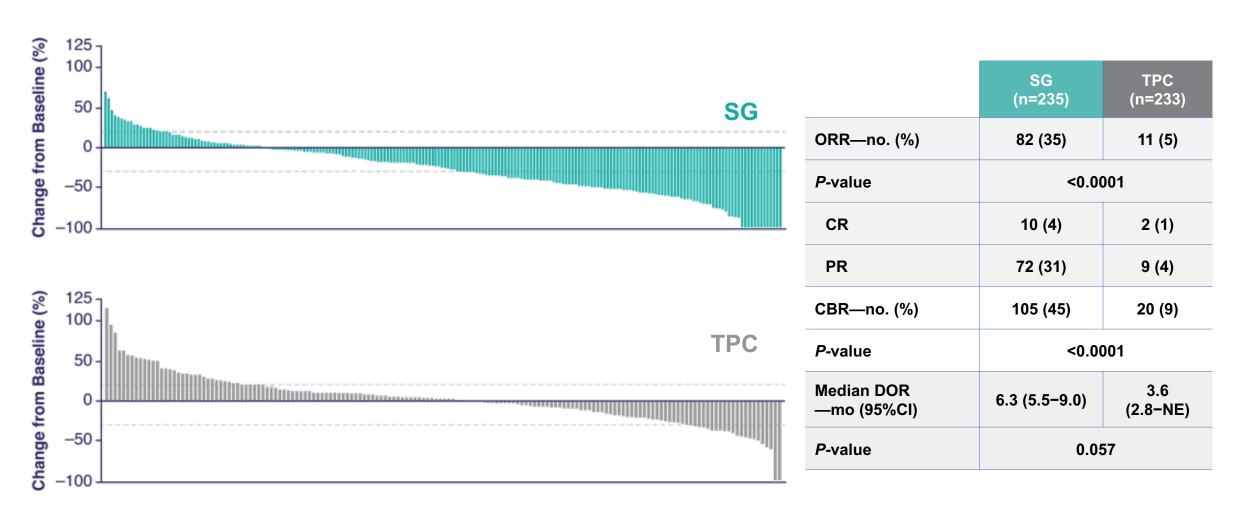
- 529 pts with mTNBC and >2 chemotherapies for advanced disease
- Randomized 1:1 to SG (10 mg/kg D1, 8 q 21d) vs TPC (eribulin, vinorelbine, gemcitabine, capecitabine)
- Primary endpoint: PFS in patients without brain metastases
 - Pre-defined maximum 15% cap for pts with brain mets
- Demographics
 - TPC: 53% eribulin, 20% vinorelbine, 15% gemcitabine, 13% capecitabine
 - 70% TN at initial diagnosis
 - Median prior regimens 4 (2-17)
 - ~88% with visceral disease


ASCENT halted early due to compelling evidence of efficacy by unanimous DSMC recommendation

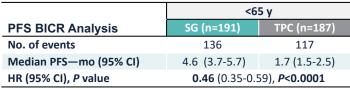
Progression-Free Survival (BICR Analysis)

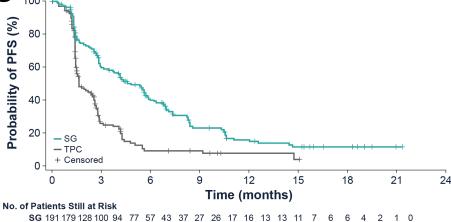

BICR Analysis	SG (n=235)	TPC (n=233)		
No. of events	166	150		
Median PFS—mo (95% CI)	5.6 (4.3-6.3)	1.7 (1.5-2.6)		
HR (95% CI), <i>P</i> -value	0.41 (0.32-0.52), P<0.0001			

