

## Chronic Lymphocytic Leukemia BTK Inhibitors



### Matthew S. Davids, MD, MMSc

Associate Professor of Medicine | Harvard Medical School Director of Clinical Research | Division of Lymphoma |Dana-Farber Cancer Institute January 2021

## The BTKi floodgates have opened...



**Reversible** 





## Phase 3 E1912: IR vs FCR IR Effective as Initial Treatment for CLL



Courtesy of Matthew S Davids, MD, MMSc

Shanafelt T, et al. N Engl J Med. 2019;381:432-443. doi: 10.1056/NEJMoa1817073

## Phase 3 RESONATE-2 Trial: 5-Year Update Ibrutinib Provides Durable Response as Initial Therapy in Frail Pts

### Efficacy

 Ibrutinib benefit was also consistent in patients with high prognostic risk (*TP53* mutation, 11q deletion, and/or unmutated *IGHV*)

### Safety

 Discontinuation due to AEs decreased over time, with 58% of ibrutinib pts continuing daily treatment



### Impact on Patient Care and Treatment Algorithm

- Ibrutinib-based therapy is superior to FCR for young, fit patients with unmutated IGHV
- Ibrutinib provides long term benefit with reasonable tolerability for older patients
- Discontinuations due to toxicity do continue over time, esp. in older patients

### **Implications for Future Research**

- Longer term follow-up needed to understand how to approach mutated-IGHV patients
- Ongoing studies are looking at ibrutinib + CIT (iFCR, iFCG, etc.)
- Ibrutinib will be a key comparator in the CLL17 study (I vs IV vs VO) and in combination with obin in the US cooperative group studies (vs IVO)

## Second Generation BTKi: Acalabrutinib: Agent Overview

- Highly-selective, potent kinase inhibitor
- Designed to minimize off-target activity with minimal effects on TEC, EGFR, or ITK signaling
- Dosing is 100 mg PO bid



The size of the red circle is proportional to the degree of inhibition.

Barf T, et al. J Pharmacol Exp Ther. 2017.

| Kinase Inhibition IC <sub>50</sub> (nM) |               |           |  |  |  |
|-----------------------------------------|---------------|-----------|--|--|--|
| Kinase                                  | Acalabrutinib | Ibrutinib |  |  |  |
| ВТК                                     | 5.1           | 1.5       |  |  |  |
| TEC                                     | 126           | 10        |  |  |  |
| BMX                                     | 46            | 0.8       |  |  |  |
| ТХК                                     | 368           | 2.0       |  |  |  |
| ERBB2                                   | ~1000         | 6.4       |  |  |  |
| EGFR                                    | >1000         | 5.3       |  |  |  |
| ITK                                     | >1000         | 4.9       |  |  |  |
| JAK3                                    | >1000         | 32        |  |  |  |
| BLK                                     | >1000         | 0.1       |  |  |  |

Courtesy of Matthew S Davids, MD, MMSc

### Kinase selectivity profiling at 1 $\mu$ M

## **Acalabrutinib is Highly Effective in Front-Line CLL**

Phase 1/2 ACE-CL-001 Study in patients with previously untreated CLL requiring tx (N = 99) Acalabrutinib 200 mg once daily or 100 mg twice daily



**ASCO/EHA 2020 Update**: Acalabrutinib monotherapy demonstrated durable remissions and long-term tolerability (median follow-up of 53 months)

- 86% of patients remain on treatment
- Median DOR was not reached 48-month DOR rate: 97% (95% CI, 90%–99%)
- Median EFS was not reached 48-month EFS rate: 90% (95% CI, 82%–94%)

### Courtesy of Matthew S Davids, MD, MMSc

Byrd, et al. Blood. 2018; 132 (Supplement 1): 692. doi.org/10.1182/blood-2018-99-110451. Byrd, et al. J Clin Oncol. 2020;38, no. 15\_suppl:8024-8024.. doi.org/10.1200/JCO.2020.38.15\_suppl.8024.

