Year in Review — Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology: Chronic Lymphocytic Leukemia

Thursday, January 21, 2021 5:00 PM - 6:00 PM ET

Faculty

Matthew S Davids, MD, MMSc Jennifer Woyach, MD

YiR Chronic Lymphocytic Leukemia Faculty

Matthew S Davids, MD, MMSc
Associate Professor of Medicine
Harvard Medical School
Director of Clinical Research, Division of Lymphoma
Dana-Farber Cancer Institute
Boston, Massachusetts

Professor
Section Head, CLL and Hairy Cell Leukemia
Associate Division Director for Clinical Research
Division of Hematology
Department of Internal Medicine
The Ohio State University Comprehensive Cancer Center
Columbus, Ohio

Commercial Support

This activity is supported by educational grants from Adaptive Biotechnologies Corporation, AstraZeneca Pharmaceuticals LP, Lilly, and Pharmacyclics LLC, an AbbVie Company and Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC.

Dr Love — Disclosures

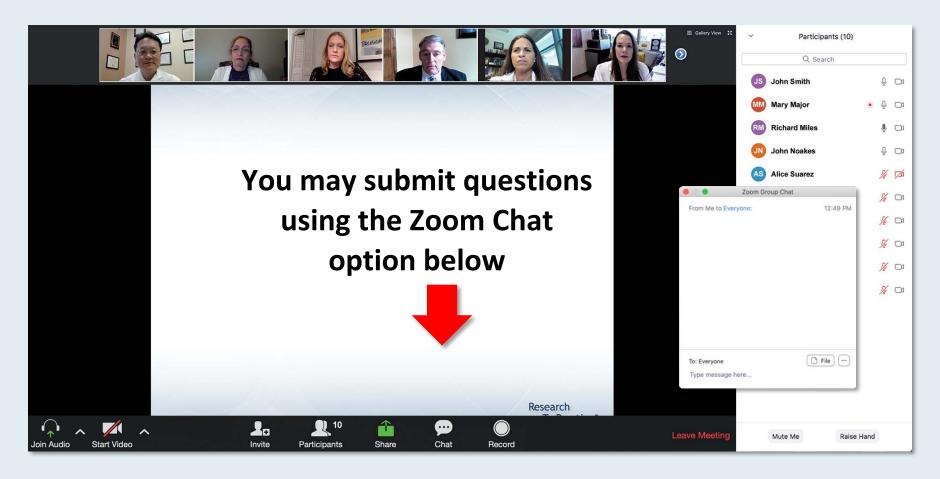
Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following commercial interests: AbbVie Inc, Acerta Pharma — A member of the AstraZeneca Group, Adaptive Biotechnologies Corporation, Agendia Inc. Agios Pharmaceuticals Inc, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Biodesix Inc, bioTheranostics Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Daiichi Sankyo Inc, Dendreon Pharmaceuticals Inc, Eisai Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Inc, Exelixis Inc, Foundation Medicine, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Guardant Health, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Infinity Pharmaceuticals Inc, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lexicon Pharmaceuticals Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Merrimack Pharmaceuticals Inc, Myriad Genetic Laboratories Inc, Natera Inc, Novartis, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Prometheus Laboratories Inc, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sandoz Inc, a Novartis Division, Sanofi Genzyme, Seagen Inc, Sirtex Medical Ltd, Spectrum Pharmaceuticals Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Oncology, Tesaro, A GSK Company, Teva Oncology, Tokai Pharmaceuticals Inc. and Verastem Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Davids — Disclosures

Advisory Committee	AbbVie Inc, Ascentage Pharma, AstraZeneca Pharmaceuticals LP, Genentech, a member of the Roche Group, Janssen Biotech Inc, Lilly, Pharmacyclics LLC, an AbbVie Company, TG Therapeutics Inc
Consulting Agreements	AbbVie Inc, Adaptive Biotechnologies Corporation, AstraZeneca Pharmaceuticals LP, BeiGene, Genentech, a member of the Roche Group, Janssen Biotech Inc, Lilly, MEI Pharma Inc, Merck, Novartis, Pharmacyclics LLC, an AbbVie Company, Verastem Inc, Zentalis Pharmaceuticals
Contracted Research	AbbVie Inc, Ascentage Pharma, AstraZeneca Pharmaceuticals LP, Genentech, a member of the Roche Group, MEI Pharma Inc, Novartis, Pharmacyclics LLC, an AbbVie Company, Surface Oncology, TG Therapeutics Inc, Verastem Inc



Dr Woyach — **Disclosures**

Advisory Committee	AbbVie Inc, ArQule Inc, Janssen Biotech Inc
Consulting Agreements	AbbVie Inc, ArQule Inc, AstraZeneca Pharmaceuticals LP, Janssen Biotech Inc, Pharmacyclics LLC, an AbbVie Company
Contracted Research	AbbVie Inc, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company
Data and Safety Monitoring Board/Committee	Gilead Sciences Inc

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

How to answer poll questions

	A RANGER		iii Gallery View ::	Participants (1	10)
				Q Search	
W.			J	S John Smith	₽ 🗅
	at is your usual treatment rient with MM	Investigation ACCT	M	Mary Major	• Q 🗀
	maintenance Cartizonio +/- dexamethasone	was and wide a Alexan	R	M Richard Miles	. □
exp	eriences an as	ical relapse?		N John Noakes	₽ 🗅
1.	Carfilzomib +/-		A	S Alice Suarez	% 7h
2.	Pomalidomide O Elotezumab + pomalidomide +)	- dexamethasone		Jane Perez	¾ □1
3.	Carfilzomib + p	methasone	R	S Robert Stiles	¾ □1
4.	Elotuzumab + I	nethasone		Juan Fernandez	¾ □1
5.	Elotuzumab + p	amethasone	A	Ashok Kumar	¾ □1
6.	Daratumumab	camethasone	J	S Jeremy Smith	% □
7.	 Daratumumab + pomalidomide +/- dexamethasone Daratumumab + bortezomib +/- dexamethasone 				
8.					
9.	Ixazomib + Rd				
10.	Other	□ Research			
		Co-provided by USFHealth To Practice®			
	1 0		Leave Meeting		
Join Audio Start Video	Invite Participants	Share Chat Record	Leave Meeting	Mute Me R	Raise Hand

When a poll question pops up, click your answer choice from the available options. Results will be shown after everyone has answered.

ONCOLOGY TODAY

WITH DR NEIL LOVE

FRONT-LINE TREATMENT OF CHRONIC LYMPHOCYTIC LEUKEMIA

DR JOHN PAGEL SWEDISH CANCER INSTITUTE SEATTLE, WASHINGTON

Meet The ProfessorManagement of Ovarian Cancer

Friday, January 22, 2021 1:15 PM – 2:15 PM ET

Faculty

Professor Jonathan A Ledermann, MD

Cancer Conference Update: What Happened at the 2020 San Antonio Breast Cancer Symposium® Management of HER2-Positive Breast Cancer

Monday, January 25, 2021 5:00 PM - 6:00 PM ET

Faculty Erika Hamilton, MD

Year in Review — Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology: Targeted Therapy for Lung Cancer

Tuesday, January 26, 2021 5:00 PM - 6:00 PM ET

Faculty
Joel W Neal, MD, PhD
Paul K Paik, MD

Cases from the Community: Investigators Discuss Emerging Research and Actual Patients with Hepatocellular Carcinoma (Part 1 of a 3-Part Series)

Wednesday, January 27, 2021 5:00 PM - 6:30 PM ET

Faculty

Richard S Finn, MD
Tim Greten, MD
James J Harding, MD
Ahmed Omar Kaseb, MD, CMQ

Year in Review — Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology: Multiple Myeloma

Thursday, January 28, 2021 5:00 PM - 6:00 PM ET

Faculty

Rafael Fonseca, MD Jonathan L Kaufman, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

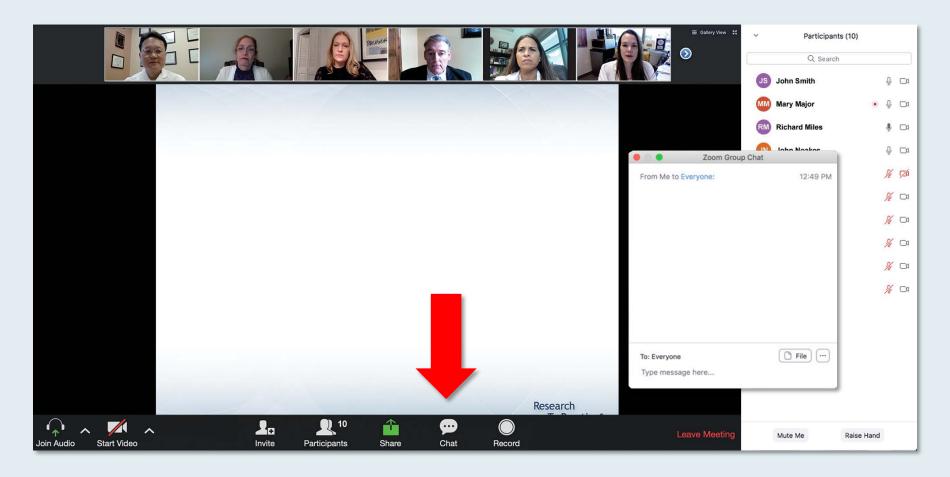
Year in Review — Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology: Chronic Lymphocytic Leukemia