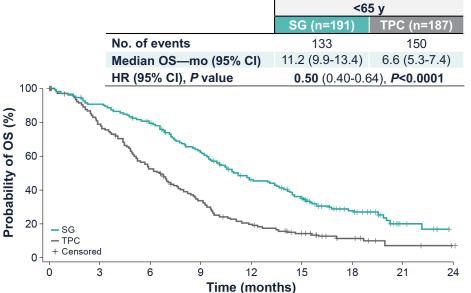
Overall Survival

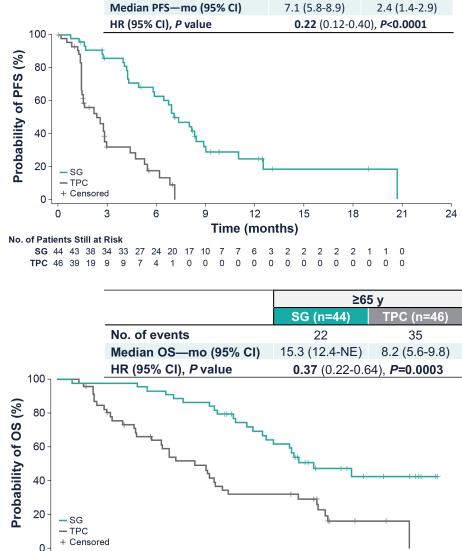

	SG (n=235)	TPC (n=233)
No. of events	155	185
Median OS—mo (95% CI)	12.1 (10.7-14.0)	6.7 (5.8-7.7)
HR (95% CI), <i>P</i> -value	0.48 (0.38-0.59	9), <i>P</i> <0.0001

ASCENT: Assessment of SG vs TPC, by Agent




The efficacy benefit observed with SG was retained when evaluating each TPC chemotherapy agent individually


Overall Response and Best Percent Change From Baseline in Tumour Size


Comparable Benefit Across Age Groups

TPC 187 168 157 138 125 106 91 77 66 56 42 37 32 28 25 19 14 11

12

Time (months)

TPC 46 46 43 35 31 28 26 22 21 18 14 13 13 13 12 11 6

15

21

24

18

PFS BICR Analysis

No. of events

≥65 v

SG (n=44)

30

TPC (n=46)

33

ASCENT: Exploratory analysis of TROP2 and gBRCA

- Trop-2 expression assessed by IHC
 - H-score <100 (including H-score 0): Trop-2 Low
 - H-score 100-200: Trop-2 Medium
 - H-score 200-300: Trop-2 High
- Clinical benefit with SG versus TPC in previously treated mTNBC is irrespective of level of Trop-2 expression

	SG (n=235)	TPC (n=233)
BRCA1/2 mutational status—no. (%)	149 (63)	143 (61)
Positive	16 (7)	18 (8)
Negative	133 (57)	125 (54)
Trop-2 expression—no. (%)	151 (64)	139 (60)
(High) H-score 200-300	85 (56)	72 (52)
(Medium) H-score 100-200	39 (26)	35 (25)
(Low) H-score <100	27 (18)	32 (23)

	Trop-2 High H-	score: 200-300	Trop-2 Medium 20	•	Trop-2 Low H-score: <100	
	SG (n=85)	TPC (n=72)	SG (n=39)	TPC (n=35)	SG (n=27)	TPC (n=32)
Median PFS – mo (95% CI)	6.9 (5.8-7.4)	2.5 (1.5-2.9)	5.6 (2.9-8.2)	2.2 (1.4-4.3)	2.7 (1.4-5.8)	1.6 (1.4-2.7)
	Trop-2 High H-	score: 200-300	Trop-2 Medium H-score: 100- 200		Trop-2 Low H-score: <100	
	SG (n=85)	TPC (n=72)	SG (n=39)	TPC (n=35)	SG (n=27)	TPC (n=32)
Median OS – mo (95% CI)	14.2 (11.3-17.5)	6.9 (5.3-8.9)	14.9 (6.9-NE)	6.9 (4.6-10.1)	9.3 (7.5-17.8)	7.6 (5.0-9.6)
	Trop_2 High	Trop 2 Modium	Trop-2 Low			