#### **RESEARCH ARTICLE**

### Acalabrutinib plus Obinutuzumab in Treatment-Naïve and Relapsed/Refractory Chronic Lymphocytic Leukemia Se 2010

Jenn<mark>ifer A. Woyach<sup>1</sup>, James S. Blachly<sup>1</sup>, Kerry A. Rogers<sup>1</sup>, Seema A. Bhat<sup>1</sup>, Mojgan Jianfar<sup>1</sup>, Gerard Lozanski<sup>1</sup>, David M. Weiss<sup>1</sup>, Barbara L. Andersen<sup>1</sup>, Michael Gulrajani<sup>2</sup>, Melanie M. Frigault<sup>2</sup>, Ahmed Hamdy<sup>2</sup>, Raquel Izumi<sup>2</sup>, Veerendra Munugalavadla<sup>2</sup>, Cheng Quah<sup>2</sup>, Min-Hui Wang<sup>2</sup>, and John C. Byrd<sup>1</sup></mark>







## Phase 3 ELEVATE-CLL TN: Acalabrutinib is Superior to Obinutuzumab + Chlorambucil for Treatment-Naïve CLL

Treatment-naive CLL (N=535)

Age  $\geq$ 65 or <65 years with coexisting conditions:

- CIRS score >6, or
- creatinine clearance <70 mL/min</li>

#### Stratification

- del(17p), y vs n
- ECOG PS 0-1 vs 2
- Geographic region (N America, W Europe, or other)
- Median follow-up: 28.3 months
- 90% reduction in disease progression or death with acalabrutinib + obinutuzumab
- On November 21, 2019, the FDA approved acalabrutinib monotherapy for the treatment of adult patients with chronic CLL based on analyses from the ELEVATE-TN and ASCEND phase III trials.







# A Phase 2 Study of Acalabrutinib, Venetoclax and Obinutuzumab (AVO) for 1L CLL: Safety

| AEs (N=44), %                 |                     | All Grades | Grade ≥3 |
|-------------------------------|---------------------|------------|----------|
|                               | Neutropenia         | 77         | 34       |
| hematologic                   | Thrombocytopenia    | 70         | 22       |
| nematologie                   | Anemia              | 52         | 5        |
|                               | Headache            | 80         | 2        |
|                               | Fatigue             | 77         | 2        |
|                               | Bruising            | 57         | 0        |
| Non-<br>hematologic<br>(≥20%) | Nausea              | 45         | 0        |
|                               | Hypocalcemia        | 34         | 2        |
|                               | Rash                | 32         | 0        |
|                               | Diarrhea            | 27         | 0        |
|                               | GERD                | 25         | 0        |
|                               | IRR                 | 25         | 2        |
|                               | Elevated creatinine | 23         | 0        |

### SAEs

 Grade 4 neutropenia (n=4), grade 4 hyperkalemia (n=1; in the setting of AKI just prior to C4D1 without TLS), grade 3 cardiac troponin I elevated (n=1; in the setting of O IRR), grade 3 lung infection (n=1)

3 cycle lead-in with acalabrutinib and obinutuzumab reduces TLS risk at the time of ven initiation (n=44)



#### **AEs of special interest**

- Grade ≥3 infections: 1 (2.3%, grade 3 lung infection)
- IRRs: 11 (25%, including 23% grade 1/2, 2% grade 3)
- Hypertension: 5 (11%; no grade ≥3)
- Afib: 1 grade 3
- Lab TLS: 2 grade 3 (both after O and prior to V)

# A Phase 2 Study of Acalabrutinib, Venetoclax and Obinutuzumab (AVO) for 1L CLL: Efficacy and Summary



- 11 pts in BM-uMRD CR discontinued after 15 cycles, as per protocol
  - Median time off therapy: 4 months (range: 1-10)
- Median follow-up: 19 cycles (range, 6-26)
- No patients had progressed or had recurrent MRD to date

### **MRD by ITT**



#### Summary

- AVO demonstrated efficacy and a favorable safety profile in patients with high-risk, TN CLL
- No TLS due to Ven was observed using a 4-week Ven ramp-up
- Accrual to a TP53-aberrant cohort is ongoing

## Phase 3 ASCEND: Acalabrutinib Monotherapy Significantly Improves PFS in R/R CLL



- ECOG PS 0-2
- Stratified by Del(17p), ECOG PS 0-1 vs 2, 1-3 vs  $\geq$  4 prior tx





- Median follow-up of 22.0 months
- Estimated 18-month PFS was 82% for acalabrutinib vs 48% for investigator's choice
- Estimated 18-month OS was 88% for both treatment regimens
- ORR was 80% for acalabrutinib vs 84% for investigator's choice

Courtesy of Matthew S Davids, MD, MMSc

Ghia. EHA 2019. Abstr LB2606. NCT02970318. Ghia, et al. J Clin Oncol. 2020 May 27; JCO1903355. doi: 10.1200/JCO.19.03355; Ghia P et al. EHA 2020; Abstract S159