Thursday, January 21, 2021 5:00 PM - 6:00 PM ET

Faculty

Matthew S Davids, MD, MMSc Jennifer Woyach, MD

YiR Chronic Lymphocytic Leukemia Faculty



Matthew S Davids, MD, MMSc
Associate Professor of Medicine
Harvard Medical School
Director of Clinical Research, Division of Lymphoma
Dana-Farber Cancer Institute
Boston, Massachusetts

Professor
Section Head, CLL and Hairy Cell Leukemia
Associate Division Director for Clinical Research
Division of Hematology
Department of Internal Medicine
The Ohio State University Comprehensive Cancer Center
Columbus, Ohio

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface How to answer poll questions

## Gallery View ::			V Participants (10)		
				Q Search	
				JS John Smith	₽ 🗅
What is your patient with	r usual treatment recomm	mendation for a lowed by ASCT		Mary Major	• Q 🗀
and mainten		years who then		RM Richard Miles	. □1
experiences	an ası Pomalidəmidə +/- dexamethasone	ical relapse?		N John Noakes	₽ 🖂
1. Carfilzon	Carfizonib + ponalidonide «/- dexamethasone Carfizonib + lenalidonide «/- dexamethasone			AS Alice Suarez	% Th
2. Pomalido				Jane Perez	¾ □1
3. Carfilzon	Darstumumab + lenslidomide +/- devamethasone Darstumumab + pomalidomide +/- desamethasone	methasone		Robert Stiles	¾ □11
4. Elotuzun		nethasone		Juan Fernandez	¾ □1
5. Elotuzun	nab + r C texzonib + Rd	ımethasone		AK Ashok Kumar	¾ □1
6. Daratum	umab	camethasone		JS Jeremy Smith	¾ □1
7. Daratum	 Daratumumab + pomalidomide +/- dexamethasone Daratumumab + bortezomib +/- dexamethasone 				
8. Daratum					
9. Ixazomib	+ Rd				
10. Other		₽ Research			
	Co-prov	ided by USF Health To Practice®			
	10	••	Leave Meeting		
Join Audio Start Video Invite	Participants Share	Chat Record	Leave Meeting	Mute Me	Raise Hand

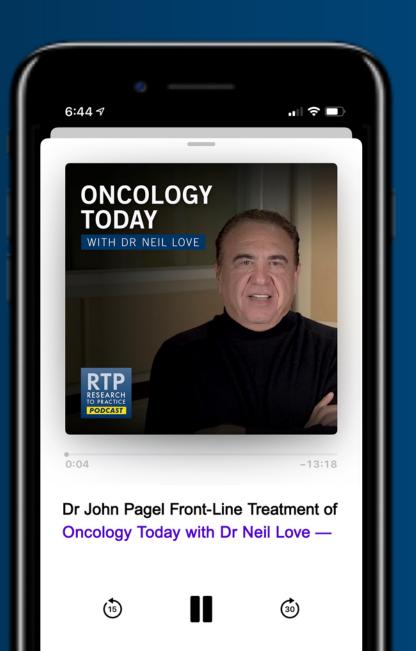
When a poll question pops up, click your answer choice from the available options.

Results will be shown after everyone has answered.

ONCOLOGY TODAY

WITH DR NEIL LOVE

FRONT-LINE TREATMENT OF CHRONIC LYMPHOCYTIC LEUKEMIA



DR JOHN PAGEL SWEDISH CANCER INSTITUTE SEATTLE, WASHINGTON

Meet The ProfessorManagement of Ovarian Cancer

Friday, January 22, 2021 1:15 PM – 2:15 PM ET

Faculty

Professor Jonathan A Ledermann, MD

Cancer Conference Update: What Happened at the 2020 San Antonio Breast Cancer Symposium® Management of HER2-Positive Breast Cancer

Monday, January 25, 2021 5:00 PM - 6:00 PM ET

Faculty Erika Hamilton, MD

Year in Review — Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology: Targeted Therapy for Lung Cancer

Tuesday, January 26, 2021 5:00 PM - 6:00 PM ET

Faculty
Joel W Neal, MD, PhD
Paul K Paik, MD

Cases from the Community: Investigators Discuss Emerging Research and Actual Patients with Hepatocellular Carcinoma (Part 1 of a 3-Part Series)

Wednesday, January 27, 2021 5:00 PM - 6:30 PM ET

Faculty

Richard S Finn, MD
Tim Greten, MD
James J Harding, MD
Ahmed Omar Kaseb, MD, CMQ

Year in Review — Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology: Multiple Myeloma

Thursday, January 28, 2021 5:00 PM - 6:00 PM ET

Faculty

Rafael Fonseca, MD Jonathan L Kaufman, MD

Year in Review — Clinical Investigators Provide Perspectives on the Most Relevant New Publications, Data Sets and Advances in Oncology: Chronic Lymphocytic Leukemia

Thursday, January 21, 2021 5:00 PM - 6:00 PM ET

Faculty

Matthew S Davids, MD, MMSc Jennifer Woyach, MD

Agenda

Module 1: Venetoclax combinations — Azacitidine, decitabine, LDAC, pracinostat

Module 2: FLT3 inhibitors — Midostaurin, gilteritinib, quizartinib

Module 3: IDH inhibitors — Ivosidenib, enasidenib

Module 4: Oral azacitidine (CC-486)

Module 5: Secondary AML — CPX-351

Module 6: Novel agents and strategies - Gemtuzumab ozogamicin,

glasdegib, magrolimab

AML ASH Review January 20, 2021 Question from Chat Room

Vladimir Therapy for younger patient with AML very fit and eligible for chemotherapy who has TP53 mutation and complex karyotype. Chemotherapy or AZA VEN? Other combo? If CR proceed to Tx or not at all. Tx only for molecular CR? TP53 VAF < 5%? Is there any future for Tx for TP53mut AML? Please, honest response outside a trial and simple answer: What do you do 21 January 2020 in such a patient?

Agenda

Module 1: BTK Inhibitors

Module 2: Bcl-2 Inhibitors

Module 3: Novel Strategies – U2 Regimen (Umbralisib, Ublituximab)

CAR T-Cell Therapy

Agenda

Module 1: BTK Inhibitors

Module 2: Bcl-2 Inhibitors

Module 3: Novel Strategies – U2 Regimen (Umbralisib, Ublituximab)

CAR T-Cell Therapy

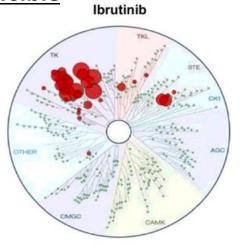
To what extent do issues related to COVID-19 (social distancing, avoiding lymphopenia, etc) affect your first-line therapy recommendation for a patient with CLL in their mid-70s with minor comorbidities and moderate disease burden who requires treatment?

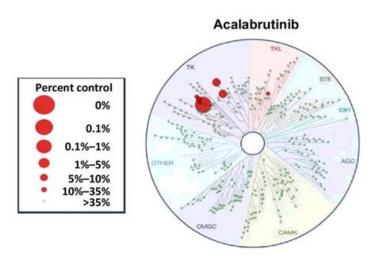
- 1. Minimal or no effect
- 2. Now more likely to use BTK inhibitors
- 3. Now more likely to use venetoclax/obinutuzumab

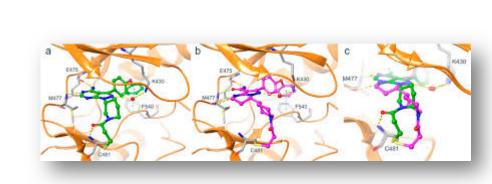
In general, what first-line therapy do you recommend for a patient with CLL in their mid-70s with minor comorbidities and moderate disease burden and no IGHV, del(17p) or TP53 mutation who requires treatment?