	Trop-2 H-score: (n=1		H-score	Medium : 100-200 =74)	Trop-2 Low H-score: <100 (n=59)		
	SG (n=85)	TPC (n=72)	SG (n=39)	TPC (n=35)	SG (n=27)	TPC (n=32)	
ORR—% (no.)	44% (37)	1% (1)	38% (15)	11% (4)	22% (6)	6% (2)	
95% CI	33-55	0-8	23-55	3-27	9-42	1-21	

Hurvitz et al, SABCS 2020

TRAEs (All Grade, >20%; Grade 3/4, >5% of Patients)

			SG (n=258)		TPC (n=224)			
	TRAE*	All grade %	Grade 3, %	Grade 4, %	All grade, %	Grade 3, %	Grade 4, %	
	Neutropenia [†]	63	46	17	43	27	13	
Haamatalagia	Anemia [‡]	34	8	0	24	5	0	
Haematologic	Leukopenia§	16	10	1	11	5	1	
	Febrile neutropenia	6	5	1	2	2	<1	
	Diarrhoea	59	10	0	12	<1	0	
Gastrointestinal	Nausea	57	2	<1	26	<1	0	
	Vomiting	29	1	<1	10	<1	0	
Other	Fatigue	45	3	0	30	5	0	
Other	Alopecia	46	0	0	16	0	0	

- Key grade ≥3 TRAEs (SG vs TPC): neutropenia (51% vs 33%), diarrhoea (10% vs <1%), leukopenia (10% vs 5%), anemia (8% vs 5%), and febrile neutropenia (6% vs 2%)
- G-CSF usage was 49% in the SG arm vs 23% in the TPC arm
- Dose reductions due to TRAEs were similar (22% SG vs 26% TPC)
- No severe cardiovascular toxicity, no grade >2 neuropathy or grade >3 interstitial lung disease with SG

- No treatment-related deaths with SG; 1 treatment-related death (neutropenic sepsis) with TPC
- AEs leading to treatment discontinuation were low for SG and TPC: 4.7% and 5.4%
- Patients received a median of 7 treatment cycles of SG, with a median treatment duration of 4.4 months (range, 0.03-22.9)z

^{*}Patients may report more than 1 event per preferred term. AEs were classified according to the MedDRA systems of preferred terms and system organ class and according to severity by NCI CTCAE v4.03. †Combined preferred terms of 'neutropenia' and 'decreased neutrophil count'. ‡Combined preferred terms of 'anemia' and 'decreased hemoglobin'. §Combined preferred terms of 'leukopenia' and 'decreased white blood cell count'.

G-CSF, granulocyte-colony stimulating factor; SG, sacituzumab govitecan; TPC, treatment of physician's choice; TRAE, treatment-related AE.

^{1.} Bardia A, et al. N Engl J Med. 2021;384(16):1529-1541.

ASCENT: Exploratory Safety Analyses By UGT1A1 Allele Status

			SG (n=250) ^a							
		*1/*1 Wild-	*1/*1 Wild-Type (n=113)		*1/*28 Heterozygous (n=96)		*28/*28 Homozygous (n=34)			
	TRAE	All Grade, %	Grade ≥3, %	All Grade, %	Grade ≥3, %	All Grade, %	Grade ≥3, %			
	Neutropenia	76 (67)	60 (53)	55 (57)	45 (47)	24 (71)	20 (59)			
	Anemiad	37 (33)	5 (4)	29 (30)	6 (6)	16 (47)	5 (15)			
- Haematologic	Leukopeniae	18 (16)	10 (9)	13 (14)	9 (9)	8 (24)	5 (15)			
lacillatologic	Lymphopeniaf	10 (9)	1 (1)	5 (5)	1 (1)	4 (12)	2 (6)			
	Febrile neutropenia	3 (3)	3 (3)	5 (5)	5 (5)	6 (18)	6 (18)			
	Thrombocytopenia ^f	3 (3)	0	6 (6)	0	4 (12)	4 (12)			
Gastrointestinal	Diarrhoea	65 (58)	11 (10)	57 (59)	9 (9)	21 (62)	5 (15)			