### **Impact on Patient Care and Treatment Algorithm**

- Acalabrutinib is a well-tolerated BTKi with evolving long term efficacy data
- Safety profile of acala makes it a good option, especially for older patients
- Combining acala with obin can deepen response, ?improve PFS

## **Implications for Future Research**

- Ongoing study is examining AVO vs AV vs CIT (CL-311 study)
- Future studies needed to compare AV-based therapy to VO

## MAIC: Acalabrutinib ± Obinutuzumab (G) Demonstrated Lower Rates of Several Clinically Important AEs vs Ibrutinib ± G in TN CLL

**AEs With Statistically Significant Differences After Matching** 

| AE rate, %          | Acala<br>ESS=79 | lbr<br>n=136 | Rate difference<br>% (95% CI) | <i>P</i> -value |  |
|---------------------|-----------------|--------------|-------------------------------|-----------------|--|
| Grade 3/4 AEs       |                 |              |                               |                 |  |
| Infections          | 12.4            | 24.0         | -11.6 (-21.9,-1.0)            | <0.05           |  |
| Atrial fibrillation | 0               | 4.0          | -4.0 (-7.3 ,0.0)              | <0.05           |  |
| Grade 1-4 AEs       |                 |              |                               |                 |  |
| Peripheral edema    | 7.5             | 21.0         | -13.5 (-21.7,-5.0)            | <0.001          |  |
| Pyrexia             | 6.2             | 20.0         | -13.8 (-21.6,-6.0)            | <0.001          |  |
| Hypertension        | 6.4             | 18.0         | -11.6 (-19.9,-3.0)            | <0.01           |  |
| Major hemorrhage    | 1.8             | 7.0          | -5.2 (-10.2,0.0)              | <0.05           |  |

Acalabrutinib vs Ibrutinib

Acalabrutinib + G vs Ibrutinib + G

| AE rate, %          | Acala + G<br>ESS=97 | lbr + G<br>n=113 | Rate difference<br>% (95% CI) | <i>P</i> -value |  |
|---------------------|---------------------|------------------|-------------------------------|-----------------|--|
| Grade 3/4 AEs       |                     |                  |                               |                 |  |
| Peripheral edema    | 0.6                 | 12.0             | -11.4 (-17.5,-5.3)            | <0.001          |  |
| Febrile neutropenia | 0.5                 | 5.0              | -4.5 (-8.6,-0.4)              | <0.05           |  |
| Grade 1-4 AEs       |                     |                  |                               |                 |  |
| Headache            | 32.1                | 8.0              | +24.1 (+14.6,+33.6)           | <0.001          |  |
| Thrombocytopenia    | 20.7                | 36.0             | -15.3 (-26.8,-3.9)            | <0.01           |  |
| Atrial fibrillation | 3.4                 | 12.0             | -8.6 (-15.6,-1.7)             | <0.05           |  |

## MAIC: Acalabrutinib ± G Demonstrated a Trend Towards Improved PFS and OS vs Ibrutinib ± G in TN CLL



Acalabrutinib monotherapy significantly reduced risk of death compared with ibrutinib + G by 84% (*P*<0.001) after matching

#### Davids MS et al, EP724, Presented at 25<sup>th</sup> Annual congress of EHA. June 11-21, 2020

### **Impact on Patient Care and Treatment Algorithm**

- The MAIC found that acalabrutinib (with or without obin) had lower rates of several AEs than ibrutinib (with or without obin) in treatment-naïve patients with CLL, without compromising efficacy
- Although not definitive, this study provides some initial insights into differences between these drugs