- 1. Ibrutinib
- 2. Ibrutinib/anti-CD20 antibody
- 3. Acalabrutinib
- 4. Acalabrutinib/anti-CD20 antibody
- 5. Venetoclax/obinutuzumab
- 6. BR
- 7. Other

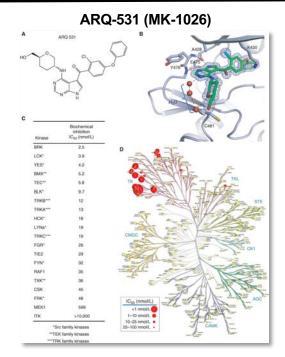
Module 1: BTK Inhibitors

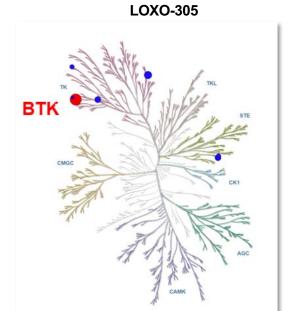

Key Relevant Data Sets


- ECOG-E1912: Extended follow-up
- RESONATE-2: Five-year update of first-line ibrutinib
- ACE-CL-001: Acalabrutinib for treatment-naïve CLL
- ELEVATE-TN: Acalabrutinib +/- obinutuzumab
- AVO: Acalabrutinib/venetoclax/obinutuzumab
- MAIC: Acalabrutinib +/- obinutuzumab
- SEQUOIA: Zanubrutinib for treatment-naïve del(17p) CLL
- BTK inhibition for venetoclax-refractory CLL
- BRUIN: Next-generation BTK inhibitor LOXO-305



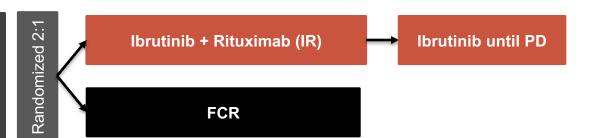
The BTKi floodgates have opened...





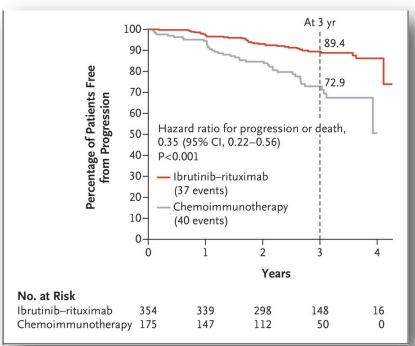
Zanubrutinib

Reversible

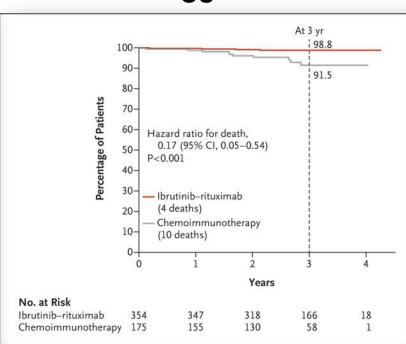


Courtesy of Matthew S Davids, MD, MMSc

Phase 3 E1912: IR vs FCR IR Effective as Initial Treatment for CLL


Previously Untreated CLL (N = 529)

- Age <u><</u> 70
- ECOG 0-2
- CrCI>40
- Able to tolerate FCR
- No deletion 17p by FISH



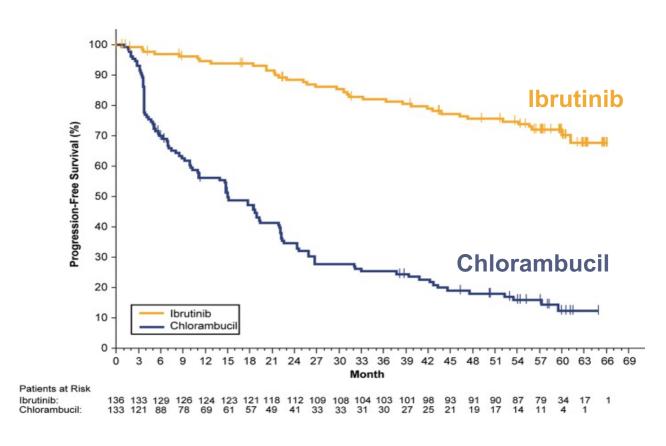
Primary Endpoint

PFS-All Patients

OS

- IR was superior to FCR for IGHV unmutated patients
- AEs grade ≥ 3
 - IR, 80.1%
 - FCR, 79.7%
- Infectious complications of grade ≥ 3
 - IR, 10.5%
 - FCR, 20.3%
- April 21, 2020: FDA expanded the indication of ibrutinib to include its combination with rituximab for the initial treatment of adult patients with CLL/SLL

Courtesy of Matthew S Davids, MD, MMSc

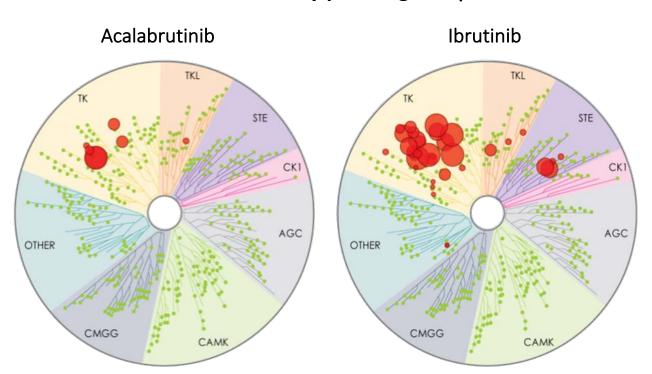

Phase 3 RESONATE-2 Trial: 5-Year Update Ibrutinib Provides Durable Response as Initial Therapy in Frail Pts

Efficacy

 Ibrutinib benefit was also consistent in patients with high prognostic risk (TP53 mutation, 11q deletion, and/or unmutated IGHV)

Safety

 Discontinuation due to AEs decreased over time, with 58% of ibrutinib pts continuing daily treatment

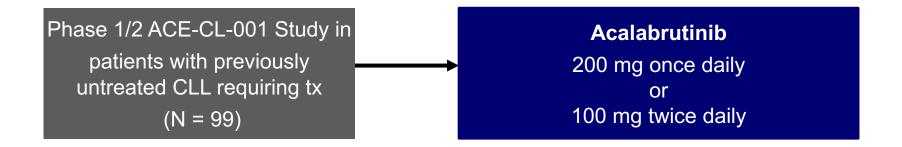


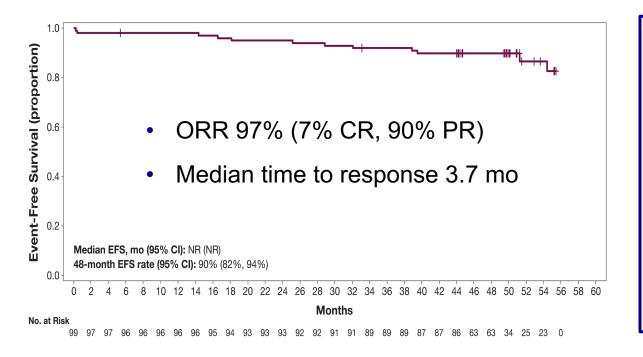
	Median PFS, mo	HR (95% CI)
Ibrutinib	NE	0 146 (0 009 0 219)
Chlorambucil	15.0	0.146 (0.098-0.218)

Second Generation BTKi: Acalabrutinib: Agent Overview

- Highly-selective, potent kinase inhibitor
- Designed to minimize off-target activity with minimal effects on TEC, EGFR, or ITK signaling
- Dosing is 100 mg PO bid

Kinase selectivity profiling at 1 μ M


Kinase	Acalabrutinib	Ibrutinib
BTK	5.1	1.5
TEC	126	10
BMX	46	0.8
TXK	368	2.0
ERBB2	~1000	6.4
EGFR	>1000	5.3
ITK	>1000	4.9
JAK3	>1000	32
BLK	>1000	0.1

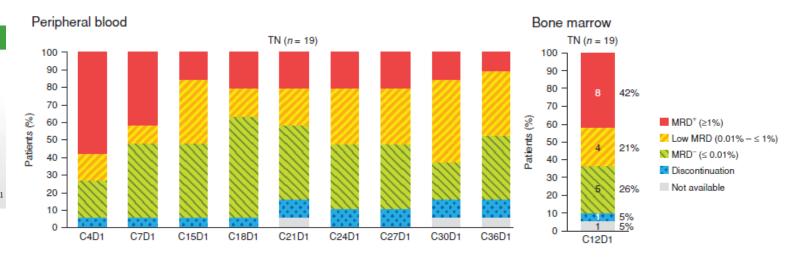

Kinase Inhibition IC₅₀ (nM)

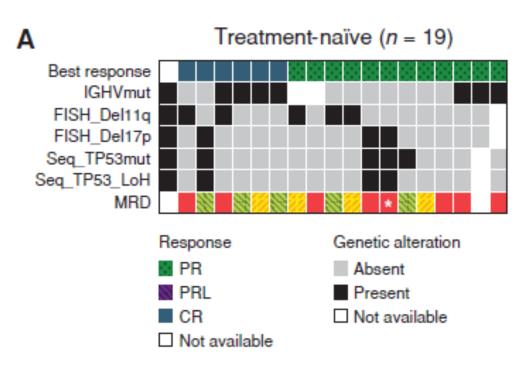
The size of the red circle is proportional to the degree of inhibition.