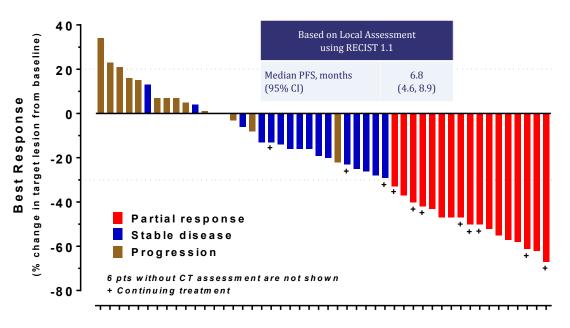
UGT1A1 *28/*28 had higher rates of:

Grade ≥3 treatment-related AESIs (*28/*28 vs *1/*1 vs *1/*28)

Anemia: 15% vs 4% vs 6%

• Febrile neutropenia: 18% vs 3% vs 6%

• Diarrhoea: 15% vs 10% vs 9%

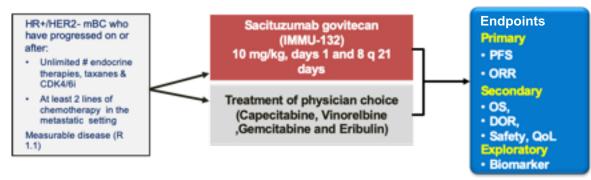

Treatment Discontinuations (*28/*28 vs *1/*1 vs *1/*28)

• 6% vs 2% vs 1%

Conclusions: Individuals with *UGT1A1* *28/*28 genotype were at modestly higher risk for anemia and febrile neutropenia with SG and should be monitored closely. These data suggest that *UGT1A1* status does not alter recommendations for treatment or management. Note: The frequency of *28/*28 mutation was low, so this limited the ability to discern additional differences.

Assessed in the safety population of patients with *UGT1A1* genotype. Shown are key TRAEs significantly impacted by the *UGT1A1* *28/*28 genotype. Other TRAEs like nausea, vomiting, constipation, fatigue, alopecia, and decrease appetite were not significantly impacted. ^aSeven patients had *UGT1A1* genotypes not listed in the table. ^bPatients may report more than 1 event per preferred term. Adverse events were classified according to the MedDRA systems of preferred terms and system organ class and according to severity by NCI CTCAE v4.03. ^cCombined preferred terms of "Neutropenia" and "Decreased neutrophil count." ^dCombined preferred terms of "Anemia" and "Decreased hemoglobin." ^eCombined preferred terms of "Leukopenia" and "Decreased white blood cell count." ^fCombined preferred terms of "Lymphopenia" and "Decreased platelet count." SG, sacituzumab govitecar; TRAE, treatment-related adverse event; UGT1A1, UDP glucuronosyltransferase family 1 member A1.

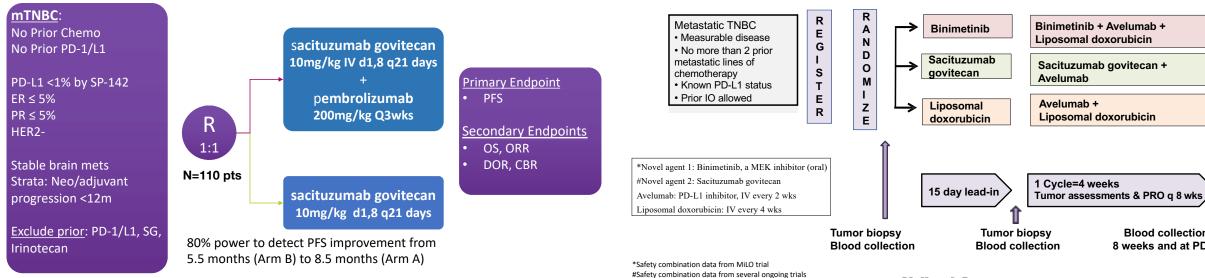
Sacituzumab in ER+ MBC n=54


- Median number of metastatic chemo lines: 2
- Median number of prior metastatic lines: 5