### **Implications for Future Research**

• ELEVATE R/R will help define the differences between acala and ibrutinib

### Zanubrutinib (BGB-3111): High BTK Selectivity

| Targets | Assays                             | Ibrutinib<br>IC <sub>50</sub> (nM) | Zanubrutinib<br>IC <sub>50</sub> (nM) | Ratio<br>(Zanubrutinib:Ibrutinib) |
|---------|------------------------------------|------------------------------------|---------------------------------------|-----------------------------------|
|         | BTK-pY223 Cellular Assay           | 3.5                                | 1.8                                   | 0.5                               |
| PTK     | Rec-1 Proliferation                | 0.34                               | 0.36                                  | 1.1                               |
| BIK     | BTK Occupation Cellular Assay      | 2.3                                | 2.2                                   | 1.0                               |
|         | BTK Biochemical Assay              | 0.20                               | 0.22                                  | 1.1                               |
| EGED    | p-EGFR HTRF Cellular Assay         | 101                                | 606                                   | 6.0                               |
| EGFK    | A431 Proliferation                 | 323                                | 3210                                  | 9.9                               |
|         | ITK Occupancy Cellular Assay       | 189                                | 3265                                  | 17                                |
| ITK     | p-PLC <sub>γ1</sub> Cellular Assay | 77                                 | 3433                                  | 45                                |
| IIK     | IL-2 Production Cellular Assay     | 260                                | 2536                                  | 9.8                               |
|         | ITK Biochemical Assay              | 0.9                                | 30                                    | 33                                |
| JAK3    | JAK3 Biochemical Assay             | 3.9                                | 200                                   | 51                                |
| HER2    | HER2 Biochemical Assay             | 9.4                                | 661                                   | 70                                |
| TEC     | TEC Biochemical Assay              | 0.8                                | 1.9                                   | 2.4                               |

# Results From Arm C of the Phase 3 SEQUOIA Trial of Zanubrutinib for Patients With TN del(17p) CLL/SLL: Efficacy





<sup>a</sup>Data cutoff for 2019 ASH presentation: August 7, 2019. Brown JR, et al. ASH 2020. Abstract 1306.

Courtesy of Matthew S Davids, MD, MMSc

Median follow-up: 21.9 months (range, 5.0-30.2)

## **Impact on Patient Care and Treatment Algorithm**

- Zanubrutinib is efficacious in patients with high risk TN CLL
- The toxicity profile looks more similar to acala than to ibrutinib
- Possible advantages of zanubrutinib include potential for daily dosing and no drug-drug interaction with PPIs

## **Implications for Future Research**

- Awaiting registrational arm of the SEQUOIA study for zanubrutinib approval in CLL
- Other promising combinations with zanu under evaluation (e.g. BOVen)

#### Assessment of the Efficacy of Therapies Following Venetoclax Discontinuation in CLL Reveals BTK Inhibition as an Effective Strategy

Anthony R. Mato<sup>1</sup>, Lindsey E. Roeker<sup>1</sup>, Ryan Jacobs<sup>2</sup>, Brian T. Hill<sup>3</sup>, Nicole Lamanna<sup>4</sup>, Danielle Brander<sup>5</sup>, Mazyar Shadman<sup>6</sup>, Chaitra S. Ujjani<sup>7</sup>, Maryam Sarraf Yazdy<sup>8</sup>, Guilherme Fleury Perini<sup>9</sup>, Javier A. Pinilla-Ibarz<sup>10</sup>, Jacqueline Barrientos<sup>11</sup>, Alan P. Skarbnik<sup>12</sup>, Pallawi Torka<sup>13</sup>, Jeffrey J. Pu<sup>14</sup>, John M. Pagel<sup>15</sup>, Satyen Gohil<sup>16</sup>, Bita Fakhri<sup>17</sup>, Michael Choi<sup>18</sup>, Catherine C. Coombs<sup>19</sup>, Joanna Rhodes<sup>20</sup>, Paul M. Barr<sup>21</sup>, Craig A. Portell<sup>22</sup>, Helen Parry<sup>23</sup>, Christine A. Garcia<sup>24</sup>, Kate J. Whitaker<sup>1</sup>, Allison M. Winter<sup>25</sup>, Andrea Sitlinger<sup>26</sup>, Sirin Khajavian<sup>6</sup>, Ariel F. Grajales-Cruz<sup>10</sup>, Krista M. Isaac<sup>22</sup>, Pratik Shah<sup>27</sup>, Othman S. Akhtar<sup>28</sup>, Rachael Pocock<sup>29</sup>, Kentson Lam<sup>18</sup>, Timothy J. Voorhees<sup>19</sup>, Stephen J. Schuster<sup>20</sup>, Thomas D. Rodgers<sup>30</sup>, Christopher P. Fox<sup>31</sup>, Nicolas Martinez-Calle<sup>32</sup>, Talha Munir<sup>33</sup>, Erica B. Bhavsar<sup>34</sup>, Neil Bailey<sup>15</sup>, Jason C. Lee<sup>4</sup>, Hanna B. Weissbrot<sup>4</sup>, Chadi Nabhan<sup>35</sup>, Julie M. Goodfriend<sup>1</sup>, Amber C. King<sup>36</sup>, Andrew D. Zelenetz<sup>37</sup>, Colleen Dorsey<sup>1</sup>, Kayla Bigelow<sup>1</sup>, Bruce D. Cheson<sup>8</sup>, John N. Allan<sup>34</sup>, and Toby A. Eyre<sup>38</sup>