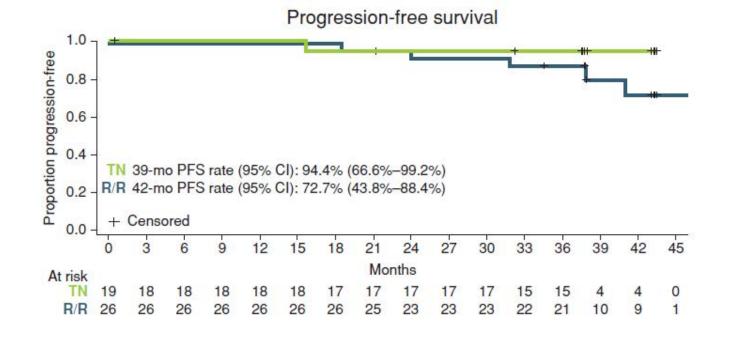
Courtesy of Matthew S Davids, MD, MMSc

Acalabrutinib is Highly Effective in Front-Line CLL

ASCO/EHA 2020 Update: Acalabrutinib monotherapy demonstrated durable remissions and long-term tolerability (median follow-up of 53 months)


- 86% of patients remain on treatment
- Median DOR was not reached 48-month DOR rate: 97% (95% CI, 90%–99%)
- Median EFS was not reached 48-month EFS rate: 90% (95% CI, 82%–94%)

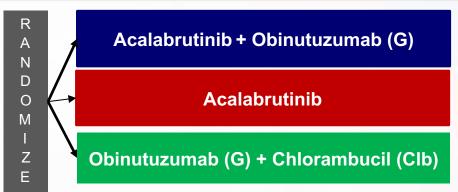

Courtesy of Matthew S Davids, MD, MMSc


RESEARCH ARTICLE

Acalabrutinib plus Obinutuzumab in Treatment-Naïve and Relapsed/Refractory Chronic Lymphocytic Leukemia ...

Jennifer A. Woyach¹, James S. Blachly¹, Kerry A. Rogers¹, Seema A. Bhat¹, Mojgan Jianfar¹, Gerard Lozanski¹, David M. Weiss¹, Barbara L. Andersen¹, Michael Gulrajani², Melanie M. Frigault², Ahmed Hamdy², Raquel Izumi², Veerendra Munugalavadla², Cheng Quah², Min-Hui Wang², and John C. Byrd¹

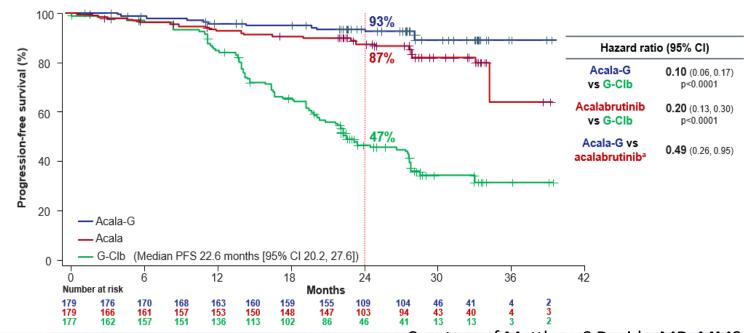
Phase 3 ELEVATE-CLL TN: Acalabrutinib is Superior to Obinutuzumab + Chlorambucil for Treatment-Naïve CLL


Treatment-naive CLL (N=535)

Age ≥65 or <65 years with coexisting conditions:

- CIRS score >6, or
- creatinine clearance <70 mL/min

Stratification


- del(17p), y vs n
- ECOG PS 0-1 vs 2
- Geographic region (N America, W Europe, or other)
- Median follow-up: 28.3 months
- 90% reduction in disease progression or death with acalabrutinib + obinutuzumab
- On November 21, 2019, the FDA approved acalabrutinib monotherapy for the treatment of adult patients with chronic CLL based on analyses from the ELEVATE-TN and ASCEND phase III trials.

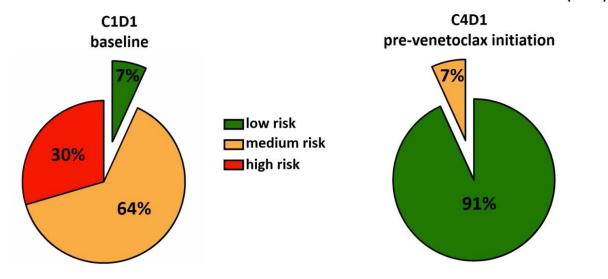
Primary endpoint

 PFS (assessed by IRC) Acala-G vs G-Clb

Crossover from G-Clb to acalabrutinib was allowed after IRC-confirmed progression

Courtesy of Matthew S Davids, MD, MMSc

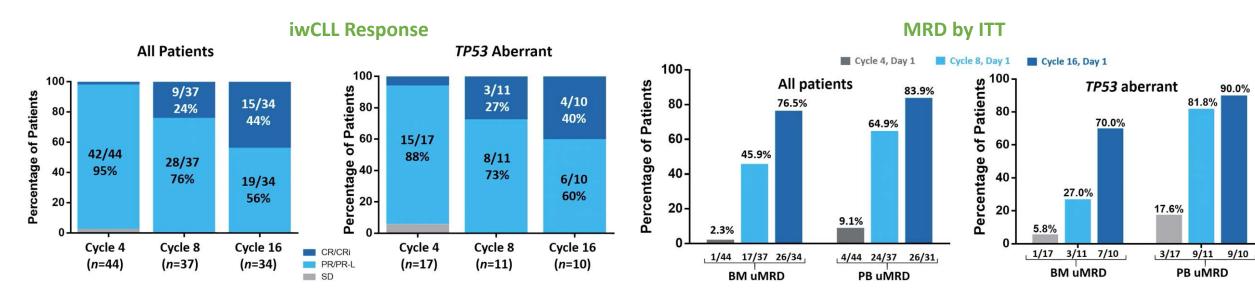
Sharman, et al. Lancet. 2020;395(10232):1278-1291. doi: 10.1016/S0140-6736(20)30262-2.


A Phase 2 Study of Acalabrutinib, Venetoclax and Obinutuzumab (AVO) for 1L CLL: Safety

AEs (N=44), %		All Grades	Grade ≥3
	Neutropenia	77	34
Most frequent hematologic	Thrombocytopenia	70	22
Hematologic	Anemia	52	5
	Headache	80	2
	Fatigue	77	2
	Bruising	57	0
Non- hematologic (≥20%)	Nausea	45	0
	Hypocalcemia	34	2
	Rash	32	0
	Diarrhea	27	0
	GERD	25	0
	IRR	25	2
	Elevated creatinine	23	0

SAEs

• Grade 4 neutropenia (n=4), grade 4 hyperkalemia (n=1; in the setting of AKI just prior to C4D1 without TLS), grade 3 cardiac troponin I elevated (n=1; in the setting of O IRR), grade 3 lung infection (n=1)


3 cycle lead-in with acalabrutinib and obinutuzumab reduces TLS risk at the time of ven initiation (n=44)

AEs of special interest

- Grade ≥3 infections: 1 (2.3%, grade 3 lung infection)
- IRRs: 11 (25%, including 23% grade 1/2, 2% grade 3)
- Hypertension: 5 (11%; no grade ≥3)
- Afib: 1 grade 3
- Lab TLS: 2 grade 3 (both after O and prior to V)

A Phase 2 Study of Acalabrutinib, Venetoclax and Obinutuzumab (AVO) for 1L CLL: Efficacy and Summary

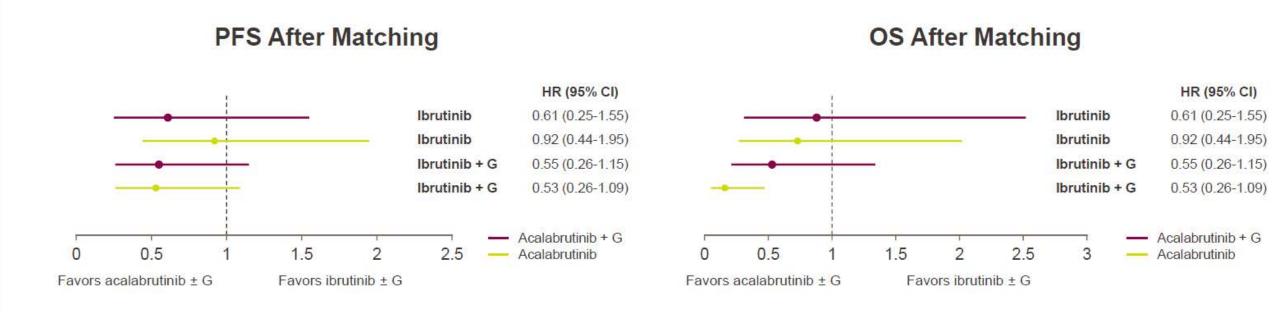
- 11 pts in BM-uMRD CR discontinued after 15 cycles, as per protocol
 - Median time off therapy: 4 months (range: 1-10)
- Median follow-up: 19 cycles (range, 6-26)
- No patients had progressed or had recurrent MRD to date