Local Response Evaluation by RECIST1.1				
Objective response rate CR	31% (17/54) 0			
PR	17			
Clinical benefit rate (CR+PR+SD ≥6 months)	48% (26/54)			

Bardia et al, ASCO 2018

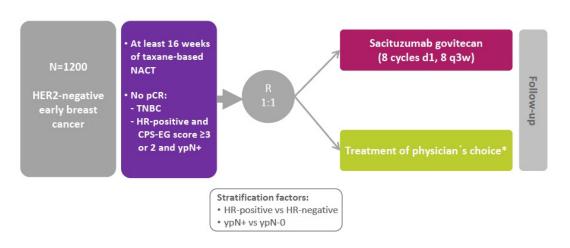
TROPiCS-02: Phase III Study mHER2-/HR+ mBC


At least two prior lines of chemotherapy N=400; 1:1 randomization

Rugo, Pl

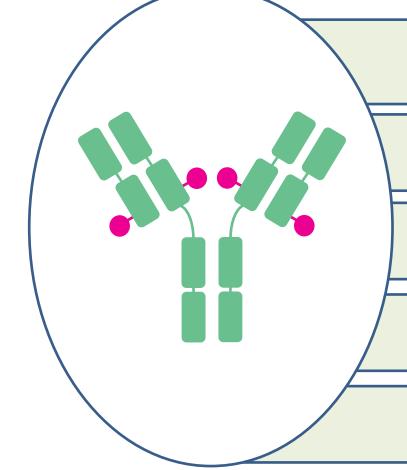
SACI-IO TNBC: SG +/- pembrolizumab in 1st line PD-L1- TNBC

TBCRC 047: InCITe Trial Design


PI: Sara Tolaney/Ana Garrido-Castro

PI: Hope S. Rugo

Blood collection (at

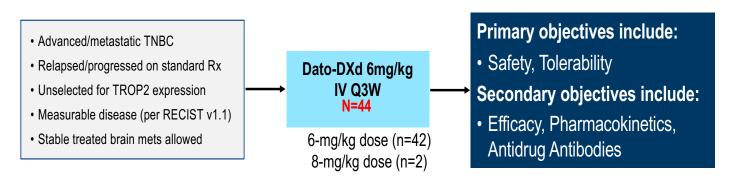

8 weeks and at PD)

GBG: SASCIA Post-Neoadjuvant Trial

^{*}Capecitabine (8 cycles) or platinum-based chemotherapy (8 cycles) or observation. Background therapy: in patients with HR-positive breast cancer, endocrine-based therapy will be administered according to local guidelines.

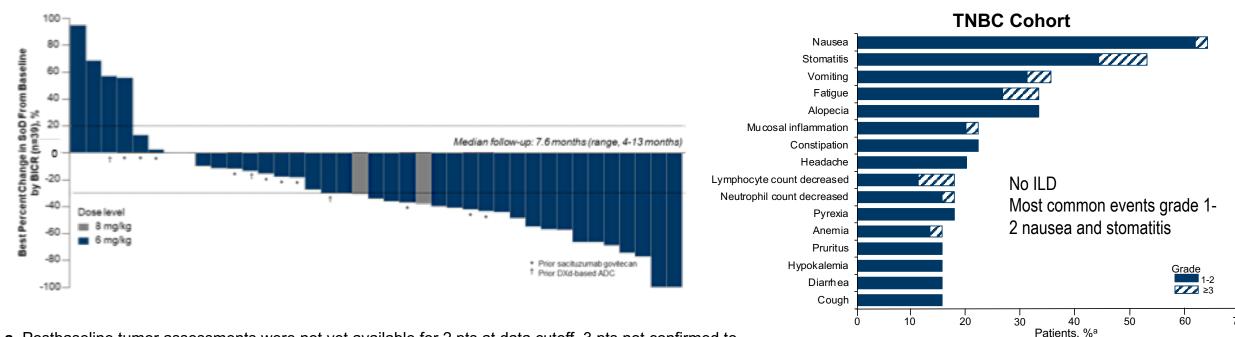
Datopotamab Deruxtecan (Dato-DXd): TROP2 ADC IN DEVELOPMENT