Check for updates

### **Overall response rates to BTKi:**

- BTKi naïve (n=44): 84%
- BTKi exposed (n=30): 53%
- PI3Ki (n=17): 47%
- CAR-T (n=18): 67%



# BTK inhibitor therapy is effective in patients with CLL resistant to venetoclax

А 10 11 12 AlloSCT 13 14 15 16 17 18 19 20 21 (----22 23 12 24 36 48 60 Time since BTKi initiation (months) в С L VEN ≥ 24 months 100 \_\_\_ PFS VEN < 24 months</p> alive and progression L OS % survival 50 HR: 0.31 (95%CI 0.09 - 1.03) p = 0.0442 0 6 12 18 24 30 36 42 48 54 0 6 12 18 24 30 36 42 48 54 Time since BTKi initiation (months) Time since BTKi initiation (months) No. at PFS 15 12 4 No. at VEN ≥ 24 mo 14 10 8 3 23 risk 15 13 risk VEN < 24 mo

ORR: 91%, CR: 18%

#### LYMPHOID NEOPLASIA

Comment on Lin et al, page 2266

### Inverting the BTK-BCL2 order

Jennifer R. Brown | Dana-Farber Cancer Institute

In this issue of *Blood*, Lin et al report the first long-term follow-up data showing that Bruton tyrosine kinase inhibitors (BTKi's) are effective in chronic lymphocytic leukemia (CLL) after previous progression on venetoclax.<sup>1</sup>

Lin VS et al., Blood, 2020

### Impact on Patient Care and Treatment Algorithm

- Several retrospective datasets have emerged suggesting that BTKis are active postvenetoclax
- For patients with prior BTKi progression, re-treatment with a BTKi is unlikely to be helpful
- PI3Kis are an option for patients who progress on both BTKi and BCL-2i, but initial data suggest responses are unlikely to be durable

### **Implications for Future Research**

- Awaiting prospective data on this sequence (MURANO will provide some)
- Sequencing questions are important but it is challenging to incorporate the next line of therapy into a clinical trial
- Prospective registry-based studies are one way to capture this information

### **Resistance and Intolerance Limit Covalent BTK Inhibitor Outcomes**



Ibrutinib discontinuation from 4 sequential studies<sup>1</sup>

Ibrutinib acquired resistance in patients with progressive CLL<sup>2</sup>



- Front line: Ibrutinib discontinuation rate at 5 years = 41%<sup>1</sup>
- Relapsed/refractory: Predicted ibrutinib discontinuation rate at 5 years = 53.7% (4 sequential studies)<sup>7</sup>
- The appearance of BTK C481 mutations is the dominant reason for progressive CLL after covalent BTK inhibitors<sup>1-8</sup>
- BTK C481 mutations prevent covalent BTK inhibitors from effective target inhibition<sup>1-6</sup>

References: 1. Woyach et al. J Clin Oncol. 2017; 35:1437–43.2. Lampson et al. Expert Rev Hematol. 2018 Mar; 11(3):185-94.3. Woyach et al. N Engl J Med. 2014; 370:2286–94.4. Byrd et al. N Engl J Med. 2016; 374:323–32.5. Xu et al. Blood. 2017; 129:2519–25.6. Hershkovitz-Rokah et al. Br J Haematol. 2018; 181:306–19.7. Burger. Leukemia. 2019; [Epub]. 8. Woyach et al. ASH2019.

### ARQ-531 (MK-1026) is active in high risk CLL patients including C481S BTK mut





- 10 additional patients experienced stable disease with tumor reduction between 0 to 48%
- ▶ 13 patients treated at ≥45 mg QD remain on study
- 3 additional Richter's transformation patients were able to proceed to CAR-T therapy