Summary

- AVO demonstrated efficacy and a favorable safety profile in patients with high-risk, TN CLL
- No TLS due to Ven was observed using a 4-week Ven ramp-up
- Accrual to a TP53-aberrant cohort is ongoing

MAIC: Acalabrutinib ± Obinutuzumab (G) Demonstrated Lower Rates of Several Clinically Important AEs vs Ibrutinib ± G in TN CLL

AEs With Statistically Significant Differences After Matching

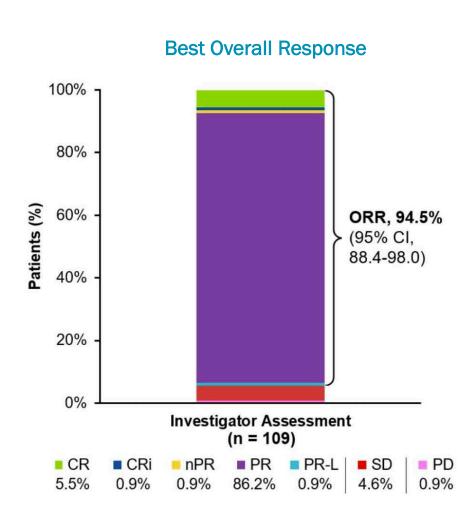

Acalabrutinib vs Ibrutinib

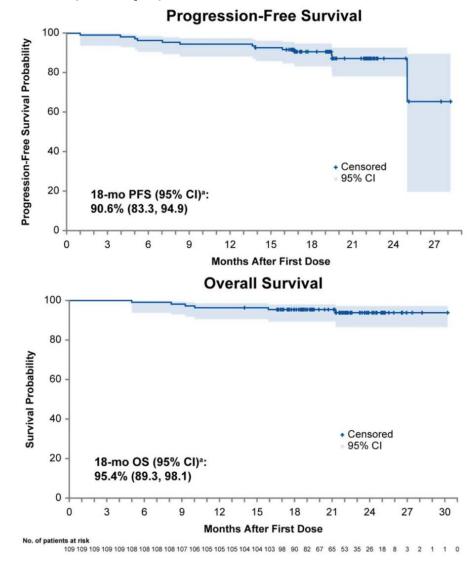
AE rate, %	Acala ESS=79	lbr n=136	Rate difference % (95% CI)	<i>P</i> -value	
Grade 3/4 AEs					
Infections	12.4	24.0	-11.6 (-21.9,-1.0)	<0.05	
Atrial fibrillation	0	4.0	-4.0 (-7.3 ,0.0)	<0.05	
Grade 1-4 AEs					
Peripheral edema	7.5	21.0	-13.5 (-21.7,-5.0)	<0.001	
Pyrexia	6.2	20.0	-13.8 (-21.6,-6.0)	<0.001	
Hypertension	6.4	18.0	-11.6 (-19.9,-3.0)	<0.01	
Major hemorrhage	1.8	7.0	-5.2 (-10.2,0.0)	<0.05	

Acalabrutinib + G vs Ibrutinib + G

AE rate, %	Acala + G ESS=97	lbr + G n=113	Rate difference % (95% CI)	<i>P</i> -value		
Grade 3/4 AEs						
Peripheral edema	0.6	12.0	-11.4 (-17.5,-5.3)	<0.001		
Febrile neutropenia	0.5	5.0	-4.5 (-8.6,-0.4)	<0.05		
Grade 1-4 AEs						
Headache	32.1	8.0	+24.1 (+14.6,+33.6)	<0.001		
Thrombocytopenia	20.7	36.0	-15.3 (-26.8,-3.9)	<0.01		
Atrial fibrillation	3.4	12.0	-8.6 (-15.6,-1.7)	<0.05		

MAIC: Acalabrutinib ± G Demonstrated a Trend Towards Improved PFS and OS vs Ibrutinib ± G in TN CLL

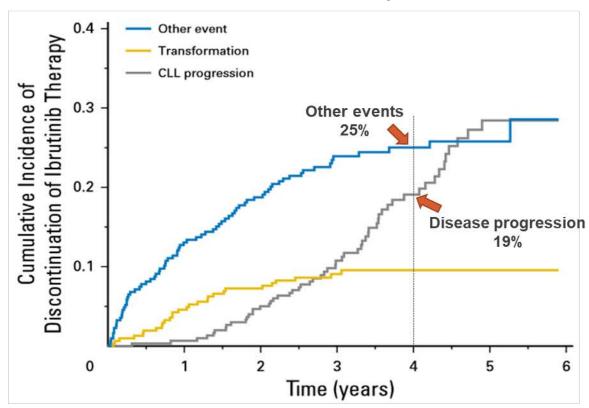


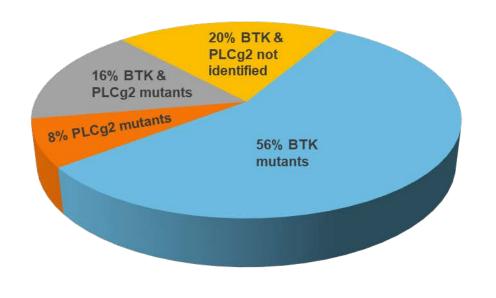

Acalabrutinib monotherapy significantly reduced risk of death compared with ibrutinib + G by 84% (P<0.001) after matching

Zanubrutinib (BGB-3111): High BTK Selectivity

Targets	Assays	Ibrutinib IC ₅₀ (nM)	Zanubrutinib IC ₅₀ (nM)	Ratio (Zanubrutinib:lbrutinib)
	BTK-pY223 Cellular Assay	3.5	1.8	0.5
втк	Rec-1 Proliferation	0.34	0.36	1.1
BIK	BTK Occupation Cellular Assay	2.3	2.2	1.0
	BTK Biochemical Assay	0.20	0.22	1.1
EGFR	p-EGFR HTRF Cellular Assay	101	606	6.0
EGFK	A431 Proliferation	323	3210	9.9
	ITK Occupancy Cellular Assay	189	3265	17
ITK	p-PLC _{y1} Cellular Assay	77	3433	45
шк	IL-2 Production Cellular Assay	260	2536	9.8
	ITK Biochemical Assay	0.9	30	33
JAK3	JAK3 Biochemical Assay	3.9	200	51
HER2	HER2 Biochemical Assay	9.4	661	70
TEC	TEC Biochemical Assay	0.8	1.9	2.4

Results From Arm C of the Phase 3 SEQUOIA Trial of Zanubrutinib for Patients With TN del(17p) CLL/SLL: Efficacy





Resistance and Intolerance Limit Covalent BTK Inhibitor Outcomes

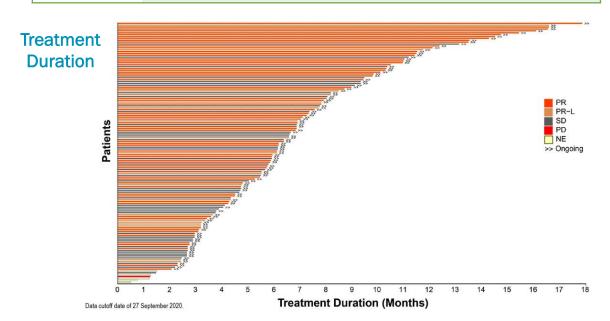
Ibrutinib discontinuation from 4 sequential studies¹

Ibrutinib acquired resistance in patients with progressive CLL²

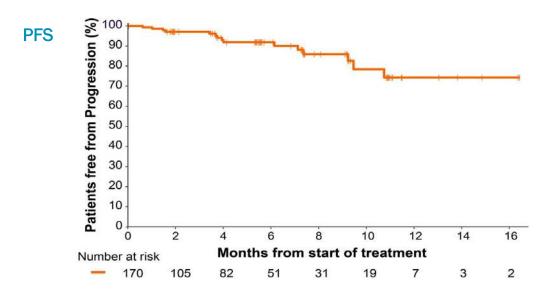
- Front line: Ibrutinib discontinuation rate at 5 years = 41%¹
- Relapsed/refractory: Predicted ibrutinib discontinuation rate at 5 years = 53.7% (4 sequential studies)
- The appearance of BTK C481 mutations is the dominant reason for progressive CLL after covalent BTK inhibitors 1-8
- BTK C481 mutations prevent covalent BTK inhibitors from effective target inhibition¹⁻⁶

References: 1. Woyach et al. *J Clin Oncol*. 2017; 35:1437–43. 2. Lampson et al. *Expert Rev Hematol*. 2018 Mar; 11(3):185-94. 3. Woyach et al. *N Engl J Med*. 2014; 370:2286–94. 4. Byrd et al. *N Engl J Med*. 2016; 374:323–32. 5. Xu et al. *Blood*. 2017; 129:2519–25. 6. Hershkovitz-Rokah et al. *Br J Haematol*. 2018; 181:306–19. 7. Burger. *Leukemia*. 2019; [Epub]. 8. Woyach et al. ASH2019.