Circulating free payload is negligible due to high stability of the linker, thereby limiting systemic exposure or nontargeted delivery of the payload

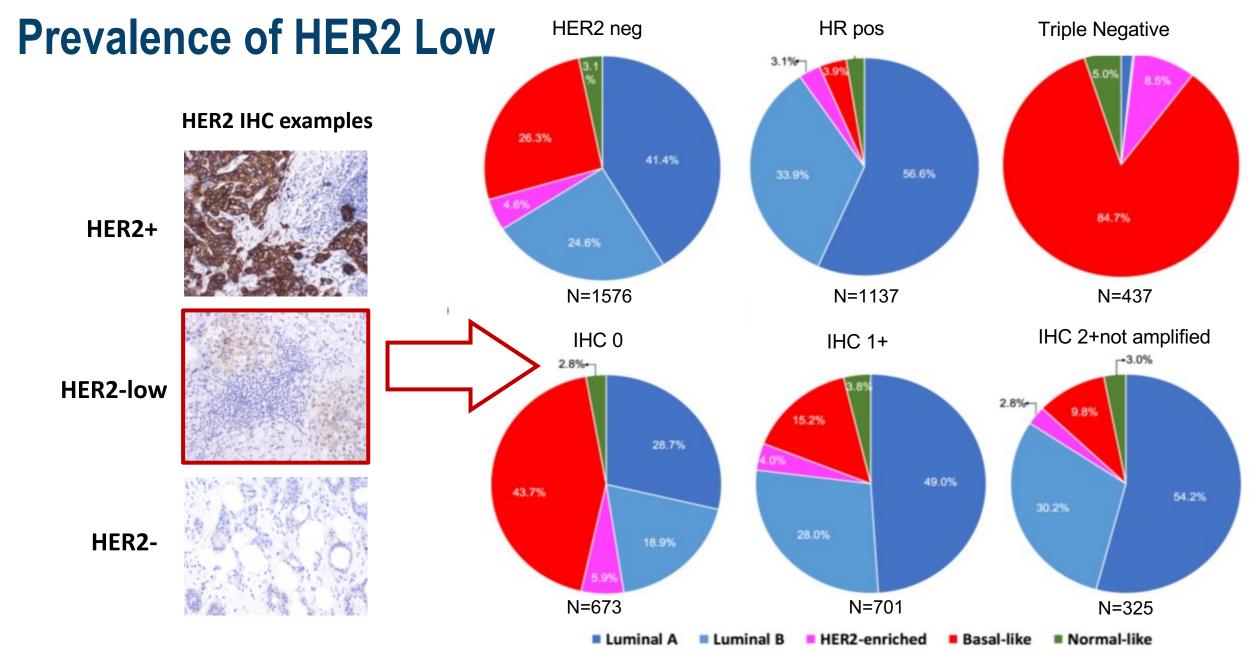

High-potency membrane-permeable payload (DXd) that requires TROP2-mediated internalization for release

DS-1062 has a DAR of 4 for optimized therapeutic index²

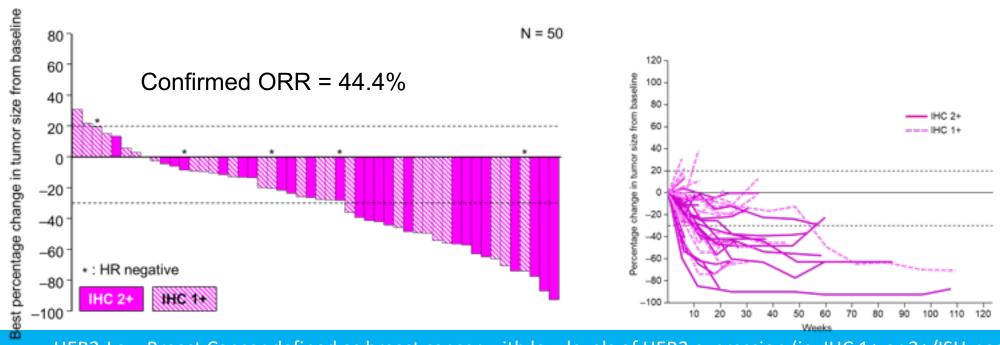
DS-1062 has a substantially **longer half-life** than SG (≈ 5 days vs 11-14 hours), enabling a more optimal dosing regimen