Preliminary unmonitored data as of 6 Nov 2019

#### Woyach et al., ASH, 2019

# Phase 1/2 BRUIN Study of LOXO-305 in Patients With R/R CLL/SLL: Safety

| Adverse Events, at All Doses and Patients<br>(N=323), n (%) |              | Treatment-Emergent AEs, (≥10%)ª |         |                     |                     | Treatment-Related AEs |           |
|-------------------------------------------------------------|--------------|---------------------------------|---------|---------------------|---------------------|-----------------------|-----------|
|                                                             |              | Any Grade                       | Grade 1 | Grade 2             | Grade 3             | Any Grade             | Grade 3/4 |
| Fatigue                                                     |              | 65 (20)                         | 40 (12) | 22 (7)              | 3 (1)               | 27 (8)                | 2 (<1)    |
| Diarrhea                                                    |              | 55 (17)                         | 45 (14) | 10 (3)              | -                   | 28 (9)                | -         |
| Contusion                                                   |              | 42 (13)                         | 37 (12) | 5 (2)               | -                   | 29 (9)                | -         |
| AEs of special interest, <sup>b,c</sup>                     | Bruising     | 53 (16)                         | 48 (15) | 5 (2)               | -                   | 37 (12)               | -         |
|                                                             | Rash         | 35 (11)                         | 30 (9)  | 5 (2)               | -                   | 18 (6)                | -         |
|                                                             | Arthralgia   | 16 (5)                          | 13 (4)  | 3 (1)               | -                   | 5 (2)                 | -         |
|                                                             | Hemorrhage   | 15 (5)                          | 10 (3)  | 4 (1)               | 1 (<1) <sup>d</sup> | 5 (2)                 | -         |
|                                                             | Hypertension | 15 (5)                          | 2 (<1)  | 9 (3)               | 4 (1)               | 4 (1)                 | -         |
|                                                             | AFib/Flutter | 2 (<1)                          | -       | 2 (<1) <sup>e</sup> | -                   | -                     | -         |

• No DLTs reported and MTD not reached

• 5 (1.5%) discontinued due to treatment-related AEs

200 mg QD selected as recommended phase 2 dose

Data cutoff date of 27 September 2020.<sup>a</sup>TheAEs listed are the most common that occurred at any grade in at least 10% of the patients, regardless of attribution. <sup>b</sup>AEs of special interest are those that were previously associated with covalent BTKi. <sup>c</sup>Bruising includes contusion, petechia, ecchymosis and increased tendency to bruise. Hemorrhage includes hematoma, epistaxis, rectal hemorrhage, subarachnoid hemorrhage, upper gastrointestinal hemorrhage, vitreous hemorrhage and wound hemorrhage. Rash includes rash maculo-papular, rash, rash macular, rash erythematous, rash popular, rash pruritic and rash pustular. <sup>d</sup>Subarachnoid bleed sustained during a bicycle accident, considered by investigator as unrelated to LOXO-305. <sup>e</sup>Both events considered by investigators as unrelated to LOXO-305 due to a history of prior atrial fibrillation in each.

Mato AR, et al. ASH 2020. Abstract 542

# Phase 1/2 BRUIN Study of LOXO-305 in Patients With R/R CLL/SLL: Efficacy

| Response Rates  |      | All Patients <sup>a</sup><br>(N=139) | BTK Pre-Treated Patients <sup>a</sup><br>(n=121) |
|-----------------|------|--------------------------------------|--------------------------------------------------|
| ORR, % (95% CI) |      | 63 (55-71)                           | 62 (53-71)                                       |
|                 | CR   | 0                                    | 0                                                |
| Best            | PR   | 69 (50)                              | 57 (47)                                          |
| n (%)           | PR-L | 19 (14)                              | 18 (15)                                          |
|                 | SD   | 45 (32)                              | 41 (34)                                          |



- ORR increased over time: PR/PR-L 63% to 86% from start of treatment to ≥10 months follow-up
- Median follow-up: 6 months (0.6-17.8+) for efficacyevaluable<sup>a</sup> pts
- 83 (94%) of responding patients with CLL/SLL are ongoing/in response
  - 5 responders discontinued: 4 for PD, 1 in PR electively underwent transplantation



<sup>a</sup>Efficacy evaluable patients are those who had at least one evaluable post-baseline assessment or had discontinued treatment prior to first post-baseline assessment.

Mato AR, et al. ASH 2020. Abstract 542.

## Impact on Patient Care and Treatment Algorithm

- Reversible, non-covalent BTKi appear to be active in both *BTK* wildtype and mutant patients
- Though early, the toxicity profile of these new drugs also appears to be favorable
- Once approved, these drugs will initially have a role in BTKi progressors

## **Implications for Future Research**

- Studies are in development to compare the new BTKis to R/R SOC
- Frontline study of new BTKis vs. ibrutinib will also likely be pursued
- These drugs have the potential for broader use if these studies are positive