Phase 1/2 BRUIN Study of LOXO-305 in Patients With R/R CLL/SLL: Safety


Adverse Events, at All Doses and Patients (N=323), n (%)		Tre	Treatment-Emergent AEs, (≥10%) ^a			Treatment-Related AEs	
		Any Grade	Grade 1	Grade 2	Grade 3	Any Grade	Grade 3/4
Fatigue		65 (20)	40 (12)	22 (7)	3 (1)	27 (8)	2 (<1)
Diarrhea		55 (17)	45 (14)	10 (3)	-	28 (9)	-
Contusion		42 (13)	37 (12)	5 (2)	-	29 (9)	-
	Bruising	53 (16)	48 (15)	5 (2)	-	37 (12)	-
	Rash	35 (11)	30 (9)	5 (2)	-	18 (6)	-
AEs of special interest bs	Arthralgia	16 (5)	13 (4)	3 (1)	-	5 (2)	-
AEs of special interest, b,c Hemorrhage Hypertension	Hemorrhage	15 (5)	10 (3)	4 (1)	1 (<1) ^d	5 (2)	-
	Hypertension	15 (5)	2 (<1)	9 (3)	4 (1)	4 (1)	-
	AFib/Flutter	2 (<1)	-	2 (<1)e	-	-	-

- No DLTs reported and MTD not reached
- 5 (1.5%) discontinued due to treatment-related AEs
- 200 mg QD selected as recommended phase 2 dose


Data cutoff date of 27 September 2020. TheAEs listed are the most common that occurred at any grade in at least 10% of the patients, regardless of attribution. AEs of special interest are those that were previously associated with covalent BTKi. Bruising includes contusion, petechia, ecchymosis and increased tendency to bruise. Hemorrhage includes hematoma, epistaxis, rectal hemorrhage, subarachnoid hemorrhage, upper gastrointestinal hemorrhage, vitreous hemorrhage and wound hemorrhage. Rash includes rash maculo-papular, rash, rash macular, rash erythematous, rash popular, rash pruritic and rash pustular. Usubarachnoid bleed sustained during a bicycle accident, considered by investigator as unrelated to LOXO-305. Both events considered by investigators as unrelated to LOXO-305 due to a history of prior atrial fibrillation in each.

Phase 1/2 BRUIN Study of LOXO-305 in Patients With R/R CLL/SLL: Efficacy

Response Ra	ates	All Patients ^a (N=139)	BTK Pre-Treated Patients ^a (n=121)
ORR, % (95%	6 CI)	63 (55-71)	62 (53-71)
	CR	0	0
Best	PR	69 (50)	57 (47)
response, n (%)	PR-L	19 (14)	18 (15)
(/5/	SD	45 (32)	41 (34)

- ORR increased over time: PR/PR-L 63% to 86% from start of treatment to ≥10 months follow-up
- Median follow-up: 6 months (0.6-17.8+) for efficacyevaluable^a pts
- 83 (94%) of responding patients with CLL/SLL are ongoing/in response
 - 5 responders discontinued: 4 for PD, 1 in PR electively underwent transplantation

^aEfficacy evaluable patients are those who had at least one evaluable post-baseline assessment or had discontinued treatment prior to first post-baseline assessment.

What is your usual preferred initial regimen for a <u>60-year-old</u> patient with <u>CLL</u> with <u>IGHV mutation</u> but without del(17p) or TP53 mutation who requires treatment?

- 1. FCR (fludarabine/cyclophosphamide/rituximab)
- 2. BR (bendamustine/rituximab)
- 3. Ibrutinib
- 4. Ibrutinib + rituximab
- 5. Acalabrutinib
- 6. Acalabrutinib + obinutuzumab
- 7. Venetoclax + obinutuzumab
- 8. Other

What is your usual preferred initial regimen for a <u>60-year-old</u> patient with <u>del(17p)</u> CLL who requires treatment?

- 1. FCR
- 2. BR
- 3. Ibrutinib
- 4. Ibrutinib + rituximab
- 5. Acalabrutinib
- 6. Acalabrutinib + obinutuzumab
- 7. Venetoclax + obinutuzumab
- 8. Other

Which second-line systemic therapy would you recommend for a <u>60-year-old</u> patient with CLL with IGHV mutation but without del(17p) or TP53 mutation who responds to FCR and then experiences disease progression 3 years later?

- 1. Ibrutinib
- 2. Ibrutinib + rituximab
- 3. Acalabrutinib
- 4. Acalabrutinib + obinutuzumab
- 5. Venetoclax + rituximab
- 6. Venetoclax + obinutuzumab
- 7. Idelalisib
- 8. Duvelisib
- 9. Other

Agenda

Module 1: BTK Inhibitors

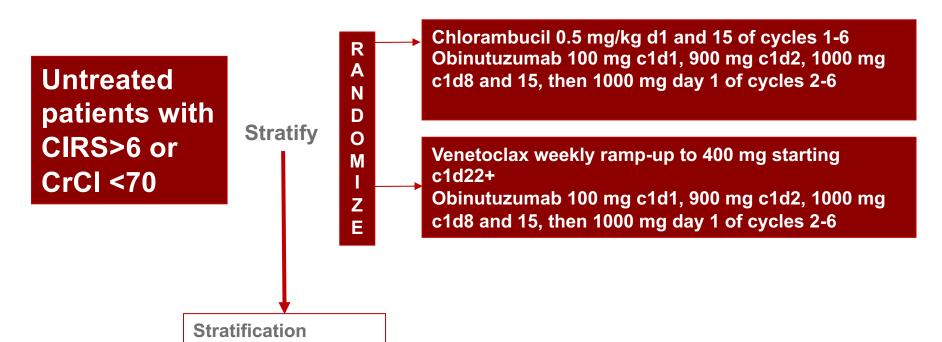
Module 2: Bcl-2 Inhibitors

Module 3: Novel Strategies – U2 Regimen (Umbralisib, Ublituximab)

CAR T-Cell Therapy

Module 2: Bcl-2 Inhibitors

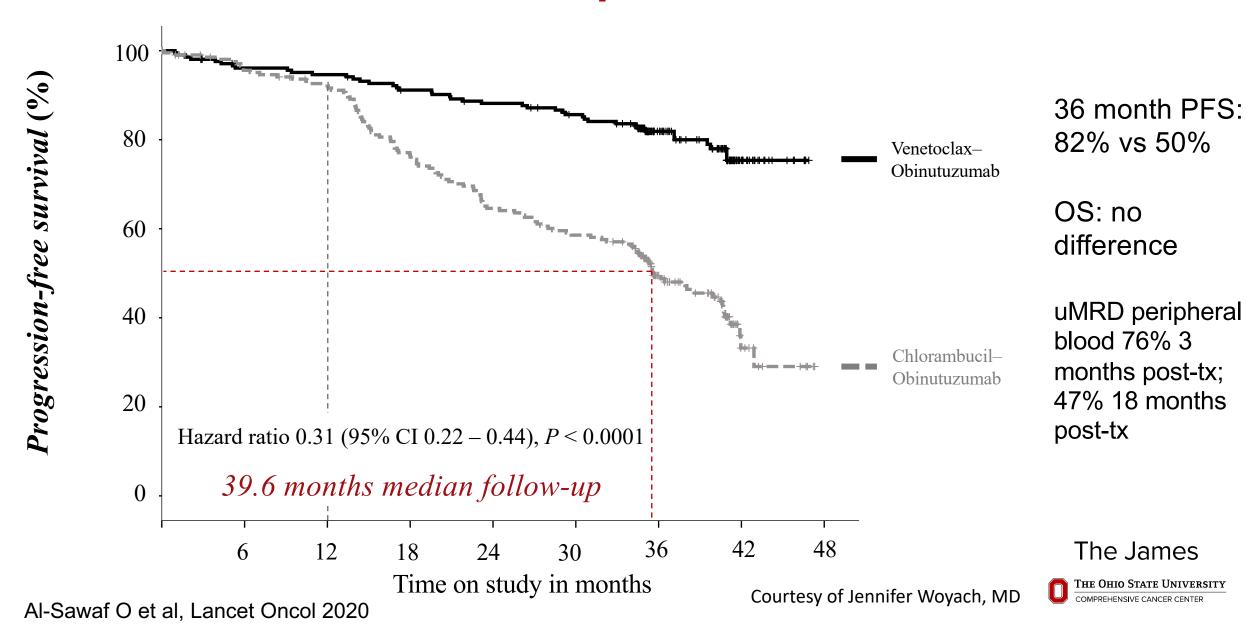
Key Relevant Data Sets


- CLL14: Follow-up results with front-line venetoclax/obinutuzumab
- MURANO: Five-year analysis of fixed-duration venetoclax/rituximab
- CAPTIVATE: First-line ibrutinib + venetoclax
- Phase II trial of ibrutinib/venetoclax/obinutuzumab: Three-year follow-up
- CLARITY: Long-term responses to ibrutinib/venetoclax
- MRD-driven, time-limited therapy with zanubrutinib, obinutuzumab, venetoclax