SG's DLT is neutropenia, while DS-1062's DLTs are maculopapular rash and stomatitis/mucosal inflammation

Dato-DXd: TROPION-PanTumor01 (NCT03401385)—TNBC Cohort


Patients, n (%) ^a	All Patients (n=44)
ORR	15 (34)
CR/PR (confirmed)	14 (32)
CR/PR (pending confirmation)	1 (2)
SD	17 (39)
DCR	34 (77)
PD	8 (18)

Data cutoff: JUL 30, 2021. Treatment ongoing in 13 pts (30%); 31 pts (70%) discontinued treatment (30 due to PD, 1 due to AE)

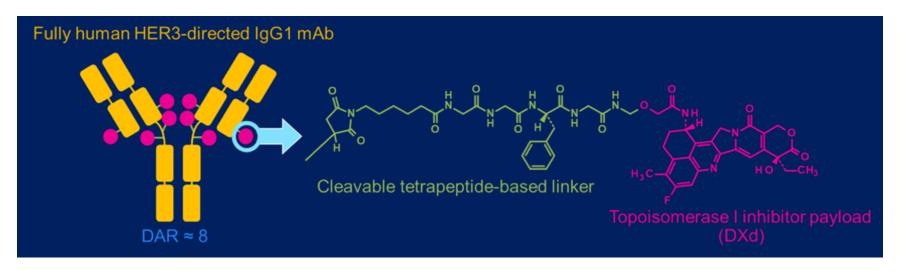


a. Postbaseline tumor assessments were not yet available for 2 pts at data cutoff. 3 pts not confirmed to have a target lesion per BICR; therefore, had best OR of non-CR/non-PD.

Krop I, et al. SABCS 2021. S1-05. Bardia A, et al. ESMO Breast Ca Virtual Congress 2021. LBA4.

Trastuzumab Deruxtecan Has Clinical Activity in HER2-low MBC

HER2-Low Breast Cancer defined as breast cancer with low levels of HER2 expression (ie, IHC 1+ or 2+/ISH-negative)

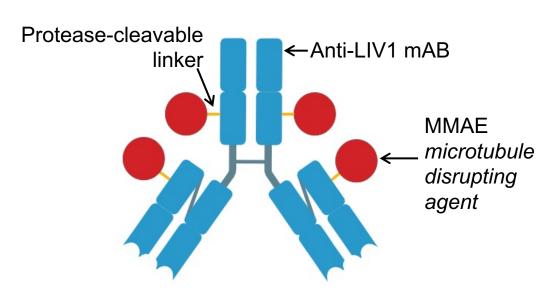

	Confirmed ORR	mDoR	mPFS
All (N = 51)	44.2% (N=43)	9.4m	7.6m

DESTINY-Breast04

HER2-low, unresectable and/or metatastic breast cancer vs. physician's choice

NCT03734029* 2018-003069-33 Completed Accrual

New ADCs against HER3: Patritumab deruxtecan (U3-1402)

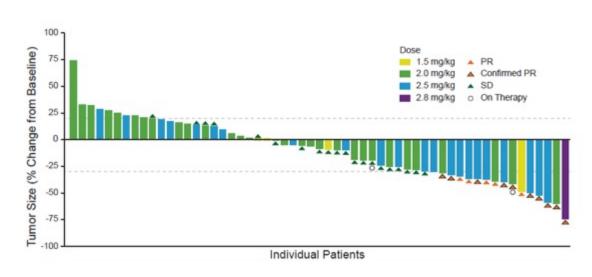


Study in progress: Phase I/II study of patritumab deruxtecan in HER3-positive BC (NCT02980341)