Phase 3 CLL14 Follow-Up

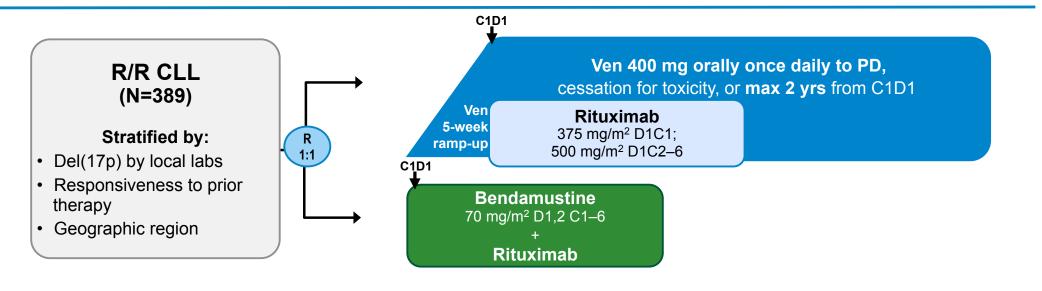
Binet stage Geographic

region


Key Points

- Median age 72
- 7-9% del(17p),
 8-11% TP53
 mutated
- 60% IGHV unmutated

The James

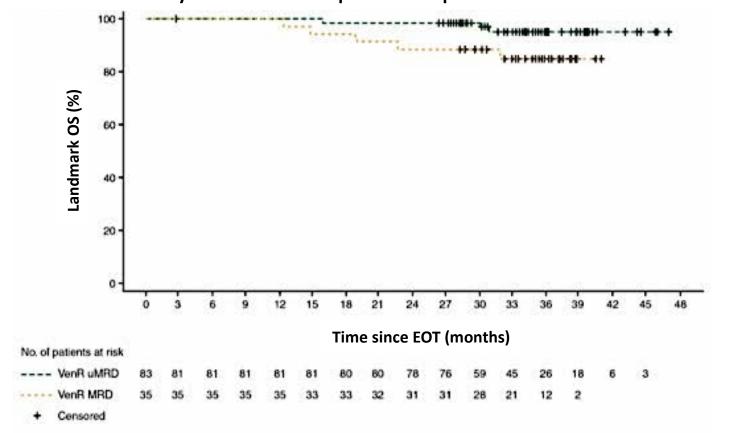


Phase 3 CLL14 Follow-Up

Phase 3 MURANO Study 5 Year Follow-Up

MURANO study design

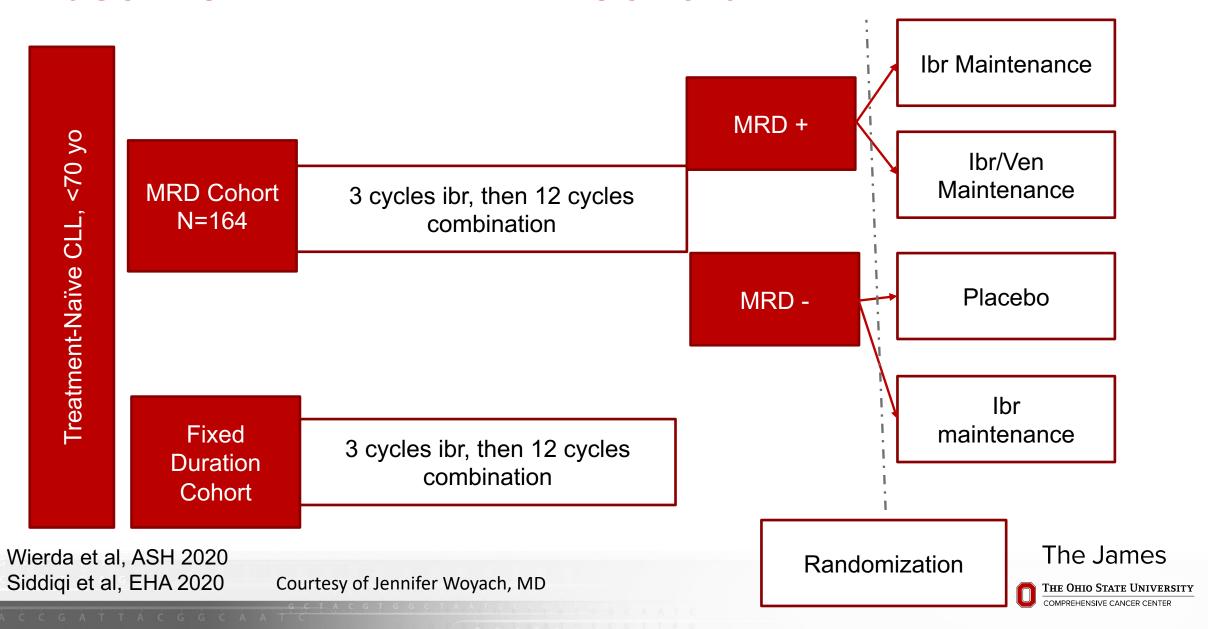
 Primary endpoint: investigator-assessed PFS; secondary endpoints include rate of undetectable MRD (uMRD)


The James

THE OHIO STATE UNIVERSITY
COMPREHENSIVE CANCER CENTER

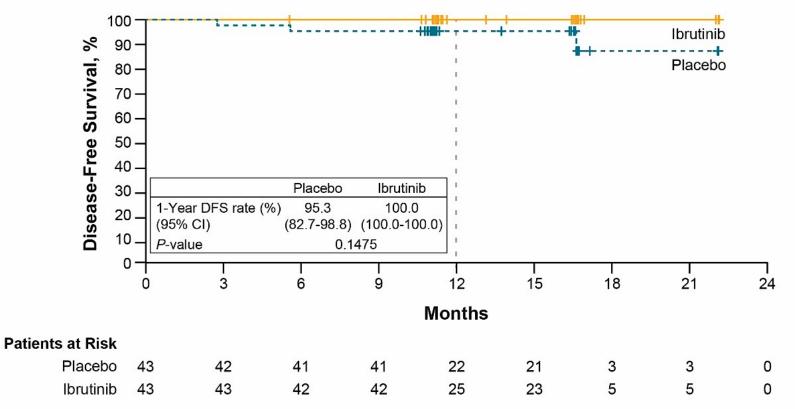
Phase 3 MURANO Study 5 Year Follow-Up

Figure 1: Landmark OS by PB MRD status in pts that completed Ven Tx without PD.


EOT, end of treatment; MRD, minimal residual disease; OS, overall survival; PB, peripheral blood; PD, progressive disease; pts, patients; Tx, therapy; uMRD, undetectable minimal residual disease; Ven, venetoclax.

- Median PFS for VenR 53.6 months
- 5 year OS 82%
- Of 83 pts with uMRD at EOT, 38.5% remained uMRD. Unmutated IGHV and del17p were risk factors
- 25 months was average time from MRD conversion to requirement for therapy

The James



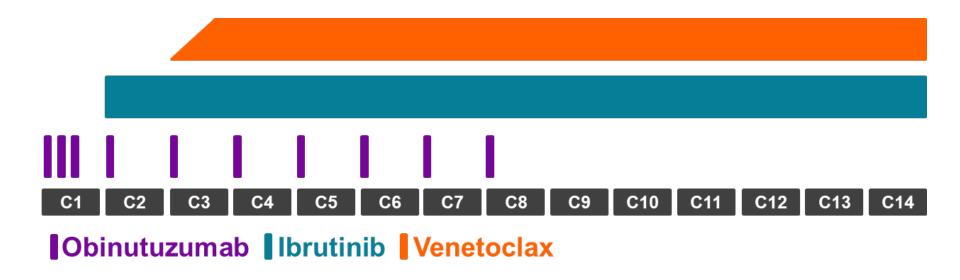
Phase 2 CAPTIVATE MRD Cohort

Phase 2 CAPTIVATE MRD Cohort

Figure. DFS by Randomized Treatment Arm in Confirmed uMRD Group^a

^aThe 3 DFS events in placebo arm were disease progression in 2 patients and MRD relapse in 1 patient.

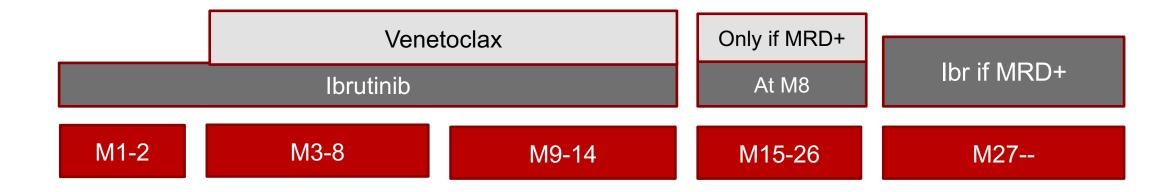
- Confirmed uMRD 30 month PFS
 - 95.3% placebo
 - 100% ibrutinib


- Without confirmed uMRD 30 month PFS
 - 95.2% ibrutinib
 - 96.7% ibr/ven

The James

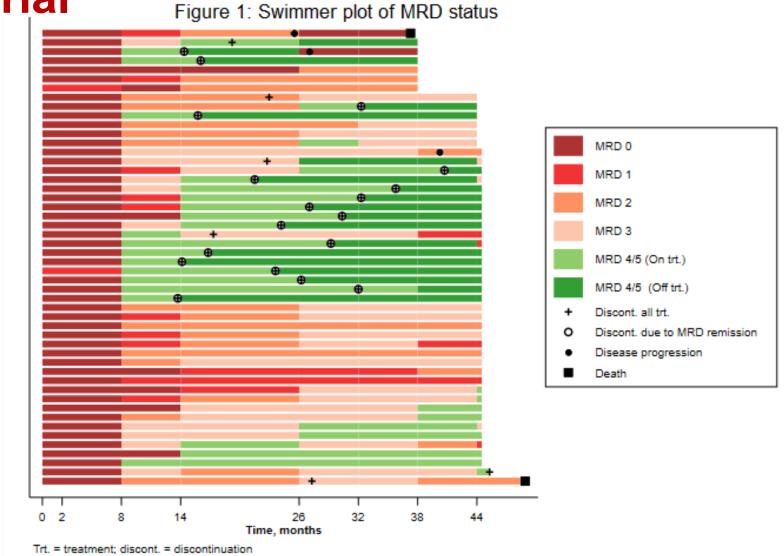
Phase 2 Ibrutinib/Venetoclax/Obinutuzumab 3 year follow-up

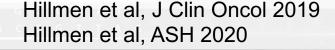
- Phase 2 study of 1 year fixed duration ibr/ven/obin
- 25 treatment-naïve and 25 relapsed/refractory patients


Phase 2 Ibrutinib/Venetoclax/Obinutuzumab 3 year follow-up

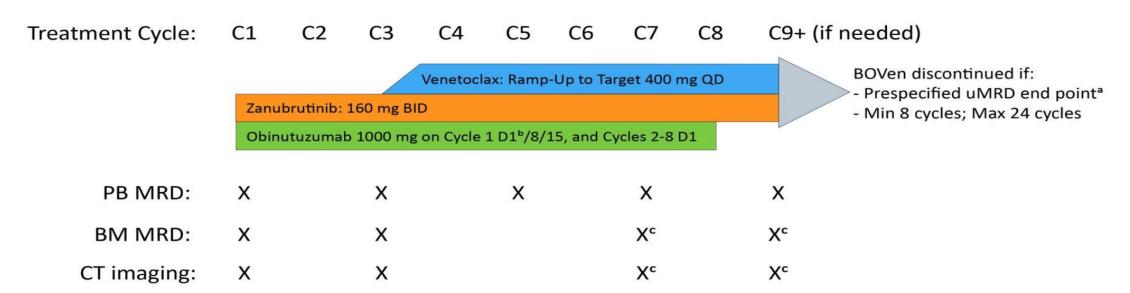
- 67% of TN and 50% RR patients developed uMRD in blood and marrow
- At approximately 2 years post-completion of therapy, one patient in TN cohort died of infection, and one in RR cohort relapsed
- T and NK cells remain suppressed 1 year after completion of therapy

Phase 2 CLARITY Trial


- 50 patients with relapsed/refractory CLL
- MRD in blood/marrow determined duration of therapy



Phase 2 CLARITY Trial


- 4 patients discontinued ibr in first 8 weeks and were replaced
- 23 pts stopped both treatments at or before M38, 17/23 were in uMRD4
- 40% achieved uMRD at month 14 and 48% at M26

Phase 2 BOVen in TN CLL

- 39 patients
- 72% high or very-high CLL-IPI

- a- Once peripheral blood (PB) uMRD is determined and confirmed in bone marrow (BM), patients complete 2 additional cycles followed by confirmatory MRD peripheral blood testing; if PB uMRD x 2 and BM uMRD x 1, therapy is discontinued.
- **b-** Obinutuzumab split over days 1-2 of cycle 1 if ALC >25,000.
- c- BM biopsy obtained at Screening and C3D1; thereafter BM is only obtained if PB-uMRD.
 CT imaging obtained at Screening, C3D1, C7D1, EOT, then every 6 months during post-treatment surveillance.

The James

Phase 2 BOVen in TN CLL

- Median follow-up 14 months
 - 92% have achieved uMRD in peripheral blood and 84% in marrow
 - Median time to BM uMRD is 6 months
 - 77% of patients discontinued therapy at median 10 months
 - No recurrent MRD or progression has been observed

What would be your most likely approach for a patient with newly diagnosed CLL to whom you decide to administer up-front venetoclax/obinutuzumab and who has detectable MRD ("MRD high") after completing 1 year of treatment?

- 1. Continue treatment
- 2. Discontinue treatment

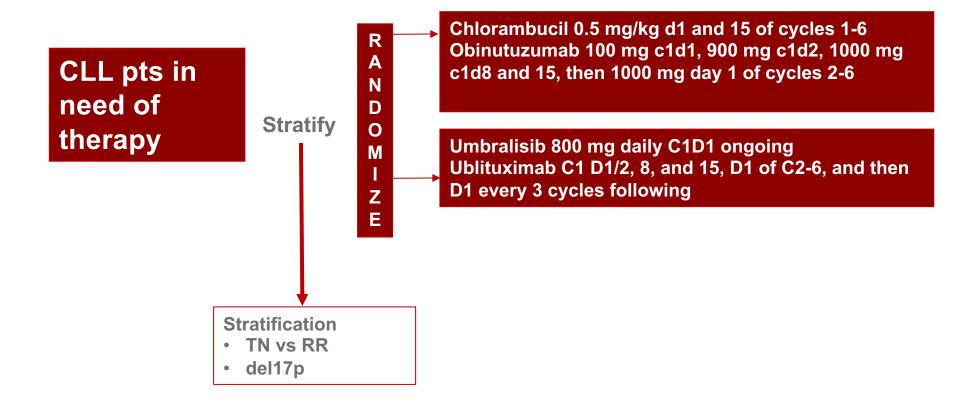
Agenda

Module 1: BTK Inhibitors

Module 2: Bcl-2 Inhibitors

Module 3: Novel Strategies – U2 Regimen (Umbralisib, Ublituximab), CAR T-Cell Therapy

Module 3: Novel Strategies – U2 Regimen (Umbralisib, Ublituximab), CAR T-Cell Therapy


Key Relevant Data Sets

- UNITY-CLL: Umbralisib + ublituximab (U2)
- TRANSCEND CLL 004: Lisocabtagene maraleucel (liso-cel) + ibrutinib

Phase 3 UNITY-CLL Study

- 421 total patients
- 57% TN
- 56% IGHV unmutated
- 10% del17p

Phase 3 UNITY-CLL Study

- Median follow-up 36 months
- Median PFS U2 31.9 mo vs 17.9 mo overall
- In TN, U2 PFS 38.5 mo vs 26.1 mo
- In RR, U2 PFS 19.5 mo vs 12.9 mo
- G3+ Colitis in 3.4%, Transaminitis G3+ in 8.3%, G3+ pneumonitis in 2.9%

Phase 1 TRANSCEND CLL 004 Study: Liso-Cel Plus Ibrutinib

- Liso-Cel is 4-1BB CAR-T product with equal CD4/CD8
- In this cohort patients had to have previously received ibrutinib, reinitiated or continued at study start and continued at least 90 days post CAR-T
- Lymphodepletion with Flu/Cy

Phase 1 TRANSCEND CLL 004 Study: Liso-Cel Plus Ibrutinib

- 19 patients included
- Median 4 prior therapies
- 74% had BTKi as last therapy and 53% had also received venetoclax
- 74% CRS, 1 grade 3; 16% G3+ neurologic events
- ORR 95%, 47% CR/CRi
- 83% maintained response at 3 months
- 79% had uMRD in marrow

Phase 1 TRANSCEND CLL 004 Study: Liso-cel monotherapy

- Study schema same as previous, but without ibrutinib
- 23 pts evaluable for safety, 22 for efficacy
- Median 6 prior therapies, all with prior ibr and 48% with ven too
- ORR 82%, CR/CRi 45%
- Median PFS 18 months, 5/8 progressions were RT
- G3+ CRS 9%, G3+ neuro events 22%

Meet The ProfessorManagement of Ovarian Cancer

Friday, January 22, 2021 1:15 PM – 2:15 PM ET

Faculty

Professor Jonathan A Ledermann, MD

Moderator Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