			HER3-high HF	R+/HER2- mBC	HER3-low, HR+/HER2-	HER3-high
Patient population	HER3-DXd dose		4.8 mg/kg (n=33)	6.4 mg/kg (n=31)	mBC 6.4 mg/kg	TNBC 6.4 mg/kg (n=31)
HER3-high, HR+/HER2- mBC (n≈60)	4.8 mg/kg IV Q3W		(11 00)	(0.)	(n=21)	(11-31)
HEK3-IIIgII, HK+/HEK2- IIIBC (II~00)	6.4 mg/kg IV Q3W	ORR (95% CI), %	30.3 (15.6– 48.7)	12.9 (3.6–29.8)	33.3 (14.6– 57.0)	16.1 (5.5–33.7)
HER3-low, HR+/HER2- mBC (n≈20)	6.4 mg/kg IV Q3W	mDOR (95% CI), mo	5.0 (2.8-NE)	7.2 (5.5–7.2)	5.3 (3.0-NE)	NR (4.2–NE)
LIEDS bink TNDC (ness)	C. A mag/kg IV/ COVA	DCR (95% CI), %	90.9 (75.7– 98.1)	74.2 (55.4– 88.1)	66.7 (43.0– 85.4)	83.9 (66.3– 94.5)
HER3-high TNBC (n≈30)	6.4 mg/kg IV Q3W	mPFS (95% CI), mo	8.4 (5.6–9.9)	2.8 (1.9–8.2)	5.8 (1.4–11.0)	5.5 (3.9-NE)
		mOS (95% CI), mo	14.3 (10.9-NE)	9.7 (6.6–19.5)	9.2 (4.7–21.9)	NR (6.4-NE)

Krop I, et al. Presented at SABCS 2020. Abstract PD1-09

Ladiratuzumab Vedotin: ADC Targeting LIV1

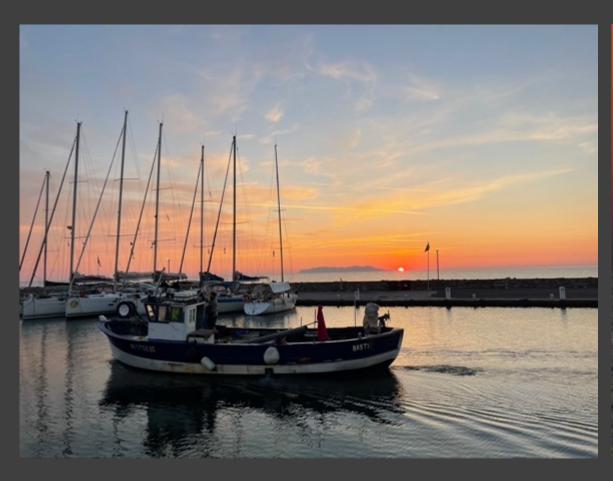

LIV1 is a transmembrane cell adhesion molecule highly expressed in metastatic breast cancer

Mech. of Action:

- 1. Binds to antigen
- 2. Complex internalized and trafficked to lysosome
- 3. Release of MMAE payload
- 4. Microtubule disruption
- 5. Cell cycle arrest/disruption

Phase I Study of Ladiratuzumab Vedotin

Confirmed ORR = 25% (15/60)


Next steps:

Weekly therapy to reduce toxicity

ADCS: The New Wave

- ADCs are an exciting and effective new therapy for mBC with evolving studies
- Established role in TNBC, HER2+ disease
 - SG is a new standard of care for mTNBC
 - Ongoing TROPiCS-02 trial in HR+ MBC
 - Post-neoadjuvant SASCIA trial
 - Dato-DXd is a new anti-TROP2 ADC
 - Phase III studies in HR+ and TNBC
 - T-DXd is a new standard of care for mHER2+ BC
 - Ongoing Destiny Breast-04 in HER2 low disease
 - Multiple trials in mHER2+ disease, CNS mets, post-neoadjuvant in HER2+
- Studies are ongoing or are planned in combination with immunotherapy and in early-stage disease
- New ADCs in clinical trials!

Thank you!

